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Introduction
Positive feedback loops function as signaling devices to sustain 

or amplify biological processes. For eukaryotic cell polarity, 

positive feedback loops involving low molecular weight GTP-

ases of the Rho family generate asymmetric amplifi cation of 

signaling molecules. In chemotaxing neutrophils, a positive 

feedback loop between phosphatidylinositol-3-OH kinase, the 

Rho family GTPase Rac, and F-actin sustains amplifi cation of 

phosphatidylinositol 3,4,5–trisphosphate at the cell front, which 

is necessary for polarity, and the loop maintains actin assembly 

at the leading edge for driving membrane protrusion (Wang 

et al., 2002; Weiner et al., 2002; Srinivasan et al., 2003). In bud-

ding yeast, cell polarity during bud formation requires a posi-

tive feedback loop between the Rho family GTPase Cdc42, the 

adaptor protein Bem 1, and actin assembly (Wedlich-Soldner 

et al., 2004). Although Cdc42 plays an evolutionarily conserved 

role in establishing cell polarity including specifi cation of anterior–

posterior axis patterning in Caenorhabditis elegans, asymmetric 

zygote division and epithelial polarity in Drosophila melanogaster, 
directed migration in mammalian cells, and epithelial and 

neuronal polarity in many species (Etienne-Manneville, 2004; 

Macara, 2004), whether or not it functions in positive feedback 

loops in these cell processes is unclear. Moreover, although 

positive feedback loops are important in spatial sensing during 

amoeboid chemotaxis (Charest and Firtel, 2006), their signifi -

cance in spatial sensing for haptokinetic migration of mesen-

chymal cells has been questioned (Schneider and Haugh, 2005). 

We report a positive feedback loop between Cdc42 and H+ 

effl ux by Na-H+ exchanger 1 (NHE1) for maintaining polarity 

in migrating fi broblasts. In migrating fi broblasts (Denker and 

Barber, 2002) and epithelial cells (Stock and Schwab, 2006), 

and in chemotaxing Dictyostelium discoideum cells (Patel and 

Barber, 2005), a leading-edge H+ effl ux by NHE1 is necessary 

for polarity and directional movement. These processes are im-

paired by distinct mutations in NHE1 that abolish H+ effl ux or 

mislocalize NHE1 away from the leading edge. We previously 

reported that Cdc42 acts upstream of NHE1 to stimulate H+ effl ux 

(Hooley et al., 1996), and we now fi nd that Cdc42 activation 

and localization of Cdc42-GTP at the leading edge of migrating 
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cells is downstream of H+ effl ux, which suggests a bistable pos-

itive feedback regulation between Cdc42 and NHE1 activities 

in cell polarity.

Results and discussion
To determine whether H+ effl ux by NHE1 is necessary for acti-

vation of Cdc42, we used NHE1-defi cient fi broblasts express-

ing wild-type (WT) NHE1 or a mutant NHE1 that contains an 

E266I substitution and lacks H+ efflux (Denker et al., 2000). 

To biochemically determine Cdc42 activity in migrating cells, 

multiple wounds were created in a confl uent monolayer with a 

multichannel pipette. The abundance of active Cdc42-GTP at 

the indicated times before and after wounding was determined 

by precipitation with GST–p21-activated kinase (PAK)–Cdc42/

Rac-interactive binding domain (CRIB) and immunoblotting 

for Cdc42 (Fig. 1 A). After wounding, the abundance of Cdc42-

GTP in WT cells increased twofold at 5 min and remained ele-

vated at 5 h. In E266I cells, the abundance of Cdc42-GTP before 

wounding was 60% of that in WT cells, and after wounding 

there was no increase in Cdc42-GTP. The abundance of total Cdc42 

was similar in WT and E266I cells before and after wounding.

