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Background Both genetic and environmental factors contribute to triglyceride,
low-density lipoprotein-cholesterol (LDL-C), and high-density
lipoprotein-cholesterol (HDL-C) levels. Although genome-wide asso-
ciation studies are currently testing the genetic factors systematically,
testing and reporting one or a few factors at a time can lead to frag-
mented literature for environmental chemical factors. We screened
for correlation between environmental factors and lipid levels, utiliz-
ing four independent surveys with information on 188 environmental
factors from the Centers of Disease Control, National Health and
Nutrition Examination Survey, collected between 1999 and 2006.

Methods We used linear regression to correlate each environmental chemical
factor to triglycerides, LDL-C and HDL-C adjusting for age, age2, sex,
ethnicity, socio-economic status and body mass index. Final estimates
were adjusted for waist circumference, diabetes status, blood pressure
and survey. Multiple comparisons were controlled for by estimating the
false discovery rate and significant findings were tentatively validated
in an independent survey.

Results We identified and validated 29, 9 and 17 environmental factors
correlated with triglycerides, LDL-C and HDL-C levels, respectively.
Findings include hydrocarbons and nicotine associated with lower
HDL-C and vitamin E (g-tocopherol) associated with unfavourable
lipid levels. Higher triglycerides and lower HDL-C were correlated
with higher levels of fat-soluble contaminants (e.g. polychlorinated
biphenyls and dibenzofurans). Nutrients and vitamin markers
(e.g. vitamins B, D and carotenes), were associated with favourable
triglyceride and HDL-C levels.

Conclusions Our systematic association study has enabled us to postulate about
broad environmental correlation to lipid levels. Although subject to
confounding and reverse causality bias, these findings merit
evaluation in additional cohorts.
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Introduction
Serum lipid levels are risk factors for coronary heart
disease (CHD), atherosclerosis, type 2 diabetes and
stroke. Both genetic and environmental factors
influence lipid level phenotypes. Lipid level variation
can be influenced by genetics.1,2 On the other hand,
environmental factors also play a role. For example,
lifestyle factors such as physical exercise, smoking
and diet have well-documented relationships with
lipid levels.3–7 There are a number of reports connect-
ing lipid levels, cardiovascular disease, type 2 diabetes
and the metabolic syndrome with specific persistent
pollutants, such as dioxins, organochlorinated pesti-
cides, dibenzofurans and polychlorinated biphenyls
(PCBs).8–14 Other less tangible environmental factors,
such as air pollution,15 may also have an adverse
relationship with lipid levels.

Although extensive efforts are underway to dissect
genetic components with genome-wide association
studies (GWASs)16, similar studies to systematically
identify specific environmental factors are lacking.
Results of epidemiologic studies, which typically test
one or a few factors at a time, may be further dis-
torted by selective reporting of subsets of analyses,
outcomes and adjustments. It has been postulated
that this contributes to a fragmented, ultimately
unreliable literature.17–22 More importantly, the
phenomenon of environmental exposure is complex
and influenced by differences in individuals, time,
place and other exposures.19 Humans are exposed to
not a few, but many environmental adverse or pro-
tective factors simultaneously. Due to this complexity,
the net effects due to environmental factors on
human health may be miscalculated when consider-
ing a few factors at a time. Protective effects of
environmental factors are not usually considered in
context of adverse effects of other co-existing factors,
potentially leading to lack of physiological coherence
and public health relevance. Health surveys and
bio-monitoring projects,23 in which multiple environ-
mental factors are simultaneously measured, provides
an opportunity to hypothesize about how a system of
environmental factors relate to disease and other
characteristics among the general population.24

We conduct a more systematic approach to associating
multiple environmental chemical factors with serum
lipid levels, similar to a GWAS,25 utilizing the National
Health and Nutrition Examination Survey (NHANES),
a nationally representative health survey.26 Instead of
testing a few associations at a time, we evaluate 188 en-
vironmental factors for association to lipid levels while
accounting for the multiplicity of comparisons. The
emerging significant associations are then validated in
an independent NHANES dataset. Further, we conduct

systematic sensitivity analyses among the measured
confounders to estimate bias. We term this method an
‘Environment-wide Association Study’, or EWAS.

Using such an analytic procedure, we have found and
validated 29, 9 and 17 markers for environmental chem-
ical factors correlated with triglycerides, low-
densitylipoprotein-cholesterol(LDL-C)andhigh-density
lipoprotein-cholesterol (HDL-C), respectively, including
a spectrum of persistent organic pollutants, nutrients
and vitamins. Many of these factors have been explored
before in association with related diseases, such as
type 2 diabetes, obesity, lipid levels and the metabolic
syndrome.10–14,27 However, each of these studies
addresses issues of model adjustment, variable coding
and assessment of effects in different ways, possibly
leading to conflicting study results.28 In this systematic
study, we propose one type of analytic process to unify
and standardize these analyses. Specifically, we assess
how environmental factors are correlated among them-
selves and with changes in serum lipid levels, while
consistently adjusting for other factors such as age,
sex, ethnicity, socio-economic status (SES) and body
mass index (BMI).

Methods
Data
We downloaded all available NHANES laboratory and
questionnaire data for 1999–2000, 2001–02, 2003–04
and 2005–06 surveys. Laboratory data included serum
and urine measures of environmental factors and
clinical measures including lipid levels. Each survey
is an independent, non-overlapping sampling of par-
ticipants representative of the general US population.
We analysed factors that were a direct measurement
of an extrinsic environmental factor (e.g. amount of
pesticide or heavy metal in urine or blood). We did
not consider intrinsic physiological measures (e.g. red
blood cell count or albumin) or responses to question-
naires except for sensitivity analyses.

