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Prediction of the Chemical Context for Buchwald-Hartwig
Coupling Reactions
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Abstract: We present machine learning models for predict-
ing the chemical context for Buchwald-Hartwig coupling
reactions, i. e., what chemicals to add to the reactants to
give a productive reaction. Using reaction data from in-
house electronic lab notebooks, we train two models: one
based on single-label data and one based on multi-label
data. Both models show excellent top-3 accuracy of
approximately 90%, which suggests strong predictivity.
Furthermore, there seems to be an advantage of including
multi-label data because the multi-label model shows
higher accuracy and better sensitivity for the individual
contexts than the single-label model. Although the models

are performant, we also show that such models need to be
re-trained periodically as there is a strong temporal
characteristic to the usage of different contexts. Therefore,
a model trained on historical data will decrease in
usefulness with time as newer and better contexts emerge
and replace older ones. We hypothesize that such signifi-
cant transitions in the context-usage will likely affect any
model predicting chemical contexts trained on historical
data. Consequently, training context prediction models
warrants careful planning of what data is used for training
and how often the model needs to be re-trained.
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1 Introduction

The use of computer-aided synthesis planning (CASP)
started several decades ago but has gained a renewed
interest recently with recent advances in machine
learning.[1–3] CASP is beneficial for both medicinal and
process chemists as the tools provide suggestions on how
to synthesize novel compounds and guide the optimization
of reaction conditions. Coupling powerful machine learning
models to large databases of reactions such as Reaxys,[4]

CAS,[5] Pistachio[6] or internal corporate Electronic Laboratory
Notebooks (ELNs), has the potential to transform the way
chemists approach synthesis.

Reaction outcomes are susceptible to minute changes in
the conditions of the reaction, e.g. temperature, pressure,
solvent, catalyst. Consequently, getting the right set of
conditions, i. e., the reaction context, is critical in organic
synthesis. Nonetheless, condition prediction has received
relatively little attention compared to other CASP research
areas, such as forward reaction prediction and retrosyn-
thesis analysis. Although extensive efforts have sought to
formalize the rules for condition optimization, initial
conditions selection remains dependent on human intu-
ition. Previously reported in silico methods typically only
apply for specific reaction classes or parts of the reaction
condition, e.g., solvent or catalyst.[7–9] Gao et al., on the
other hand, trained a neural network model to predict the
chemical species (catalysts, solvents, and reagents) as well
as the temperature most suitable for any given reaction,
using 10 million reactions from Reaxys.[10] The authors found
a close match to the recorded context, within the top-10

suggestions in about 70% of the time, whereas the
accuracy for individual species was much higher. Ryou et al.
proposed a related model based on a graph neural network
that predicts conditions for four reaction classes.[11] Their
results are impressive for individual reaction species, but
less competitive in the combination of the conditions,
obtaining a top-3 accuracy of at most 70%. Maser et al.
later refined the work of Ryou et al. to exploit the multi-
label nature of the data, i. e., each reaction can have more
than one recorded context.[12] This work is, to our knowl-
edge, the only multi-label approach reported for condition
prediction. The advantage of including multi-label data is
that the model may assign probabilities to different
contexts rather than just predicting one. This property
enables the model to be used in library generation. In such
a scenario, it will sometimes be necessary to select a
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context that is not optimal for one particular reaction, but
rather optimal for a set of reactions.

One problem with the models discussed above is that
the accuracy for the entire context is low compared to the
accuracy for the individual species, a natural effect of
modeling the different species individually. To the best of
our knowledge, no one has developed a model that jointly
predicts the chemical context of a reaction, i. e., a fixed set
composed of a catalyst, a solvent, and reagents, which are
treated as a single label during modeling. Although the
methods mentioned above attempt to couple predictions
of individual conditions in various ways,[10,12] the predictions
of different conditions are essentially independent. Instead,
modeling the full chemical context would have the
advantage of circumventing the error propagation problem
plaguing earlier proposed methods.[10,12] However, because
different reaction classes use different sets of chemical
contexts, creating a general-purpose model applicable to
any reaction is challenging. Furthermore, predicting chem-
ical contexts is limited by the combinations of conditions
available in the training dataset thereby naturally limiting
the scope of the model and hinder the prediction of novel
contexts. On the other hand, a model predicting known
sets of conditions avoids predicting combinations of
chemical species that are chemically incompatible with one
and another.