Monolayer wounding triggers multiple stimuli, including 

activation of integrins and release of growth factors. Integrin 

engagement with extracellular matrix proteins activates Cdc42 

(Price et al., 1998) and stimulates NHE1 activity (Schwartz et al., 

1991; Tominaga and Barber, 1998). We found that H+ effl ux by 

NHE1 is necessary for haptokinetic migration toward fi bronectin 

(Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb

.200704169/DC1) and for integrin-induced activation of Cdc42 

(Fig. 1 B). Plating on fi bronectin for 1 h increased Cdc42-GTP 

fourfold in WT cells compared with cells in suspension. 

Figure 1. H+ effl ux by NHE1 is necessary for activation of Cdc42 by different extracellular cues. (A) Time course of Cdc42 activity in WT and E266I cells 
after multiple wounding of a confl uent monolayer. At the indicated times, Cdc42-GTP was determined by affi nity precipitation with GST-PAK-CRIB and 
immunoblotting for Cdc42. Total Cdc42 was determined in cell lysates. Representative immunoblots are shown, and data, expressed relative to the abun-
dance of Cdc42-GTP in WT monolayers (t = 0), represent means ± SEM of six cell preparations. (B) Total Cdc42 and Cdc42-GTP in cells in suspension 
(susp) or at the indicated times after plating on 10 μg/ml fi bronectin were determined as in A. Data are expressed as means ± SEM of three separate cell 
preparations. (C and D) Abundance of Cdc42-GTP and total Cdc42 in subconfl uent quiescent cells (t = 0) and at the indicated times after treating with 
PDGF were determined as described in A for WT and E266I cells (C) and for CCL39 and PS120 cells (D). Data for Cdc42-GTP are expressed relative to 
the abundance of precipitated Cdc42 in quiescent WT cells (t = 0) and represent means ± SEM of four separate cell preparations. White lines indicate 
that intervening lanes have been spliced out.
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In E226I cells, the abundance of Cdc42-GTP in cell suspension 

was less than in WT cells and there was no increase after plating 

on fi bronectin. Integrin affi nity for fi bronectin, determined by 

binding FITC-labeled fi bronectin, and expression of β1 integrin, 

determined by immunoprecipitating lysates of biotinylated cells 

with β1 antibodies, were similar in WT and E266I cells (Fig. S1).

PDGF also increases Cdc42-GTP (Jimenez et al., 2000) 

and NHE1 activity (Yan et al., 2001), and we found that H+ ef-

flux by NHE1 is necessary for activation of Cdc42 by PDGF 

(Fig. 1 C). 50 ng/ml PDGF increased the abundance of Cdc42-

GTP in WT cells, with a maximum of 2.2-fold increase at 2 min. 

In contrast, PDGF did not activate Cdc42 in E266I cells, al-

though the abundance of total Cdc42 was similar in subconfl u-

ent WT and E266I cells. PDGF-induced activation of Cdc42 also 

was inhibited in NHE1-defi cient PS120 cells, which were used 

to make WT and E266I cells, but not in parental CCL39 cells 

that express NHE1 (Fig. 1 D). Hence, H+ effl ux by NHE1 is neces-

sary for maintaining Cdc42 activity in quiescent cells and for 

increased Cdc42 activity with monolayer wounding, integrin 

engagement, and PDGF.

In migrating cells, Cdc42-GTP is predominantly localized 

at cell protrusions (Nalbant et al., 2004). NHE1 is localized 

at the leading-edge membrane of migrating cells (Denker and 

Barber, 2002; Patel and Barber, 2005), which suggests that H+ 

effl ux might be necessary for Cdc42 activity at cell protrusions. 

This was confi rmed by using a merocyanine–Cdc42-binding 

domain (MeroCBD) biosensor for Cdc42-GTP (Fig. 2 A; 