We used three of the four surveys (1999–2000, 2001–
02, 2005–06) for testing for multiple environmental fac-
tors in association with lipid levels and reserved one
survey (2003–04) for validation testing of findings. As
each survey had a different set and number of environ-
mental factors measured, we selected 2003–04 as the
validation survey as it had the largest number of
shared factors with each of the other surveys, maximiz-
ing the number of factors that could be validated.

We eliminated 119 factor variables from our analyses
whose majority of observations were under the National
Centers for Health Statistics (NCHS) documented limit
of detection or, for categorical factor variables, varied
little. Specifically, we omitted continuous variables if
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99% of the observations were deemed below the thresh-
old limit of detection. For categorical factor variables,
we omitted those that had 99% of the observations be-
longing to one category. After the elimination of these
119 such factor variables, we were left with 169 variables
from the 1999–2000 survey, 182 from 2001–02, 96 from
2005–06 and 258 from the 2003–04 (validation) survey.
Next, we selected factors from each survey that were
present in the validation survey. This left us with a
total of 188 unique factors that could be validated, of
which 126 were from the 1999–2000 survey, 157 from
2001–02 and 65 from 2005–06. Using a categorization
provided by NHANES, we binned these factors into 26
‘classes’ of related factors (Figure 1A, Supplementary
Table 1, available as Supplementary Data at IJE online).

Different environmental factors were measured in
varying numbers of participants: 109–3610 (median
938), 101–3388 (median 896) and 222–7485 (median
1958) individuals for triglyceride, LDL-C and HDL-C
levels, respectively (Figure 1B). Individuals are selected
randomly based on their demographic characteristics
for the complex, stratified survey.29 Serum triglyceride
levels were measured in the morning after 48.5 h of
fasting. LDL-C levels were derived from total cholesterol
and direct HDL-C measurements were derived from the
Friedewald calculation.30

Correlation between factors
We computed the pair-wise partial Pearson correlation
coefficient between each environmental factors using
the test and validation surveys separately, adjusting
for age and BMI in addition to creatinine levels for urin-
ary measures. Since we had 188 environmental factors,
the total number of possible pairs of factors (and correl-
ations) equals 17 578 (188� 187/2); however, 4455
(25%) of all possible pairs of factors were not measured
in the same overlapping individuals and, as a result,
their correlations could not be computed. We assessed
correlations between factors in the test and validation
cohorts separately and compared their relative strength
by estimating percentiles of the entire distribution of
correlations. We also compared correlations within
classes (or ‘intra-class’ correlation) and between classes
(‘inter-class’) correlations. For factors measured in more
than one of the test surveys, their coefficient was com-
bined using a meta-analytic random effects method.

Correlation of environmental factors with
lipid levels
The systematic analysis encompasses multiple steps
(Figure 1C–G), which we term an ‘environment-wide
association study’ (EWAS). First, survey-weighted
linear regressions are performed, whereby log10-trans-
formed lipid levels are dependent variables, modelled as
a functionofeachenvironmental factorand age, age2, sex,
BMI, ethnicity and SES (Figure 1C). For SES, we used the
tertile of poverty index (participant’s household income
divided by the time-adjusted poverty threshold), as pre-
viously described.25 Ethnicity was coded in five groups

(Mexican American, Non-Hispanic Black, Non-Hispanic
White, Other Hispanic, Other). We used R survey module
for all survey-weighted analyses31 with appropriate
pseudo-strata, pseudo-sampling units and weights to ac-
commodate the complex sampling of the data.

Chemical exposure data arising from mass spectrom-
etry or absorption measurements were log-transformed.
We used z-scores [standard deviations (SDs) from the
mean] to compare effect sizes; specifically, effect sizes
for these variables denote change in lipid levels for a
change in 1 SD of exposure. For binary variables, such
as presence/absence assays for infectious agents, effect
sizes denote change in lipid levels for those with pres-
ence of a factor vs those without.

We calculated the false discovery rate (FDR), the esti-
mated proportion of false discoveries made vs the
number of total discoveries made for a given significance
level a, to control for multiple hypothesis testing (Figure
1D).32 We created a ‘null distribution’ of regression test
statistics for each survey separately, permuting the
triglycerides, HDL-C and LDL-C levels 1000 times and
refitting the linear regression models, collecting the
test statistics for the coefficients corresponding to the
environmental factor. In other words, the distributions
of the lipid levels were not changed, but randomly
assigned to different individuals in the survey.

The FDR is the ratio of the number of coefficients
called significant at a given level a in the null distri-
bution and the number of results called significant
from our real screen (Supplementary Methods,
available as Supplementary Data at IJE online). We
used a FDR of < 5% to select significant associations.
We used an independent survey, the 2003–04 survey,
to validate significant findings (Figure 1D). We con-
sidered a significant factor as ‘tentatively validated’ if
it was significant (P < 0.05) in the validation survey.

We then fit a final linear regression model with data
combined from the four independent NHANES
surveys for a tentatively validated environmental
factor, attaining an overall estimate and P-value
(Figure 1E). We utilized the larger sample size to
adjust for additional co-variates that we were unable
to adjust for in the single survey analyses (due to
limited residual degrees of freedom) that also
influence lipid levels. In addition to initial covariates,
we also adjusted for waist circumference, type 2
diabetes status (approximated by fasting blood glu-
cose5126 mg/dl), systolic and diastolic blood
pressure (mm Hg) and survey. To estimate how
much of the variance was described by each environ-
mental factor, we estimated the change in the coeffi-
cient of determination (R2) adding that factor vs
a model including only the adjusting factors
(Figure 1F). We also performed regressions on
untransformed lipid levels to estimate raw effect size.