Based on these observations and inferences, we decided
to create a model to predict chemical contexts for
Buchwald-Hartwig coupling reactions (see Figure 1). Such
reactions are ubiquitous in medicinal chemistry,[13,14] and,
therefore, a good candidate for a prospective study such as
this. Furthermore, we compare models trained on single-
label and multi-label data. Finally, as there is intense
research focus on finding new set of conditions for
Buchwald-Hartwig coupling reactions, we will analyze the

time-dependency of the model performance. This is
important as our models are, as in the studies discussed
above,[10,12] based on historical data, i. e. we are attempting
to predict context relevant for medicinal chemistry projects
today using data from the past. If the historical data is not
representative of future preferred reaction conditions, the
models may become irrelevant over time.

2 Methods

There are two models of primary interest: a single-label
model trained on the highest yielding context for a reaction
and a multi-label model trained on all available data. Both
models are feed-forward neural networks that use reaction
fingerprints as inputs and give a chemical contexts as
output, i. e., a combination of chemicals to be added to the
reactants (see exact definition below).

Data processing. We trained the models on reaction
data recorded on a subset of the in-house ELNs covering
compounds synthesized between 2004–2020. At the time
of data extraction, there were 11,210 recorded Buchwald-
Hartwig reaction variations for single-product reactions
with a yield greater or equal to 20%. A reaction variation is
a recorded reaction with a specific context, whereas a
reaction in the database only specifies the reactants and
products. The arbitrary limit of 20% yield is a reasonable
compromise between considering the reaction successful
enough in a medicinal chemistry context and retaining
enough data for modeling. For modeling, we reduced the
dataset by only keeping reaction variations that use any of
the 30 most common chemical contexts, giving 6,291
reactions.

We featurized the reaction Simplified Molecular-Input
Line-Entry System (SMILES) into reaction fingerprints by

Figure 1. Illustration of A) a generic Buchwald-Hartwig coupling reaction and B) an example of a chemical context for such a reaction,
showing an example of a palladium catalyst, a ligand, a base and a solvent.
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subtracting the sum of the reactant fingerprints from the
product fingerprint, i. e. a difference fingerprint.[15] The
reactants and product fingerprint consist of a 512-bit
extended connectivity fingerprints with a radius of 3,[16]

concatenated to a 512-bit RDKit fingerprints with a
maximum path length of 7.[17] Other featurization schemes
of chemical reactions have been suggested recently,[18,19]

but their use is outside the scope of our study.
Because we are working with Buchwald-Hartwig reac-

tions, we constructed chemical contexts based on chemicals
categorized as catalyst, pre-catalyst, ligand, base, solvent, or
reagent (see Figure 1 for an example). We identified pre-
catalysts and catalysts from a curated list or flagged any
chemical containing Pd or Pt elements. We identified
solvents using the assignment in the original ELN record.
We used atom mappings from the Biovia software to
identify reagents as molecules not contributing to the
product.[20] Using a curated list of bases and ligands, we
assigned these from the list of reagents. We included a
“reagent” category since not all chemicals fall into either of
these categories. We kept only reaction variations using
one of the 30 most common contexts for our model
training, all other variations were discarded. For training the
single-label model, we kept only the variant with the
highest yield for each reaction if the same reaction occurred
multiple times. For training the multi-label model, we kept
only unique reactions, based on the reaction fingerprint
and a context identifier. Both the models had their chemical
contexts converted to one-hot vectors. We construct the
multi-hot vectors for training the multi-label model by
merging one-hot vectors using a bitwise-or operation. The
single-label data were weighted by the yield, whereas for
the multi-label data no weighting was applied because of
the technical complexity of including the yield in the output
vector. A summary of the data-processing is available in
Figure S1.

Model training. We use the Optuna package for hyper-
parameters optimization,[21] limiting the search space for
the single- and multi-label models to the values shown in
Table 1. We train the two models using different metrics.
For the single-label model we use the categorical
accuracy[22] whereas for the multi-label model we use the
Label Ranking Average Precision (LRAP) score as imple-
mented in Scikit-Learn[22] (see below). The data was split
into a training set consisting of 80% of the data, and a

validation set consisting of 20% of the data. The training
set was used in the hyper-parameter optimization together
with a five-fold cross validation. The validation set was used
to evaluate the convergence and performance of the model
with the optimized hyper-parameters.