Nalbant et al., 2004). MeroCBD, an environmentally sensitive 

fl uorescent dye covalently coupled to the Cdc42/Rac binding 

domain of the neural Wiskott-Aldrich syndrome protein, increases 

fl uorescence intensity upon binding activated Cdc42, which en-

ables detection of spatially localized endogenous Cdc42-GTP in 

living cells. EGFP attached to the Cdc42/Rac binding domain 

allows ratiometric image analysis, thereby normalizing for cell 

thickness and concentration artifacts. The MeroCBD probe, 

which is insensitive to pH 4.5–8.0, was injected into cells at the 

edge of a wounded monolayer 15 h after wounding, and images 

were acquired after 30 min. In WT cells, Cdc42-GTP was ele-

vated in cell protrusions (n = 22 cells), however, in E266I cells, 

Cdc42-GTP was more uniform and notably reduced even where 

cells protruded (n = 52 cells; Fig. 2, B and C). Acquired images 

were also used to quantify active Cdc42 in microinjected cells, 

and, like biochemical assays with GST-PAK-CRIB, they indi-

cated attenuated Cdc42-GTP in E266I cells (Fig. 2 D). The ratio 

intensity was 344.4 ± 28.1 U in WT cells and 170.9 ± 7.0 U in 

E266I cells. The Mero/EGFP fl uorescence ratio of cells injected 

with an insensitive control probe (MeroCBD mutated to greatly 

reduce Cdc42 binding; Nalbant et al., 2004) was 196.9 ± 24.8 U 

(n = 5 cells; unpublished data), indicating that activation in 

E2661 cells was near the minimum level detectable by the bio-

sensor. Hence, biochemical and imaging analyses indicate that 

H+ effl ux by NHE1 is necessary to maintain the abundance of 

Cdc42-GTP in quiescent and stimulated cells and to maintain 

the localization of Cdc42-GTP in migrating cells.

We previously reported that H+ effl ux by NHE1 increases 

in fi broblasts expressing an active GTPase-defi cient Cdc42-V12 

and that H+ effl ux by NHE1 stimulated by a constitutively active 

Gα13-QL is suppressed by coexpression of mutationally inactive 

Cdc42-N17 (Hooley et al., 1996). In wound-edge WT cells, ex-

pression of Cdc42-N17 inhibited H+ effl ux by NHE1, resulting 

Figure 2. H+ effl ux by NHE1 is necessary 
for active Cdc42-GTP at the front of migrating 
cells. (A) Probe used as a biosensor for endog-
enous Cdc42-GTP. MeroCBD is composed of 
the CRIB domain of neural Wiskott-Aldrich syn-
drome protein (blue), covalently labeled with 
the merocyanine dye Mero (red), and fused to 
EGFP (green). (B) Representative ratio images 
of EGFP fl uorescence and MeroCBD probe fl uo-
rescence in cells at the edge of a wounded 
monolayer as determined by microinjecting 
the MeroCBD probe 15 h after wounding. 
Arrows indicate direction of migration. (C) Per-
centage of WT (n = 22) and E266I (n = 52) 
cells with active Cdc42-GTP in wound-edge 
protrusions. (D) Relative abundance of Cdc42-
GTP in wound-edge cells determined by the 
Mero/EGFP fl uorescence ratio. Data are ex-
pressed as means ± SEM of fl uorescence ra-
tios in WT (n = 12) and E266I (n = 18) cells. 
Bar, 15 μm.



JCB • VOLUME 179 • NUMBER 3 • 2007 406

in decreased intracellular pH (pHi) of 7.10 ± 0.09 (n = 43 cells), 

compared with pHi of 7.30 ± 0.10 (n = 30 cells) in cells not ex-

pressing Cdc42-N17. In subconfl uent WT cells, PDGF stimu-

lated NHE1 activity and increased pHi from 7.15 ± 0.03 to 7.47 ± 

0.05, which was attenuated in cells expressing Cdc42-N17 to 

6.99 ± 0.02 and 7.10 ± 0.03 (n = 3 cell preparations).

Activation of Cdc42 requires release of inactive Cdc42-

GDP from Rho GDP dissociation inhibitor (RhoGDI) in the 

cytosol, recruitment to the plasma membrane, and activation 

at the plasma membrane by a guanine nucleotide exchange factor 

(GEF) that catalyzes the exchange of GDP for GTP. Immuno-

precipitating RhoGDI and immunoblotting for total Cdc42 

indicated that PDGF induced a decrease in the abundance of 

coprecipitating Cdc42 that was similar in WT and E266I cells 

(Fig. 3 A), which suggests that NHE1 activity is not necessary 

for the regulated dissociation of Cdc42 from RhoGDI. Immuno-

blotting particulate fractions (P100) for Cdc42 showed that 

abundance in E266I cells was comparable to that in WT cells 

after PDGF stimulation (Fig. 3 B), which indicates that H+ 

effl ux by NHE1 is not necessary for membrane recruitment 

of Cdc42.