Sensitivity analyses
We conducted sensitivity analyses to account for recent
food, alcohol, supplements, medications, exercise and
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Figure 1 Summary of environmental factors and analytic method. (A) Summary of the 26 factor classes and the number of
factors within them for each NHANES test survey. (B) 100–7500 individuals had their HDL-C, LDL-C and triglyceride levels
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history of cardiovascular health (Figure 1G). In total, 62
questionnaire items were used (Supplementary Table 2,
available as Supplementary data at IJE online). To evalu-
ate the impact of these 62 adjusting variables, we recom-
puted the regression models by adding each variable to
our final model one by one and observed the change in
the effect size for each environmental factor. We also
built a model adjusting for lipid-lowering drugs, supple-
ment use, exercise and self-report cardiovascular-
related disease simultaneously. More details can be
found in the Supplementary Data (available at IJE
online).

Power calculations
We estimated33 that our analyses had 480% median
power for all surveys for detection of 5% change in
HDL-C and LDL-C and 10% change of triglyceride
levels for P-values corresponding to an FDR of 5%.

Results
Demographic and baseline associations
with lipid levels
Tables 1–3 describe the multivariate relationship
between baseline demographics and lipid levels. As ex-
pected,34 demographics, BMI, ethnicity and SES are
associated with lipid levels. For example, consistent
positive correlations existed between age and
triglycerides (5–10% higher per 10 years, P < 0.02) and
BMI and triglycerides (2% higher per 1 unit of BMI,
P < 0.004) and consistent negative correlations between
Black ethnicity and triglycerides (13% lower vs White,
P < 0.001).35 Consistent polynomial relationships
existed between age and both HDL-C and LDL-C.
Negative correlations existed between BMI and HDL-C
(1% lower per BMI unit, P < 0.0001). In addition, SES
was associated with HDL-C (1–5% lower for lower vs
higher tertile, P < 0.03). These indicated that BMI, eth-
nicity, sex, SES, age and age2, were all covariates that
needed to be controlled in our first stage analysis.

Factor correlations
We computed the partial Pearson correlation between
each pair of environmental chemical factors tested
where pair-wise data were available. Of the 17 578
possible correlations, 13 123 correlations could be

computed (‘Methods’ section). These 13 123 correl-
ations were adjusted for BMI and age in addition to
creatinine levels for urinary measures. We computed
the correlations in the test surveys and verified these
correlations among the validation survey (P < 0.05 for
both test and validation surveys and with same sign);
after this verification step, we were left with a total of
11 672 confirmed correlations (Figure 2). The 5th, 10th,
90th and 95th percentiles of verified partial Pearson
correlations were �0.11, �0.07, 0.26 and 0.38, respect-
ively (lower left panel histogram, Figure 2).

The intra-class partial correlations were higher than
between-class correlations in both the test surveys
and validation survey (test surveys: mean �¼ 0.26,
t-test P < 1e�10; validation survey: mean �¼ 0.27,
t-test P < 1e�10). Specifically, the intra-class correl-
ation for class PCBs was 0.41, 0.42 for dioxins,
0.5 for carotenoid nutrients, 0.2 for heavy metals,
0.2 for hydrocarbons, 0.3 for phytoestrogens, 0.3 for
phthalates and 0.2 for phenols for the test surveys.
We observed similar patterns among the validation
survey. We observed several instances of large
inter-class correlations, such as inverse correlations
between carotenoid and vitamin E factors (trans-
b-carotene and g-tocopherol, �¼�0.3). We also
observed positive correlations between cotinine and
the heavy metals lead and cadmium (�40.3) and
hydrocarbons 2- and 3-hydroxyflourene (�40.5).
Similarly, we observed gross inter-class correlations
between classes such as furans and dioxins (mean
�¼ 0.4), PCBs and dioxins (mean �¼ 0.2), PCBs
and organochlorine pesticides (mean �¼ 0.2) and
phthalates and hydrocarbons (mean �¼ 0.2).

Environment associations with lipid levels
For triglyceride levels, 15 out of 126, 29 out of
157 and 12 out of 65 factors passed the requested
threshold of significance (FDR <5%) for the 1999–
2000, 2001–02 and 2005–06 surveys, respectively
(Figure 3A). For LDL-C, 2 out of 131, 10 out of
162 and 9 out of 65 were significant, respectively
(Figure 3B). For HDL-C, 1 out of 131, 26 out of
162 and 15 out of 65 were significant (Figure 3C).
We tentatively validated significant findings from
our screen, by searching for whether any of the fac-
tors significant in any of the three studies above were
also significant in the fourth independent 2003–04

Figure 1 Continued
measured for each of these factors in each survey; these lipid levels were log transformed to assume normality for least
squares regression. (C) Each of these 126, 157 and 65 factors was tested for association with the logarithm base 10 of
HDL-C, LDL-C and triglyceride levels with a linear regression model adjusted for age, age2, sex, BMI, ethnicity and SES.
(D) We estimated the FDR by permuting the lipid levels and re-computing the linear models; an FDR of 0.05 was con-
sidered significant. We deemed a factor to be tentatively validated if it was found to be significant in the validation survey
with P4 0.05 and an effect in the same direction. (E) We estimated a final coefficient for tentatively validated factors by
combining all surveys and adjusting for age, age2, sex, ethnicity, SES, BMI, waist circumference, type 2 diabetes status
(fasting blood glucose5 126 mg/dl), blood pressure and survey. (F) We estimated the coefficient of determination (R2) for
the final, combined models. (G) We recomputed our final models, adding 62 self-report variables one by one to attempt to
check the validity of the environmental effect
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survey at P < 0.05. We found 29, 9 and 17 tentatively
validated factors for triglycerides, LDL-C and HDL-C,
respectively (Figure 3A–C).