We arrive at the following optimized architectures and
training schedules:
* Single-label model: one hidden layer with 1024 nodes
and it has a dropout layer with a dropout-rate of 0.60
between each layer. It uses ReLU as its activation layer
between layers, except for the final layer which uses a
softmax activation. The single-label model was trained
using categorical cross-entropy loss, and Adam
optimizer[23] with a learning rate of 6.1*10� 4. It was
trained for 10 epochs using a batch size of 64.

* Multi-label model: one hidden layer with 512 nodes and
it has a dropout layer with a dropout-rate of 0.64
between each layer. It uses ReLU as its activation layer
between layers, except for the final layer which uses a
softmax function. The multi-label model was trained
using binary cross-entropy loss, and Adam optimizer with
a learning rate of 9.2*10� 4. It was trained for 20 epochs
with a batch size of 64.
We ran three independent training runs to obtain rough

uncertainty estimates of the models with the optimal
hyper-parameters.

Multi-label metrics. We evaluate the multi-label model
with two metrics. The LRAP score measures how well the
model ranks its ground-truths by calculating for each
ground-truth how large fraction of the labels with an equal
or greater score are also ground-truths. The Jaccard score[24]

measures how well the model predicts the ground-truths as
positive and ground-falsehoods as not positive. This is
calculated by dividing the true positives by the false
negatives, true positives, and false positives.

3 Results and Discussions

The dataset is imbalanced and has limited multilabel
character. We first sought to analyze the dataset used for
training, which consists of reaction data from the in-house
ELNs. There are 11,210 recorded Buchwald-Hartwig reac-
tions with a yield greater or equal to 20%. Out of the 1,000
contexts in the dataset, we only keep the 30 most common

Table 1. Hyper-parameter space used for training the two models.

multi-label single-label

Batch size 32 or 64 32 or 64
Number of epochs 10, 15, or 20 10 or 15
Hidden size 27, 28, or 29 27, 28, 29, 210, or 211

Number of hidden layers 1, 2, or 3 1, 2, or 3
Learning rate Between 10� 5 and 5*10� 3 Between 10� 5 and 5*10� 3

Dropout rate Between 0 and 0.9 Between 0 and 0.9
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contexts, as it is likely that these would be of interest to the
chemists. It also follows similar cut-offs used previously in
the literature.[10,12] We observe a clear imbalance in the
context usage distribution (Figure 2), where the most
popular context is used for almost 800 reactions and the
less common contexts are only used for about 100 reactions
or less. The mean of the imbalance ratios per label is
approximately 7.0 and the variance approximately 0.6, and
according to the criteria of Charte et al. the dataset is
considered imbalanced.[25] Similar imbalances have been
previously noted in the literature.[10,12]

Label cardinality and density measure the degree of
multi-label character of the dataset. The label cardinality is
the average number of labels per sample, and the label
density is the label cardinality divided by the number of
labels. For the current dataset, the label cardinality is 1.01
and the label density 0.033, which shows that most of the
data is single-label and the vectors with the true contexts
will be sparse. 86% of the reactions have only one variation,
i. e., more than one recorded context, 11% have two
variations, and 3% have three or more variations. These
statistics underline the sparsity of the dataset used in our
study.

Temperature is excluded from the model. We next
sought to train the models to predict chemical contexts,
i. e., a combination of (pre-)catalyst, ligand, base, and
solvent. In contrast to earlier approaches, we chose to
exclude temperature in the prediction. As discussed above,
our data are sparse and only a few variants are present for
each reaction. Some of the contexts infrequently appear in
the dataset. One further reason to exclude temperature
during modeling is the sparsity of temperature data itself.
In particular, for 16.0% of reactions the temperature is
missing, and for 0.2%, the reported temperature is a range
(rather than a single value). In order to incorporate temper-
atures into modeling, data points would require conversion
into a single real number. Previous modeling efforts have
replaced missing temperatures with ambient temperature[11]

and any corresponding ranges with the midpoint of the
range.[10] Interestingly, Gao et al. modeled the temperature
as a continuous variable with a regression model,[10] where-
as Ryou et al. and Maser et al. modeled it as a discrete
variable using binning for the two reaction classes where
the temperature data were abundant.[11,12] One final reason

for excluding temperature is the actual distribution of the
temperatures, depicted in Figure 3, since a majority of the

recorded temperatures are shown to be around 100
degrees Celsius, a typical temperature for Buchwald-
Hartwig coupling reactions.[13] This narrow distribution of
the temperatures further indicates the unnecessary need to
precisely predict the temperature for a Buchwald-Hartwig
reaction.