These fi ndings suggest that H+ effl ux by NHE1 might be 

necessary for GEF-induced guanine nucleotide exchange, which 

we confi rmed by determining GEF activity in cell lysates (Fukuda 

et al., 2002). Exchange of [32P]GTP by Cdc42 for cold GTP was 

used as an index of GEF activity. The amount of Cdc42-[32P]GTP 

decreased to 49.2% in lysates from WT cells treated with PDGF 

(Fig. 3 C). Lysates from PDGF-stimulated E266I cells did not 

show a marked exchange of [32P]GTP for cold GTP compared 

with unstimulated cells (Fig. 3 C). These data suggest that GEF 

activity is impaired in E266I cells.

We asked whether GEF activity might be pH sensitive 

because in WT cells the quiescent pHi of 7.15 increases to 7.45 

with growth factors, but in E226I cells, the quiescent pHi of 

7.00 does not change (Denker et al., 2000; Yan et al., 2001). 

At least 20 members of the Dbl family of GEFs stimulate guanine 

nucleotide exchange by Cdc42, and we tested whether the activ-

ity of two GEFs for Cdc42, Dbs (Dbl’s big sister) and intersec-

tin, is pH dependent. Because Dbs contains a His residue (H814) 

in the α6 helix critical for interacting with switch two of Ccd42 

and because it contacts a His residue in Cdc42 (H103 in the α3b 

region; Rossman et al., 2002), we reasoned that pH-dependent 

titration of these histidines might regulate GEF activity or contact 

with Cdc42. Using the minimal Dbl homology (DH)–pleckstrin 

homology (PH) segment of Dbs necessary for activity and a 

GST-fusion of Cdc42 loaded with the fl uorescent analogue 

methylanthraniloyl (mant)-GDP, which has reduced fl uorescence 

when not bound to Cdc42 (Nomanbhoy and Cerione, 1996), we 

found no change in activity from pH 6.5 to 8.0 for Dbs (Fig. 4 A) 

or intersectin (Fig. S2, available at http://www.jcb.org/cgi/

content/full/jcb.200704169/DC1). Additionally, in the absence 

of Dbs, the release of mant-GDP from Cdc42 was similar from 

pH 6.5 to 8.0 (Fig. 4 A), indicating that guanine nucleotide ex-

change by Cdc42 was pH insensitive.

Although in most Rho family GEFs the DH domain is suf-

fi cient to catalyze nucleotide exchange, a tandem PH domain 

that binds phosphoinositides is invariant. In cells, phosphoinosi-

tide binding by the PH domain can regulate activity of the DH 

domain of some GEFs (Rossman et al., 2005). We asked whether 

phosphoinositide binding to Dbs or intersectin might be pH sen-

sitive because phosphoinositides bind to positively charged res-

idues in PH domains, which might titrate with changes in pH, 

Figure 3. H+ effl ux by NHE1 is necessary for GEF activity but 
not for Cdc42 dissociation from RhoGDI or translocation to 
particulate fraction. (A) Lysates prepared from quiescent cells 
(t = 0) and cells treated with PDGF for the indicated times 
were incubated with antibodies directed against RhoGDIα, 
and coprecipitating proteins were immunoblotted for Cdc42 
and RhoGDIα. Cdc42 abundance normalized to the abun-
dance of RhoGDIα in immune complexes is expressed relative 
to values in WT cells at time 0. Data represent means ± SEM 
of four separate cell preparations. (B) Proteins in S100 and 
P100 fractions obtained from cell lysates were separated by 
SDS-PAGE and immunoblotted for Cdc42. The abundance of 
Cdc42 in P100 fractions was normalized to total Cdc42 in 
cell lysates and expressed relative to the abundance of Cdc42 
in the particulate fraction at time 0. Data are the mean of two 
separate cell preparations. (C) Lysates from quiescent cells 
(control) and cells treated for 2 min with PDGF were incu-
bated with recombinant [32P]GTP–preloaded Cdc42-GST in 
the presence of excess unlabeled GTP. At the indicated incu-
bation times, radioactivity in aliquots of the incubation mix 
was determined by scintillation counting.
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and phosphates on phosphoinositides have pKas near neutral 