The data were combined across surveys for each ten-
tatively validated factor and estimates were further ad-
justed for waist circumference, type 2 diabetes status,
blood pressure and survey, in addition to age,
age-squared, BMI, age, sex, SES and ethnicity. The vari-
ance ascribed to baseline co-variates was 22–25% (tri-
glycerides), 15–16% (LDL-C) and 23–26% (HDL-C).
Each of the tentatively validated environmental factors
described an additional 0.7–18.4% (triglycerides), 1.8–
14.1% (LDL-C) and 0.4–4.0% (HDL-C) of the variance in
lipid levels (Supplementary Tables 3–5, available as
Supplementary Data at IJE online).

Effects for the tentatively validated associations are
shown in Figure 4. We present here some of them in
more detail. Effect sizes for continuous variables are
for 1 SD of log-transformed value of the environmen-
tal factor.

Vitamins A and E: unfavourable association
with lipid levels
For all three lipids, we found a consistent association
for lipid-soluble, anti-oxidant vitamins, such as
vitamins A, E, and carotenoids (Figure 4 A–C and
Supplementary Figure 1, available as Supplementary
Data at IJE online). For example, a form of vitamin A,
retinol, was positively associated with triglycerides
(P¼ 6� 10�21, effect¼ 10% or 25 mg/dl higher

Table 1 Estimates of multivariate linear regression model predicting log10(triglycerides) as a function of sex, age, age2,
ethnicity (in reference to Whites), an estimate of SES (in reference to high SES) and BMI for each survey

1999–2000 (n¼ 3002) 2001–02 (n¼ 3610)

Triglycerides Estimate (95% CI) P-value Estimate (95% CI) P-value

Sex (vs male) �0.026 (�0.061 to 0.008) 0.1 �0.061 (�0.089 to �0.033) 0.002

Age (10 years)

Age 0.044 (0.011–0.076) 0.02 0.052 (0.019–0.085) 0.009

Age2
�0.00017 (�0.00047 to 0.00013) 0.2 �0.00026 (�0.00061 to 8.7e�05) 0.1

Ethnicity (vs White)

Black �0.14 (�0.19 to �0.098) 9�10�4
�0.13 (�0.17 to �0.079) 0.001

Mexican–American 0.011 (�0.049 to 0.071) 0.6 0.0088 (�0.036 to 0.053) 0.6

Other Hispanic �0.034 (�0.075 to 0.0074) 0.08 0.038 (�0.1 to 0.18) 0.5

Other �0.027 (�0.098 to 0.044) 0.3 0.03 (�0.046 to 0.11) 0.4

SES (vs high tertile)

SES (medium) 0.011 (�0.032 to 0.055) 0.5 0.018 (�0.011 to 0.047) 0.2

SES (low) 0.027 (�0.018 to 0.072) 0.2 0.037 (�0.0034 to 0.077) 0.07

BMI (10 U) 0.11 (0.078–0.15) 9�10�4 0.093 (0.059–0.13) 0.001

2005–06 (n¼ 2912) Validation: 2003–04 (n¼ 3449)

Sex (vs male) �0.043 (�0.072 to �0.013) 0.01 �0.056 (�0.078 to �0.033) 0.001

Age (10 years)

Age 0.046 (0.016–0.076) 0.01 0.078 (0.055–0.1) 3� 10�4

Age2
�2e�04 (�0.00052 to 0.00011) 0.2 �0.00061 (�0.00082 to �0.00039) 8� 10�4

Ethnicity (vs White)

Black �0.13 (�0.16 to �0.1) 9� 10�5
�0.13 (�0.17 to �0.097) 2� 10�4

Mexican–American 0.019 (�0.014 to 0.051) 0.2 0.0074 (�0.033 to 0.048) 0.7

Other Hispanic �0.02 (�0.081 to 0.041) 0.4 0.03 (�0.046 to 0.11) 0.4

Other 0.044 (�0.019 to 0.11) 0.1 �0.012 (�0.089 to 0.065) 0.7

SES (vs high tertile)

SES (medium) 0.0044 (�0.031 to 0.04) 0.8 0.005 (�0.028 to 0.038) 0.7

SES (low) 0.026 (�0.017 to 0.069) 0.2 0.035 (�0.0063 to 0.077) 0.08

BMI (10 U) 0.095 (0.071–0.12) 2� 10�4 0.099 (0.069–0.13) 4� 10�4

95% confidence interval (CI) and P-value of associations are also shown. n is unweighted sample size.
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triglycerides per 1 SD) in all surveys examined.
Another form of vitamin A, retinyl palmitate, was
also positively associated with triglycerides
(P¼ 6� 10�21, effect¼ 10%) and LDL-C
(P¼ 4� 10�13, effect¼ 5% or 6 mg/dl). Retinyl stear-
ate was negatively associated with HDL-C
(P¼ 4� 10�5, effect¼�3% or �1 mg/dl).

We observed a consistent association between forms
of vitamin E (a and g tocopherol) and lipid levels.
a-tocopherol strongly correlated with higher triglycer-
ide and LDL-C levels [effect¼ 35% (P¼ 8� 10�20) and
16% (P¼ 7� 10�19) or 67 and 16 mg/dl, respectively].
g-tocopherol was also correlated with higher triglycer-
ides (effect¼ 17% higher, P¼ 10�17) and LDL-C (6%
higher, P¼ 3� 10�14) levels, but also with lower
HDL-C (effect¼�2%, P¼ 6� 10�6). Tocopherols are
highly lipophilic and their absorption is enhanced by

triglycerides, though both were significant despite
controlling for BMI and waist circumference.