Both single-label and multi-label models are perform-
ant. We next sought to analyze the behavioral character-
istics of the learning curves to ensure models are trained
appropriately. Figure 4a shows the loss as a function of the
training epoch and suggests that training has converged. In
Figure 4b, we can see that the model achieves a top-1
accuracy of ~0.69 and a top-3 accuracy of ~0.89. These
accuracy scores indicate a well-performing model, which
most often predicts the recorded context highest. The top-3
accuracy of ~0.89 is significantly higher than the top-3
accuracy of approximately ~0.57 for an exact match of the
recorded context presented by Gao et al.[10] These results
indicate that predicting the conditions as sets, i. e. as
contexts, instead of individually provides higher accuracy

Figure 2. the frequency of the 30 most common contexts for Buchwald-Hartwig in the dataset used for modeling.

Figure 3. Distribution of temperatures in the dataset. The likelihood
is taken as the frequency divided by the total number of data
points. There are clearly some incorrect data points with recorded
temperatures below � 200 degrees Celsius.
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for predicting the recorded context. A model that suggests
the most popular of our context every time gives top-1 and
top-3 of ~0.14 and ~0.18, respectively, which also high-
lights the single-label model‘s predictive power.

Similarly, Figure 4C displays the loss curve for the multi-
label model and shows that the loss has stabilized at the
end of training. The model has an LRAP score of about 0.81
and a Jaccard score of about 0.68. The high LRAP score
suggests that the ranking of the predictions is often correct,
meaning that the ground-truth labels are on average
ranked higher than unassociated labels. However, a lower
Jaccard score indicates that some predictions are incorrect
compared to the ground truth. The label cardinality of the
predicted contexts is about 1.0, similar to the label
cardinality of the test data. It means that the model
reproduces the low label cardinality found in the training
data. Thus, the predictions are on average single-label. It is
likely that if the label cardinality of the training data had
been higher, the label cardinality of the predictions would
be higher as well. A model that suggests the three most
popular contexts in order of popularity gives a top-1 and
top3 of ~0.13 and ~0.30, respectively, again showing the
predictive power of the multi-label model.

The multi-label model is marginally more performant
than the single-label model. Comparing single-label and
multi-label models is intrinsically non-trivial, as they are not
solving the same task. We compare the models by looking
at how they rank the ground truth in their predictions in

Figure 5. For the single-label model, it is the top-k accuracy,
which means that if the ground-truth is predicted with the

k:th highest score it gets rank k. The multi-label model is
the rank of the lowest scored ground-truth divided by the
number of ground-truths. When there is only one true label,
which is the case for most of the data, this calculation will

Figure 4. Validation loss and accuracy. a), and b) the single-label model. c) and d) the multi-label model. The shaded area is the standard
deviation over three independent runs.

Figure 5. Cumulative accuracy for different ranks. For single-label
model it corresponds to top-n accuracy, for multi-label model it
corresponds to rank of the lowest scored ground-truth divided by
the number of ground-truths. Only the first training run is
considered in the graph.
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be the same as top-k. More true labels measure how many
of the predicted labels that are ranked equal or higher than
all true labels are true labels. The performance is similar
between the models, although the multi-label top-1
accuracy is significantly higher. However, it is difficult to
conclude whether this difference in accuracy would make a
practical difference. The top-3 is above 0.9 for both models,
which indicates that it would be easy for a chemist to find a
good suggestion.

For both models, the specificity is high, whereas the
sensitivity is lower (Figure 6). This pattern suggests that the
model retrieves the true positives less well than true
negatives. On average, the specificity decreases by 0.002
when going from single-label to multi-label model, but the
sensitivity increases by 0.07. These both changes are
significant at the 95% confidence interval, with p-values
from a paired t-test being 0.022 for specific and 0.005 for
sensitivity. The comparison shows that the single-label and
multi-label models perform similarly well and on average
both predict one context for a reaction.