(van Paridon et al., 1986). Additionally, FYVE domains, which 

share structural similarity with PH domains for binding phos-

phoinositides at loops between β strands, have pH-dependent 

affinity for phosphoinositides (Kutateladze, 2006). By using 

liposome sedimentation, we found that the DH-PH domain of 

Dbs bound phosphotidylinositol 4,5–bisphosphate (PI(4,5)P2), 

as previously reported (Russo et al., 2001; Snyder et al., 2001), 

and that binding was pH dependent (Fig. 4 B). Maximal specifi c 

binding seen at pH 6.5 (52 ± 13%) was signifi cantly reduced at 

pH 7.5 and 8.0 (P < 0.05; n = 4), suggesting a lower affi nity at 

higher pH. Although PI(4,5)P2 binding by the DH-PH domain 

of intersectin was maximal at pH 6.5 (42 ± 8%), binding was 

relatively insensitive to pH (Fig. 4 C). We speculate that pH-

sensitive binding of PI(4,5)P2 to Dbs is caused by the presence 

of a His (H843) in the same position as H355 in the Arf GEF 

Grp1 that is critical for binding phosphoinositides (Lietzke 

et al., 2000; Barriero, G., and M. Jacobson, personal communica-

tion). Computational modeling (unpublished data) indicates 

that a spatially conserved His in close proximity to predicted 

PI(4,5)P2–binding sites is present in other GEFs activating Cdc42, 

including Fgd1 (H985), αPix (H38), ASEF (H513; H505), and Dbl 

(H701; H756), but is absent in intersectin, Fgd3, Tiam1, and 

PDZRhoGEF (unpublished data; Barriero, G., and M. Jacobson, 

personal communication). Hence, whether Dbs or another pre-

dicted pH-sensitive GEF mediates NHE1-dependent activation 

of Cdc42 remains to be determined.

It also remains to be determined whether pH-dependent 

PI(4,5)P2 binding by GEFs contributes to NHE1-dependent activa-

tion of Cdc42. PI(4,5)P2 binding to Sos2, a Ras GEF, inhib-

its nucleotide exchange activity, possibly by retaining a cis 

inhibition of the DH domain by the adjacent PH domain 

(Jefferson et al., 1998; Das et al., 2000). The functional sig-

nifi cance of PI(4,5)P2 binding to Rho family GEFs, however, 

is less clear. PI(4,5)P2 binding to recombinant DH-PH domains 

in vitro is reported to stimulate (Crompton et al., 2000), inhibit 

(Han et al., 1998; Russo et al., 2001), or not affect (Fleming et al., 

2000; Snyder et al., 2001) activity. Additionally, we cannot rule 

out other pH-dependent mechanisms, such as scaffolding or 

conformation changes independent of phosphoinositide binding, 

because attenuated GEF activity is retained in lysates of E266I 

cells (Fig. 3 C) and for some proteins conformational changes, 

ligand-binding affinities, and macromolecular assemblies are 

sensitive to small changes in physiological pH (Srivastava 

et al., 2007). A suggested pH-dependent scaffolding by NHE1 

(Baumgartner et al., 2004) is also a putative mechanism be-

cause NHE1 binds PI(4,5)P2 (Aharonovitz et al., 2000) and 

the ezrin-radixin-moesin protein ezrin (Denker et al., 2000), 

and ezrin is suggested to sequester Dbl to plasma membrane 

microdomains (Prag et al., 2007) and to regulate Dbl activa-

tion of Cdc42 (Batchelor et al., 2007). Moreover, H+ effl ux by 

NHE1 could regulate an upstream activator of Cdc42-GEFs, 

although activity of Rap1B, which is necessary and suffi cient to 

initiate polarity in neurons via activation of Cdc42 (Schwamborn 

and Puschel, 2004), was not impaired in E266I cells compared 

with WT cells (Fig. S3, available at http://www.jcb.org/cgi/

content/full/jcb.200704169/DC1).