Carotenoids: favourable association with
HDL-C and triglycerides and unfavourable
association with LDL-C
Both isomers ofb-carotene, cis- and trans-, were associated
with lower triglyceride levels (P¼ 10�6, effect¼�7% or
12 mg/dl; P¼ 10�8, effect¼�10% or 16 mg/dl, respective-
ly). However, both isomers of carotene, in addition to
other carotenoids such as b-cryptoxanthin and lycopene,
were consistently associated with higher levels of both
HDL-C and LDL-C. The effect was 5% (P¼ 3� 10�12)
and 6% (P¼ 5� 10�11) for HDL-C and LDL-C levels, re-
spectively for cis-b-carotene and 3% (P¼ 10�10) and 12%
(P¼ 8� 10�17) for lycopene.

Table 2 Estimates of multivariate linear regression model predicting log10(LDL-C) as a function of sex, age, age2, ethnicity,
SES and BMI for each survey

1999–2000 (n¼ 2743) 2001–02 (n¼ 3318)

LDL-C Estimate (95% CI) P-value Estimate (95% CI) P-value

Sex (vs male) �0.015 (�0.034 to 0.0043) 0.1 �0.016 (�0.028 to �0.0049) 0.01

Age (10 years)

Age 0.059 (0.042–0.076) 7� 10�4 0.058 (0.042–0.073) 2� 10�4

Age2
�0.00046 (�0.00066 to �0.00027) 0.003 �0.00048 (�0.00065 to �0.00032) 7� 10�4

Ethnicity (vs White)

Black �0.015 (�0.036 to 0.0065) 0.1 �0.0087 (�0.032 to 0.014) 0.4

Mexican–American �0.012 (�0.028 to 0.0047) 0.1 �0.019 (�0.037 to �0.0013) 0.04

Other Hispanic �0.013 (�0.034 to 0.0081) 0.2 �0.015 (�0.041 to 0.011) 0.2

Other �0.0098 (�0.041 to 0.021) 0.4 0.01 (�0.036 to 0.056) 0.6

SES (vs high tertile)

SES (medium) �0.0028 (�0.027 to 0.021) 0.8 0.0044 (�0.019 to 0.028) 0.6

SES (low) 0.0094 (�0.014 to 0.033) 0.3 0.01 (�0.013 to 0.033) 0.3

BMI (10 U) 0.022 (0.006–0.038) 0.02 0.014 (0.0048–0.023) 0.01

2005–06 (n¼ 2853) Validation: 2003–04 (n¼ 3389)

Sex (vs male) �0.0024 (�0.018 to 0.013) 0.7 �0.0054 (�0.022 to 0.012) 0.4

Age (10 years)

Age 0.098 (0.079–0.12) 4� 10�5 0.065 (0.049–0.081) 1� 10�4

Age2
�9e�04 (�0.0011 to �7� 10�4) 9� 10�5

�0.00055 (�0.00072 to �0.00038) 4� 10�4

Ethnicity (vs White)

Black �0.012 (�0.04 to 0.015) 0.3 �0.012 (�0.028 to 0.0033) 0.1

Mexican–American 0.0014 (�0.023 to 0.026) 0.9 0.0082 (�0.012 to 0.028) 0.3

Other Hispanic 0.035 (�0.011 to 0.081) 0.1 �0.019 (�0.097 to 0.059) 0.6

Other �0.026 (�0.067 to 0.015) 0.2 �0.026 (�0.055 to 0.003) 0.07

SES (vs high tertile)

SES (medium) �0.013 (�0.035 to 0.0089) 0.2 0.0087 (�0.014 to 0.032) 0.4

SES (low) �0.0023 (�0.02 to 0.015) 0.7 0.013 (�0.01 to 0.036) 0.2

BMI (10 U) 0.0078 (�0.0034 to 0.019) 0.1 0.015 (�0.0029 to 0.034) 0.08

95% CI: 95% confidence interval.
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Favourable lipid correlations with vitamins B,
C, D, iron, mercury and enterolactone
We found serum levels of folate (vitamin B), C, D, iron
and mercury to be favourably associated with HDL-C
(Figure 4C). Effect sizes of vitamin, iron and mercury
levels on HDL-C were similar, ranging from 3 to 4%
(1–2 mg/dl) higher HDL-C (P < 0.002). Last, we found
enterolactone, a product of lignan metabolism in
the intestine, to be associated with 10% (17 mg/dl)
lower triglyceride levels (P¼ 2� 10�7) (Figure 4A).

Persistent pollutants: unfavourable
association with triglycerides and HDL-C
PCBs, dibenzofurans and organochlorine pesticides,
all persistent organic pollutants, were unfavourably
associated with both triglyceride and HDL-C levels

(Figure 4A and C). Seven PCB factors were tentatively
validated and the most significant co-geners PCB74
and PCB170 were associated with 15% (P¼ 10�6)
and 19% (P¼ 4� 10�6) higher triglyceride levels.
Five organochlorine factors were tentatively validated,
among which oxychlordane and trans-nonachlor
changes were linked to 29 and 30% higher
(P¼ 5� 10�9, 1� 10�8) triglyceride levels. Another
organochlorine pesticide, heptachlor epoxide, was
associated with 3% lower HDL-C (P¼ 0.006).