We did a cross-comparison for the different contexts by
computing the likelihood of predicting a context x in top-1
and top-3, given that the ground-truth context is y
(Figure S2). The sum of the diagonal corresponds to the
average top-1 and top-3 accuracy. We observe that if the
context is common (has a low context index) it will be more
often predicted in top-3 regardless of what the ground-
truth label is and thus more often confused with other
contexts. And conversely, if the context is less common
(higher context index) it is less often predicted, and more
often confused with more common contexts. We also

observe that most of the off-diagonal likelihoods disappears
if we look at top-1 instead of top-3, indicating that the off-
diagonal predictions stem from top-2 and top-3 ranks.
These observations hold true for both the single-label and
multi-label models, in fact there is very little difference
between the two models.

The multi-label model is better in partially predicting
the correct context. To further outline the difference
between the multi-label and single-label approaches, we
next analyzed the single-label predictions not in the top-3
to see how close the top-1 prediction was to the true
context. We assigned a score to each of those predictions,
the average number of chemical species that agree when
comparing the top-1 prediction to the true context. The
average score is 0.47, indicating that the model predicts
that about half of the conditions were correct. In Figure 7,
we outline the likelihood of a specific category‘s correct-
ness. The most properly predicted species is the base,
which agrees with a likelihood of 0.79, followed by the
ligand as 0.36. The catalyst is the most difficult category
since this is only correctly predicted in 0.14 of cases. That
the base is the easiest to get right follows most likely from
that there are only three unique bases in the 30 contexts
that the model is built upon. In contrast, the other
categories have between six and eight unique compounds.

We also conducted a similar analysis on the multi-label
predictions, for which the highest-ranked true context was
not in the top-3. For such predictions we compared the
top-1 prediction to the highest-ranked true context. The
average agreement score is 0.50, indicating that the multi-
label prediction is marginally closer to the true context on

Figure 6. Sensitivity and specificity for all context for a) single-label model, b) multi-label model. The error bars indicate one standard
deviation over three independent runs.
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average. For the ligand and solvent categories, the like-
lihood of agreement is higher or equal for the multi-label
model. These results illustrate that we can potentially
improve the models by exploiting multi-label data. How-
ever, we stress that the contexts predicted herein are
completely orthogonal in the sense that the models can
never combine, e.g., a catalyst from one context and a
ligand from another, although there might be some
inherent overlap. If the combination of chemical species
were not in the training data, the model cannot predict it,
and thus the analysis presented in Figure 7 should be
interpreted as that the multi-label model is marginally more
performant in finding a set of conditions with a high
overlap with the recorded set of conditions.

The dataset has strong temporal characteristics. We
analyzed the time-dependency of context usage by count-
ing the number of times a context has been used for a
particular year as shown in Figure 8. Results from this
analysis show a temporal effect of context usage. The
temporal nature differs between contexts, where some
appear consistently throughout time, while others exhibit
periods of short popularity. Chemists reporting in the ELNs,
use specific contexts for eight years on average, and the
average longest range of years a context was used is six. It
shows that contexts usage varies from year to year. For
instance, the top-ranking context emerged around 2015,
which replaced the context ranked second, used primarily
before 2015. Taken together, these observations indicate
influence from a variety of different factors, for example,
the appearance of new reagents in the scientific literature
inciting the adoption of new laboratory strategies or the
hiring of new staff having, for instance, different skills or
habits. Indeed, there is intense research focus on finding
new reagents, especially ligands and catalysts, in the field
of the Buchwald-Hartwig reaction.[13,14] Additionally, the
internal availability of chemicals such as catalysts and
ligands may also guide the context choice in some

synthesis projects. The temporal characteristics of the
dataset have not been considered in previous modeling
studies,[10,12] although none have attempted to create a
model specifically for Buchwald-Hartwig reactions. Still, it is
likely that the same trends can be observed for other
reaction classes.

Models need to be retrained periodically and histor-
ical data is not always useful. The purpose of the models
trained herein is to predict common reaction contexts or to
drive an automation platform that leverages contexts
optimal for multiple reactions. However, this type of model
will often fail to predict the use of new promising reagents,
which might be what the chemists principally try first. The
model data will have to be updated regularly and ideally
reflect the current state of the art to avoid this issue.
However, curating such a dataset is non-trivial as old
contexts will often outnumber the new and promising
ones. It is interesting to analyze if the model benefits at all
from historical data, or if such data should be removed
from the training. To investigate these hypotheses with our
current data set, we created several single-label models to
predict contexts for reactions recorded in the last two years
(2019–2020). We varied what training set to include
reactions recorded in different spans of years. We acknowl-
edge that our exemplified data will present a further
unbalanced set of labels (in addition to those outlined in
the exploration section above), and that test sets may
contain labels underrepresented or absent in training. For
the aforementioned single-label model, we re-calculate the
top-1 and top-3 accuracies by including only the reactions

Figure 7. Likelihood agreement between top-1 prediction and true
condition for different condition categories when the true condition
is outside top-3.

