An Emerging Diabetes Mellitus Diagnosis Modality: HbA_{1c}

Hyun-Ae Seo and In-Kyu Lee

Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea

See Article on Page 41-46

Classically, the diagnosis of diabetes has been made using the fasting plasma glucose, random plasma glucose, or a 2-hr 75-g oral glucose tolerance test. There are many problems with the definition of diabetes based on blood glucose levels, such as the high intra-individual biological variability, variability in the collection and storage methods, and difficulty in ensuring a fasting state before measuring the blood glucose [1].

Recently, the hemoglobin A_{1c} (HbA_{1c}) assay has also been recommended for the diagnosis of diabetes. The HbA₁₀ concentration is a good indicator of glycemic control over the previous 8-12 weeks; the time period is dictated by the 120-day lifespan of erythrocytes. HbA_{1c} is used as the standard biomarker for the adequacy of glycemic management since it correlates well with both microvascular and, to a lesser extent, macrovascular complications based on a large epidemiological study [2,3]. In the past, expert committees have rejected the proposed use of HbA_{1c} for the diagnosis of diabetes mainly because of the lack of assay standardization. However, HbA_{1c} assays are now highly standardized, and an international expert committee recommended the use of the HbA_{1c} test to diagnose diabetes, with a threshold of \geq 6.5%, in 2009 [4]. The American Diabetes Association (ADA) affirmed this decision in 2010. The diagnostic test should be performed using a method that is certified by the National Glycohemoglobin

Standardization Program (NGSP) and standardized or traceable to the Diabetes Control and Complications Trial reference assay [5]. An HbA_{1c} cut-off of $\geq 6.5\%$ is associated with an increase in the prevalence of moderate retinopathy [6].

A few attempts to verify the validity of glycated hemoglobin in diagnosing type 2 diabetes mellitus in different ethnic populations have been published [7]. Since many studies have found that ethnicity influences the HbA₁₀ level [8], it is necessary to confirm the utility of HbA_{1c} in different races. Recently, Yu et al. [9] investigated the validity of glycated hemoglobin in diagnosing type 2 diabetes mellitus in 497 Chinese subjects, and checked the fasting plasma glucose, oral glucose tolerance test (OGTT), and HbA_{1c}. In their study, an HbA_{1c} level of 6.5% had a sensitivity of 62.7% and a specificity of 93.5% as a diagnostic tool. They concluded that the optimal cut-off point of HbA_{1c} was 6.3% with a sensitivity of 79.6% and specificity of 82.2%. HbA_{1c} ≥ 6.5% has reasonably good specificity for diagnosing diabetes in Chinese, in concordance with the ADA recommendation [9]. These results, in terms of Asians, are meaningful. Yun et al. [10] also reported on the difference between the HbA_{1c} assay and fasting plasma glucose level for making the diagnosis of diabetes in Korean adults; the kappa index of agreement between the fasting plasma glucose level and HbA_{1c} was 0.50.

Since HbA_{1c} is associated with the risk of diabetes, HbA_{1c} is superior to the glucose level for assessing chronic complications of diabetes and a study of Koreans found agreement between glycosylated hemoglobin and fasting

Correspondence to In-Kyu Lee, M.D.

Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, 50 Samduk 2-ga, Jung-gu, Daegu 700-721, Korea

Tel: 82-53-420-5564, Fax: 82-53-426-2046, E-mail: leei@knu.ac.kr

plasma glucose [10]. The 2011 diabetes guidelines of the Korean Diabetes Association (KDA) included using $HbA_{1c} \ge 6.5\%$ for diagnosing diabetes [11].

To date, many studies support the use of glycosylated hemoglobin for diagnosing diabetes. The HbA_{1c} level is a reliable indicator of chronic glycemia and correlates well with the risk of diabetes complications. Nevertheless, HbA_{1c} is also affected by hemoglobinopathies, recent hemolysis, high triglyceride levels, pregnancy, and some drugs, including salicylates and vitamins C and E [12]. In addition, HbA_{1c} does not reflect acute elevations in the glucose level [12]. Clinicians must be aware of these limitations.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

- Ollerton RL, Playle R, Ahmed K, Dunstan FD, Luzio SD, Owens DR. Day-to-day variability of fasting plasma glucose in newly diagnosed type 2 diabetic subjects. Diabetes Care 1999;22:394-398.
- Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405-412.

- The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 1995;44:968-983.
- International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327-1334.
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33 Suppl 1:S62-S69.
- Sabanayagam C, Liew G, Tai ES, et al. Relationship between glycated haemoglobin and microvascular complications: is there a natural cut-off point for the diagnosis of diabetes? Diabetologia 2009;52:1279-1289.
- Kirk JK, Bell RA, Bertoni AG, et al. Ethnic disparities: control
 of glycemia, blood pressure, and LDL cholesterol among US
 adults with type 2 diabetes. Ann Pharmacother 2005;39:14891501.
- Herman WH, Ma Y, Uwaifo G, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care 2007;30:2453-2457.
- Yu Y, Ouyang XJ, Lou QL, et al. Validity of glycated hemoglobin in screening and diagnosing type 2 diabetes mellitus in Chinese. Korean J Intern Med 2012;27:41-46.
- Yun WJ, Shin MH, Kweon SS, et al. A comparison of fasting glucose and HbA1c for the diagnosis of diabetes mellitus among Korean adults. J Prev Med Public Health 2010;43:451-454.
- Korean Diabetes Association. Treatment Guideline for Diabetes. Seoul: Korean Diabetes Association, 2011.
- 12. Malkani S, Mordes JP. Implications of using hemoglobin A1C for diagnosing diabetes mellitus. Am J Med 2011;124:395-401.