Markers for air pollution and nicotine:
unfavourable association with HDL-C
Several markers of air pollution and nicotine exposure
were unfavourably associated with HDL-C (Figure 4C).
The polyaromatic hydrocarbon markers of fluorene,

Table 3 Estimates of multivariate linear regression model predicting log10(HDL-C) as a function of sex, age, age2, ethnicity,
SES and BMI for each survey

HDL-C
1999–2000 (n¼ 6386) 2001–02 (n¼ 7485)

Estimate (95% CI) P-value Estimate (95% CI) P-value

Sex (vs male) 0.068 (0.059–0.077) 3� 10�5 0.076 (0.066–0.087) 9� 10�6

Age (10 years)

Age 0.02 (0.0082–0.032) 0.009 0.027 (0.018–0.035) 4� 10�4

Age2
�0.00012 (�0.00022 to �1.6� 10�5) 0.03 �0.00018 (�0.00027 to �8.5� 10�5) 0.004

Ethnicity (vs White)

Black 0.047 (0.03–0.064) 0.002 0.048 (0.034–0.061) 3� 10�4

Mexican–American 0.016 (�0.0019 to 0.034) 0.07 0.0067 (�0.0022 to 0.016) 0.1

Other Hispanic �0.016 (�0.039 to 0.0069) 0.1 �0.0039 (�0.028 to 0.02) 0.7

Other 0.0073 (�0.027 to 0.042) 0.6 0.0056 (�0.018 to 0.029) 0.6

SES (vs high tertile)

SES (medium) �0.0054 (�0.021 to 0.01) 0.4 �0.017 (�0.034 to 0.00065) 0.06

SES (low) �0.018 (�0.032 to �0.0035) 0.03 �0.03 (�0.048 to �0.012) 0.008

BMI (10 U) �0.06 (�0.069 to �0.05) 6� 10�5
�0.063 (�0.071 to �0.056) 4� 10�6

2005–06 (n¼ 7278) Validation: 2003–04 (n¼ 6969)

Sex� (vs male) 0.075 (0.063–0.086) 2� 10�5 0.078 (0.067–0.088) 8� 10�6

Age (10 years)

Age 0.016 (0.0065–0.026) 0.008 0.017 (0.0084–0.026) 0.004

Age2
�1e�04 (�0.00022 to 1.3� 10�5) 0.07 �1e�04 (�0.00019 to �1.3� 10�5) 0.03

Ethnicity (vs White)

Black 0.042 (0.026 to –0.058) 0.001 0.041 (0.031–0.05) 1� 10�4

Mexican–American �0.00017 (�0.011 to 0.011) 1 �0.0048 (�0.019 to 0.0088) 0.4

Other Hispanic 0.0048 (�0.015 to 0.025) 0.6 �0.008 (�0.035 to 0.019) 0.5

Other �0.0028 (�0.023 to 0.018) 0.7 �0.0039 (�0.033 to 0.025) 0.7

SES (vs high tertile)

SES (medium) �0.012 (�0.022 to �0.003) 0.02 �0.0098 (�0.019 to �0.00066) 0.04

SES (low) �0.023 (�0.035 to �0.012) 0.003 �0.019 (�0.03 to �0.0076) 0.008

BMI (10 U) �0.061 (�0.07 to �0.053) 9� 10�6
�0.058 (�0.069 to �0.047) 4� 10�5

95% CI: 95% confidence interval.
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3-hydroxyfluorene and 2-hydroxyfluorene, were asso-
ciated with 3% lower HDL-C (P¼ 0.006 and P¼ 0.004).
Cotinine, a serum biomarker for nicotine, was associated
also with 3% lower HDL-C (P¼ 2� 10�6).

Sensitivity analyses with further adjustments
For most questionnaire variable adjustments, we did
not see a sizable difference in estimated coefficients or
P-values for the environmental factors (Supplemen-
tary Figures 2–4, available as Supplementary Data at
IJE online), including questionnaire items regarding
self-reported cardiovascular-related disease status
and use of drugs. Interestingly, some adjustments
increased the effect size of the environmental factor.
For example, the association of cotinine, 3- and
2-hydroxyfluorene with HDL-C strengthened after

adjustment for alcohol intake. Adjustment for fish
and shellfish consumption strengthened the associ-
ation between retinyl stearate and HDL-C and
triglyceride levels. Conversely, the effect of vitamin
C and folate in relation to HDL-C decreased when
taking supplement count, total fiber intake and phys-
ical activity into account. Adjusting for supplement
count decreased the effect of g-tocopherol on HDL-C.

Simultaneous adjustment for self-reported
cardiovascular-related disease, supplement count,
lipid-lowering drugs and physical activity strength-
ened the association between tocopherols and pollu-
tant factors and triglycerides, while attenuating the
association to a-carotene (Supplementary Figure 2
available as Supplementary Data at IJE online).
For HDL-C levels, effects of cotinine, mercury,
3- and 2-flourene, folate, vitamin C, vitamin D
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Figure 2 Partial Pearson’s correlation between environmental factors. Partial Pearson’s correlation, adjusted by age and
BMI (and creatinine for factors measured in urine) for each of the 188 factors were computed for each survey separately.
We combined correlations between surveys using a meta-analytic random-effects estimate and displayed them in a heatmap
(above), and ordered them by environmental ‘class’, coloured as in Figure 1A. Pairs of factors where correlations could not
be computed are shown in grey
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and g-tocopherol were all attenuated 415% (Supple-
mentary Figure 4 available as Supplementary data at
IJE online). However, the direction and significance of
the effects were preserved throughout.

Discussion
By combing through a large number of environmental
exposures using a systematic approach, we have found
and validated multiple previously known environmental
chemical factors correlated with serum lipid levels
beyond the level of false discovery. Populations are

exposed to many environmental factors, both harmful
and beneficial. It is possible that by studying a few of
these factors, we may miss major factors that truly in-
fluence disease. Further, by examining multiple factors,
we may capture the relative effect of different factors as
compared with others. This approach gives a broader,
inclusive perspective of benefits and harms that may
enhance the interpretation and overall public health
relevance of this literature. Such an investigation is
made possible by health survey data assaying multiple
environmental factors; these surveys are critical to
understanding their relationship with characteristics
in the general population.24