Figure 8. the distribution over time for the top 30 contexts. The
brightness (blue - yellow) of the heatmap shows the relative
frequency of a context for that year. The contexts are sorted by
popularity so that context 1 is the most popular.
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recorded in 2019 and 2020 (Table 2). The accuracy of this
reaction subset is on par with the accuracy of the entire test

set, with top-1 equal to 70% and top-3 equal to 0.89%. We
next trained a model on reactions from 2019 to 2020. We
observe that this model slightly outperforms the model
trained on reactions from all years, with top-1 accuracy of
72% and top-3 accuracy of 92%, which reflects that data
from the same (short) time periods tend to be more
consistent and consequently easier to predict. Next, we
trained models without including any reactions from 2019
and 2020 and investigated the predictivity on contexts for
those years. Understandably, performance drops when
excluding data for those years from modeling, reflecting
that historical data are, as expected, not sufficient to predict
more recent experiments. Further, a model trained on
reactions between 2014 and 2018 had a top-1 accuracy of
only 19% and top-3 accuracy of 33%, whilst performance
increases for a model trained between 2015–2018, with
top-1 accuracy of 32% and top-3 accuracy of 54%. Taken
together, this shows that predictions are more accurate
when the training is temporally close to the test data.

The outcomes of the simple temporal validation experi-
ments presented in this section highlight the need for
periodical retraining of the models such as those described
herein, to ensure their usefulness for medicinal chemistry
projects. None of the previously published studies for
context prediction performed a temporal analysis,[10,12]

which indicates that they may be prone to similar
deficiencies. While we highlight the limitations of only
relying on historical data here, it also is important to stress
that historical data might still be chemically relevant, and
an old context could be just as effective as a new one.
Indeed, most ligands can yield high product concentrations
in cases where the amine and halide are highly suitable for
this type of reaction. Thus, it is not always needed to
employ the more recent and supposedly more performant
contexts for all planned synthesis, although as it is clear
from Figure 8 that chemists tend to use more recent
contexts.

4 Conclusions

We have introduced novel models to predict the chemical
context for Buchwald-Hartwig coupling reactions. In partic-

ular, our models predict the chemical conditions jointly, i. e.,
given a query reaction, it predicts a set of ligand, base,
solvent, and (pre-)catalyst. We show that both single-label
and multi-label models predict the chemical context well,
reaching a top-3 accuracy above 90%. The model trained
on multi-label data has better sensitivity on individual
contexts and is better at predicting parts of the context.
These findings show that there is a possibility of training a
prediction model for a chemical context and that there is
some advantage of including multi-label data. Although to
fully explore the relative advantage of a multi-label model,
another, more multi-labeled, dataset is needed. Overall, the
current models can be used to predict the context of
Buchwald-Hartwig reactions from a limited set of contexts,
for example, in the scenario of an automated platform
requiring a set of well-known conditions. However, as
shown by the time-dependency analysis, such models most
likely need to be updated regularly to encompass changed
commercial availability and novel science. This modeling
requirement has been neglected in previous modeling
studies[10,12] and thus brings the relevancy of such models
into question. We have clearly shown that, at least for
Buchwald-Hartwig reactions, we cannot fully exploit histor-
ical data to predict more recent contexts, and it is likely that
this is true for other reaction classes. On the other hand,
from a chemical perspective, models based on historical
data can be useful in some contexts, and older contexts
might be as chemically effective as newer ones. To assess if
alternative contexts predicted by the models can work in
the laboratory is outside the scope of a modelling study like
this, and can anyway only be truly evaluated with extensive
experimentation. A potential avenue for future research is
to augment the data driven-approach used herein with
physics-based descriptors such as reactivity to develop
models that can provide other types of recommendations.
Nevertheless, we believe that the findings presented herein
will be a template for creating models for other types of
reactions. Although extra attention to the data and periodic
re-trained is required, we envisage that such models will be
useful in future synthesis planning.
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