Our data indicate positive feedback signaling between 

Cdc42 and NHE1 activity that is likely critical for polarity 

in migrating cells by asymmetrically amplifying both signals 

at the leading edge. Our findings also suggest that RhoGDI 

dissociation and membrane recruitment of Cdc42 are distinct 

Figure 4. PI(4,5)P2 binding, but not guanine nucleotide ex-
change activity, for Cdc42 by the DH-PH domain of Dbs is pH 
sensitive. (A) Recombinant Cdc42-GST was loaded with mant-
GDP and mixed with GTP alone (dashed lines) or with the re-
combinant DH-PH domain of Dbs and GTP (solid lines) in 
exchange buffer at the indicated pH values. Exchange of 
mant-GDP with GTP was measured every 8 s for 5 min, and 
data are representative of four separate preparations. (B and C) 
Recombinant DH-PH domains of Dbs (B) and intersectin (C) 
were incubated with lipid micelles without PI(4,5)P2 or con-
taining 40 μM PI(4,5)P2 at the indicated pH values. The 
abundance of the DH-PH domain in pellets was normalized 
to nonspecifi c binding with lipid micelles in the absence of 
PI(4,5)P2 and calculated relative to the sum of DH-PH domain 
in supernatant and pellet. Data are expressed as a percent-
age of PI(4,5)P2 binding at pH 6.5 and represent means ± 
SEM of four preparations.
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 signaling events that can be regulated independently of guanine 

nucleotide exchange. Beyond our current focus on regulated 

Cdc42 activity our data raise the possibility that activity of other 

GTPases and GEFs, and the affi nities of protein modules for 

binding phosphoinositides, might be pH sensitive and regulated 

by NHE1 activity.

Materials and methods
Pulldown assay for activated Cdc42
Activated Cdc42-GTP was determined by precipitation with a GST fusion of 
the PBD domain of PAK (GST-PAK-CRIB) as previously described (Benard 
et al., 1999). CCL39, PS120, WT, and E266I fi broblasts were maintained as 
previously described (Denker et al., 2000). For monolayer wounding, con-
fl uent cells were wounded with a multichannel pipette. Detached cells were 
removed by medium exchange, and lysates were prepared from adherent 
cells. For experiments with integrin activation, quiescent cells maintained in 
DME containing 0.2% FBS for 18–24 h were trypsinized, incubated for 
10 min with 0.5 mg/ml of soybean trypsin inhibitor (Sigma-Aldrich), collected 
by centrifugation, and resuspended in serum-free DME. Resuspended cells 
were plated on dishes coated with 10 μg/ml of bovine plasma fi bronectin 
(Sigma-Aldrich). Cells treated with 50 ng/ml PDGF-BB (Roche Diagnos-
tics) were grown to 70% confl uence and maintained for 18–24 h in DME 
containing 0.2% FBS (Yan et al., 2001). At the indicated times, cells were 
lysed in 500 μl of lysis buffer (Benard et al., 1999) and lysates were clari-
fi ed by centrifugation. A 20-μl aliquot of the supernatant was saved for 
determining total Cdc42, and the remaining lysate was incubated with 
20 μg of GST-PAK-CRIB bound to Sepharose beads. Precipitated proteins 
were separated by 12% SDS-PAGE and immunoblotted with anti-Cdc42 
antibodies (1:200; BD Biosciences). Immunoblots were analyzed by den-
sitometry using Image (National Institutes of Health). Because of variations 
in cell density between preparations and GST-PAK-CRIB, which was freshly 
generated for each experiment, the absolute values of Cdc42-GTP and 
total Cdc42 for each cell preparation, determined from the immunoblotting 
signal by Image, were expressed as a ratio of Cdc42-GTP/total Cdc42. 
The ratios from each cell preparation were expressed relative to the ratio 
of control WT cells. Hence, although there was variability in Cdc42-GTP/
total Cdc42 ratios between cell preparations, the cell-type and condition-
specifi c relative changes in ratios were consistent.