A

B

C

Figure 3 Significance of association [�log10(FDR)] for each of 188 factors by survey in association to (A) triglycerides, (B)
LDL-C, (C) HDL-C. Y-axis indicates �log10(FDR) of the adjusted linear regression coefficient for each of the environmental
factors. Colours represent different environmental classes as represented in Figure 1A. Red line corresponds to an FDR of
0.05. Findings validated in the 2003–04 survey are seen in the open markers
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By using transparent reporting and estimation of
the FDR, this approach bypasses the problem of
selectively testing and reporting one or a few associ-
ations at a time that has been debated as a source of
biased results and false positives in epidemiological
studies.19,20,22,28,36 We use the breadth of environmental
factor and phenotypic measures to conduct extensive
sensitivity and correlation analyses that are critical
given the complex physiological web of correlation ap-
parent in environmental epidemiological study.19

Relatedly, such a systematic display of a large number
of associations (Figure 3) may enable us to create
hypotheses regarding how multiple chemical factors
might jointly contribute to phenotypic states.37 While
we have focused here on modelling main effects, a
next analytical step might include evaluating how mix-
tures of environmental factors are connected to lipid
levels. However, assessing interactions between

environmental factors will add another layer of com-
plexity, potentially requiring more power for the study.

We acknowledge that the approach has drawbacks.
First, in our current scenario, some factors were
present in more surveys than others and, therefore,
have additional opportunity for tentative validation
(defined as an FDR of < 5% in test cohorts and
P < 0.05 in validation cohort), potentially leading to
a bias in factors found. Secondly, the method calls
for multiple testing on different types of factors with-
out consideration of priors and a strict FDR threshold
is applied, giving way to the possibility of false nega-
tives.38,39 Nevertheless, just as systematic
genome-wide studies have had utility in finding
novel genetic loci associated with complex disease,16

this EWAS strategy provides an opportunity to find
novel markers of exposure and prioritize their valid-
ation in follow-up studies.

Figure 4 Forest plots for validated environmental factors associated with (A) triglycerides, (B) LDL-C, (C) HDL-C. Survey
(labelled as 1999–2000, 2001–02, 2005–06, filled points) denotes the NHANES survey in which the specific factor was found to
be significant (FDR < 0.05) in a model adjusting for age, age2, SES, ethnicity, sex, BMI. ‘Validation’ indicates the estimates
found for the significant factor in the validation survey. Combined survey (unfilled points) denotes the estimate attained when
combining all surveys available for exposure in a model adjusting for age, age-squared, SES, ethnicity, sex, BMI, waist
circumference, type 2 diabetes status, blood pressure and survey. Percent change (x-axis) is the percent change of lipid level for
a change in 1 SD of logged exposure value. Effect size (in mg/dl) attained when fitting the untransformed lipids to the model.
Symbols proportional to sample size and colours represent different environmental classes as represented in Figure 1A. For
triglycerides and HDL-C, only the top most significant factors for each factor class is shown; forest plots of all validated factors
are seen in Supplementary Figure 1, available as Supplementary Data at IJE online
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Our findings reveal complex relationships between
serum lipid levels and fat-soluble antioxidant vitamins
A and E and carotenoids. Randomized studies and
meta-analyses40–44 have shown these vitamins to have
no benefits or even confer harm when given in high
doses, in contrast to previous favourable associations
in observational studies.45,46 The unfavourable lipid pro-
file that we observed with vitamin E forms is consistent
with observational data, and possibly consistent with
the randomized evidence on clinical outcomes.47

We observed an association of vitamins B (folate),
C and D, mercury and iron, to higher HDL-C levels.
Folate48 and vitamin D49 have previously been associated
with higher HDL-C. Fish, a source of cardioprotective
omega-3 fatty acids, are also a large source of mercury;50

however, we did not observe a large change in effect size
of mercury when accounting for consumption of fish.
These nutrients and metals may be to some extent surro-
gate markers of ‘healthy diet’ behaviours; however, what
exactly constitutes a ‘healthy diet’ is currently very diffi-
cult to define, in contrast to earlier claims.51,52 The
strength of the association for these dietary markers is
similar on HDL-C, ranging from 1 to 3 mg/dl for a stan-
dardized change per factor. These are small effects and it
is unclear whether cumulatively they could have a much
larger impact in raising HDL-C level, given the correl-
ations between these markers (Figure 2).

We also identified enterolactone to be strongly
associated with favourable triglyceride levels in this
study. Enterolactone is a metabolite of lignans,
which are found in foods such as flaxseed and have
been associated with favourable cholesterol profiles in
this form.53,54. Again, it is unclear what role, if any,
this marker plays as a surrogate of ‘healthy diets’ and
effects on heart disease have been inconsistent.55

We found markers of hydrocarbons, 2- and
3-hydroxyfluorene to be strongly associated with unfa-
vourable HDL-C levels. Although others have shown
the association of these metabolites to self-report car-
diovascular disease with the NHANES data,56 to our
knowledge the association with HDL-C is novel.
Relatedly, we also found a marker of nicotine, cotinine,
to have a similar association with HDL-C. Particulate
matter air pollution, composed of many types of hydro-
carbons and smoking long have been a major concern
for cardiovascular-related diseases.15,57,58 It is well-
known that smoking influences HDL-C levels59,60 and
acute and chronic exposures to tobacco smoke have
been shown to decrease HDL-C substantially.61 The
high correlation of the hydrocarbon markers to coti-
nine suggests that these associations might all indicate
exposure to cigarette smoke.

We also have reconfirmed the correlation between
banned-use persistent pollutants, such as organo-
chlorine pesticides, dibenzofurans and polychlorinated
biphenyls, with adverse lipid profiles, such as large
increase of triglycerides and large decrease in
HDL-C. These environmental factors have already
been implicated in other metabolic-related and

cardiovascular diseases and among several popula-
tions. For example, PCB170 and heptachlor epoxide
have been associated with type 2 diabetes and hyper-
tension in these surveys.25,62 Similarly, PCBs and
dibenzofurans have been associated with metabolic
syndrome in a Japanese population.63

We acknowledge that these associations might be con-
founded due to the fat solubility of these pollutants.
Nevertheless, there have been efforts to elucidate
causal relationships using different analytic methods
and ecological data. For example, in a recent study con-
sidering causal pathways and confounding bias via
structural equation modeling, investigators found a re-
lationship between polychlorinated biphenyls and lipid
levels consistent with forward causality for a native
population with high exposure of these pollutants in
upstate New York.8 Another study found an ecological
relationship between cardiovascular-related hospital-
ization rates in areas close to PCB pollution.9

Nonetheless, the etiological relationships between per-
sistent pollutants and the metabolic syndrome, type 2
diabetes and cardiovascular diseases remains elu-
sive.64,65 However, current etiological speculation in-
cludes the role of these pollutants interfering with
PPARs, transcription factors known to be involved in
lipid homoeostasis,66 and/or influencing change in
DNA methylation.67,68 Persistent pollutants were re-
cently associated with atherosclerosis in the elderly in
Sweden, independent of serum lipid levels, suggesting a
direct pollutant effect on atherosclerosis.69 Further in-
vestigation of these pollutants and consideration of
other phenotypes along the causal pathway for cardio-
vascular-related diseases is warranted.

Elucidating both influence of persistent pollutants on
lipids and quantifying their amount in serum lipids re-
mains an issue of debate.70,71 For example, there are
methods to quantify persistent pollutants via adjust-
ment with serum lipids;72,73 but differing methods of
adjustment of these factors could lead to conflicting re-
sults.70 Porta et al.,71 in investigating the influence of
organochlorine pesticides on pancreatic carcinoma, in-
dicate that linear adjustment may be inappropriate in
some cases. Assessments between persistent pollutants
and serum lipid levels as described here may address
some of these issues.

Factor variability must be characterized to ensure their
adequate analytical modelling. For example, we con-
sidered BMI as having a confounding role and included
it as an adjustment in our models. However, BMI may lie
on the causal pathway towards adverse lipid profiles.
The inter-relationship among lipid levels, BMI and per-
sistent pollutant factors is complex,74 differing in the
context of sex and demographics,75 clinical characteris-
tics76 and after changes in weight (e.g. after bariatric
surgery77 and overall weight gain78). Inter-individual
differences in pharmacokinetics also play a role in this
complex relationship.79 The choice of how to model ad-
justing variables ultimately influences inferences.
Long-term longitudinal investigations79,80 and causal
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inference methods may be more suitable to understand
causal pathways, if any, underlying the correlation of
these environmental factors with lipid levels and other
phenotypes.

There are some important limitations in a study
using cross-sectional measurements and the observed
correlations are far from causal. These associations
may reflect a complex web of physiological correlation
and/or reverse causality. For example, a-tocopherol
and carotenes are transported in serum with HDL
and LDL81–83 and accurate measurement of serum
a-tocopherol is dependent on serum lipids.84 In this
regard, the strong association between a-tocopherol
and LDL and triglycerides might be considered a
true positive result. On the other hand, given the
lack of evidence for g-tocopherol or retinol associating
with lipoprotein complexes, their association might be
due to reverse causality, or increased anti-oxidant con-
sumption among those who know about their adverse
lipid level profile. However, given that vitamin E
consumption has been found to increase mortality in
meta-analysis,44 the large effect sizes suggest that pro-
spective studies may be scrutinized for any potentially
adverse effects of vitamin E on lipid levels and
other metabolic disorders, such as type 2 diabetes.25

Like vitamins, we must consider how the distribu-
tion of persistent pollutants among biomolecules in
serum may influence our analyses. Persistent pollu-
tants have a unique signature in plasma LDL and
HDL; for example, PCBs are primarily carried in LDL
whereas their metabolites are evenly carried in both
LDL and HDL.85 Furthermore, ascertaining levels of
pollutants found in tissue other than serum may be
eventually required to understand pathology. To this
end, there are reports of concordance between con-
centrations of persistent pollutants found in different
adipose tissues, such as between breast and abdom-
inal adipose tissue.86 There appears to be concordance
between levels of Dichlorodiphenyldichloroethylene
(DDE) found in serum and breast adipose tissue;87

however, relative estimation varies based on the
type of adjustment methods used.

Another issue includes the measurement of pollu-
tant environmental factors themselves. For example,
limits of detection varied across different NHANES
surveys. To address this, we filtered out variables that
had a majority of undetectable measurements;

however, results may be biased due to imbalance in
measurement techniques and differing thresholds.
In the future, factor measurement should be standar-
dized, as proposed by the PhenX project, to ensure
comparability of results among different studies and
cohorts.88 Environmental exposure biomonitoring
data from other public health surveys might be able
to aid in this effort and the National Academy of
Science Committee on Human Biomonitoring for
Environmental Toxicants lists examples of such
efforts.23

Despite these limitations, we have shown here a
systematic approach to create robust hypotheses
regarding association of environmental factors with
disease. Further studies should focus on elucidating
their role in disease, if any.

Supplementary Data
Supplementary data are available at IJE online.
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KEY MESSAGES

� Unlike current-day genomic studies, systematic studies to dissect the connection between
environmental factors and disease risk factors, such as serum lipid levels, are lacking.

� Here, we systematically correlate serum and urine biomarkers of environmental factors with
cholesterol and triglyceride levels, uncovering a spectrum of persistent pollutants and nutrients
connected with the risk factors.

� Such an investigation is one way to prioritize factors for follow-up validation study.
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With its strengths and weaknesses, the analysis
(‘association study’) of the relationships between

environmental factors and lipid concentrations by
Patel et al.1 is of great interest for at least five reasons.
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