Cell migration
Cell migration was determined on nucleopore fi lters (8-μm pore; Costar; 
Corning Inc.) coated on the lower side of the membrane with 10 μg/ml 
fi bronectin or BSA, and chambers were fi lled with growth medium. Cells 
were trypsinized and resuspended at a fi nal concentration of 106 cells/ml. 
A 100-μl aliquot of cell suspension was added to the upper chamber and 
incubated at 37°C. At the indicated times, cells were washed and the up-
per surface was wiped to remove nonmigrating cells. The membranes were 
fi xed in 4% paraformaldehyde, washed with PBS, and stained for 5 min in 
crystal violet at 0.1% in PBS. After three washes in water, membranes were 
dried overnight, and the crystal violet was extracted in 1 ml acetic acid at 
10%. Dye amount was quantifi ed on a spectrofl uorometer at 600 nm.

𝛃1 integrin expression and integrin affi nity for fi bronectin
To determine integrin affi nity for fi bronectin, cells in suspension were mixed 
with the indicated concentrations of FITC-labeled fi bronectin (FluoReporter; 
Invitrogen) for 60 min. FITC-positive cells were determined using a cell 
sorter (FACS Vantage SE; Becton Dickinson), and data were analyzed us-
ing CellQuest Pro 4.0.1 software (Becton Dickinson). To determine β1 inte-
grin expression, cells were biotinylated on ice for 90 min and lysed in RIPA 
buffer, and the lysate was incubated with antibodies against β1 integrin 
(9EG7; BD Biosciences) and with protein A–Sepharose beads. Eluted pro-
teins were probed for biotin with streptavidin-HRP.

Cdc42-GTP biosensor imaging
WT and E266I cells grown to confl uency on glass coverslips were wounded 
with a pipette tip and, after 15 h, cells at the wound edge were micro-
injected with the Cdc42 biosensor MeroCBD as previously described 
(Nalbant et al., 2004). Images were collected with an inverted microscope 
(Axiovert 100TV; Carl Zeiss MicroImaging, Inc.) using a camera (cooled 
CCD; Quantix) and an oil-immersion objective (40× 1.3 NA). The expo-
sure times were 30–300 ms for EGFP and 90–900 ms for the ISO dye. 

Image analysis was performed using Metamorph software (Molecular 
Devices) as described in Nalbant et al. (2004). The processed ISO dye 
images were divided by the corresponding EGFP images, producing ratio 
pictures that represent activation patterns of Cdc42. The qualitative assess-
ment of differences in localized activity was performed using line scans 
and visual inspection. Mean Cdc42 activity in individual cells was calcu-
lated using Metamorph and analyzed with Excel (Microsoft).

Intracellular pH measurements
WT cells were transfected by electroporation (Nucleofector kit; Amaxa Bio-
systems) with Cdc42-N17, porcine cytomegalovirus, or empty vector, plated 
on glass coverslips with cherry-red histone pJAG 285, and grown to con-
fl uence for wounding or used at 70% confl uence for treating with PDGF. 
NHE1 activity and intracellular pH were determined in cells loaded with 
the fl uorescent pH-sensitive dye BCECF (Invitrogen) as previously described 
(Yan et al., 2001; Denker and Barber, 2002).

RhoGDI immunoprecipitation
The abundance of Cdc42 complexed with RhoGDI was determined as pre-
viously described (DerMardirossian et al., 2004) using total cell lysates incu-
bated with antibodies to RhoGDI (1:50; Invitrogen) conjugated to protein A–
Sepharose. Proteins in the immune complex were separated by 12% SDS-PAGE 
and immunoblotted with antibodies to Cdc42 (1:200; BD Biosciences) 
or RhoGDI (1:200; Invitrogen). The abundance of Cdc42 and RhoGDI in 
immune complexes was determined by densitometry.

Subcellular fractionation
Quiescent cells at 70% confl uence were untreated or treated with 50 ng/ml 
PDGF and lysed by sonication. 100 μg of protein in postnuclear super-
natants was centrifuged at 100,000 g for 20 min to obtain soluble (S100) 
and particulate (P100) fractions. Proteins were separated by 12% SDS-
PAGE and immunoblotted with anti-Cdc42 antibodies. Immunoblots were 
analyzed by densitometry by using Image.

GEF assays
GEF activity in cell lysates was determined as previously described (Fukuda 
et al., 2002). 500 μl of lysates from subconfl uent quiescent cells untreated 
or treated with 50 ng/ml PDGF were added to 1 μg α-[32P]GTP-GST-
Cdc42 (Cytoskeleton, Inc.) in the presence of 2 mM of cold GTP and 
10 mM MgCl2 at room temperature. Samples were removed at the indicated 
times and diluted with ice cold termination buffer. After centrifugation and 
washing, radioactivity was quantifi ed by scintillation counting.

Activity of recombinant DH-PH domains of Dbs and intersectin (pro-
vided by J. Sondek, University of North Carolina, Chapel Hill, NC) was 
determined by determining incorporation of fl uorescent N-mant-GDP into 
GST-Cdc42 as described previously (Nomanbhoy and Cerione, 1996). 
200 nM of recombinant DH-PH domain and 100 μM GTP were added 
and guanine nucleotide exchange was determined by measuring the de-
crease in fl uorescence (excitation, 360 nm; emission, 440 nm) with re-
lease of mant-GDP from Cdc42 using a spectrofl uorometer (SpectraMax 
M5; Invitrogen).

Phospholipid binding
Lipid micelles were prepared as previously described (Lebensohn et al., 
2006) using a Mini-Extruder (Avanti Polar Lipids) and contained phospha-
tidyl choline/PI/PI(4,5)P2 (86:10:4 molar ratio; Avanti Polar Lipids). Vesicle 
suspensions adjusted to the indicated pH with KOH or HCl were incubated 
with 10 μg (3 μM) of recombinant DH/PH protein for 15 min at room 
temperature and then collected by centrifugation at 100,000 g for 60 min. 
Supernatants and pellets were analyzed by SDS-PAGE and Coomassie 
staining. The amount of protein on the gel was determined by densitometry 
analysis using Image. Specifi c binding was calculated as the abundance 
of peptide bound to vesicles containing PI(4,5)P2 minus binding to vesicles 
in the absence of PI(4,5)P2. The abundance of peptide bound to vesicles 
in the absence of PI(4,5)P2 was minimal and pH independent. To correct 
for variations in lipid vesicle preparations, data were expressed relative to 
binding at pH 6.5 for each determination.

Rap1B activity
Activated Rap1B-GTP was determined in subconfl uent cells by precipitation 
with a GST fusion of the Rho binding domain of RalGDS (GST-RalGDS-RBD) 
as previously described (Hochbaum et al., 2003). At the indicated times 
after treating with 50 ng/ml PDGF (Roche Diagnostics), cells were washed 
in ice cold PBS and lysed in 500 μl of lysis buffer (Hochbaum et al., 2003), and 
then 20 μl of lysates was saved for determining total Rap1B. The remaining 
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lysate was incubated for 1 h at 4°C with 10 μg of GST-RalGDS-RBD 
bound to Sepharose beads. Precipitated proteins were separated by 12% 
SDS-PAGE and immunoblotted with anti-Rap1B antibodies (1:200; Santa 
Cruz Biotechnology, Inc.). Immunoblots were analyzed by densitometry 
using Image.

Online supplemental material
Fig. S1 shows that H+ effl ux by NHE1 is necessary for haptokinetic migra-
tion toward fi bronectin but not for integrin affi nity or expression. Fig. S2 
shows that activity of the DH-PH domain of intersectin is pH insensitive. 
Fig. S3 shows that H+ effl ux by NHE1 does not regulate activity of Rap1B. 
Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.200704169/DC1.
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