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Abstract

Current USFDA and EMA guidance for drug transporter interactions is depen-

dent on IC50 measurements as these are utilized in determining whether a clinical

interaction study is warranted. It is therefore important not only to standardize

transport inhibition assay systems but also to develop uniform statistical criteria

with associated probability statements for generation of robust IC50 values, which

can be easily adopted across the industry. The current work provides a quantita-

tive examination of critical factors affecting the quality of IC50 fits for P-gp inhibi-

tion through simulations of perfect data with randomly added error as commonly

observed in the large data set collected by the P-gp IC50 initiative. The types of

errors simulated were (1) variability in replicate measures of transport activity;

(2) transformations of error-contaminated transport activity data prior to IC50

fitting (such as performed when determining an IC50 for inhibition of P-gp based

on efflux ratio); and (3) the lack of well defined “no inhibition” and “complete

inhibition” plateaus. The effect of the algorithm used in fitting the inhibition

curve (e.g., two or three parameter fits) was also investigated. These simulations

provide strong quantitative support for the recommendations provided in Bentz

et al. (2013) for the determination of IC50 values for P-gp and demonstrate the

adverse effect of data transformation prior to fitting. Furthermore, the simula-

tions validate uniform statistical criteria for robust IC50 fits in general, which can

be easily implemented across the industry. A calibration of the t-statistic is pro-

vided through calculation of confidence intervals associated with the t-statistic.

Abbreviations

A>B, apical-to-basolateral transport; B>A, basolateral-to-apical transport; Caco-2,

human colon adenocarcinoma cells; DDI, drug–drug interaction; LLC-PK1-MDR1,

Lilly Laboratories Cells – Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA;

MDCKII-MDR1, Madin–Darby canine kidney cells transfected with MDR1 cDNA; P-

gp, P-glycoprotein, also often referred to as MDR1 or ABCB1; RMSE, root-mean-

square error.

Introduction

Membrane transporters, such as P-glycoprotein (P-gp),

play critical roles in the absorption and excretion of

drugs, and their distribution to various physiological

spaces. For multidrug transporters like P-gp, the broad

range of transported substrates leads to the possibility of

competitive inhibition that may result in clinically signifi-

cant drug–drug interactions (DDIs) (Schwarz et al. 2000;

Juan et al. 2007; Fenner et al. 2009; Shirasaka et al.

2010). In the drug transporter area, the potential for inhi-

bition is commonly assessed via the determination of an

in vitro IC50 value. Regulatory guidance on the investiga-

tion of DDIs contain decision trees/recommendations on
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whether a clinical DDI study is warranted which are

based on the IC50 value in combination with clinical drug

concentrations. To assess the risk of a P-gp mediated

DDI, both measured plasma concentrations and a theo-

retical maximal concentration in the intestinal lumen are

considered. Several different decision criteria have been

proposed to assess the DDI risk for the P-gp substrate

digoxin based on different experimental systems and sta-

tistical approaches (Cook et al. 2010; Sugimoto et al.

2011; Agarwal et al. 2013). There is a clear need for stan-

dardization of the IC50 determination for inhibition of P-

gp (Zhang et al. 2008; Agarwal et al. 2013; Bentz et al.

2013). Both P-gp-expressing cell lines and P-gp-contain-

ing plasma membrane vesicles have been used to estimate

IC50 values for inhibition of P-gp-mediated transport. In

addition, transport inhibition data obtained using polar-

ized cell lines is typically transformed before IC50 estima-

tion. Several different data transformations are in use,

which are based on efflux ratio, net secretory flux, or uni-

directional flux (Tang et al. 2002; U.S. FDA/CDER 2006,

2012; Kalvass and Pollack 2007; Balimane et al. 2008;

Lumen et al. 2010).

A consortium of 22 pharmaceutical and contract

research laboratories and an academic institution estab-

lished a collaboration to assess interlaboratory differences

in P-gp IC50 values resulting from these methodological

differences (Bentz et al. 2013; Ellens et al. 2013). Among

the members of the consortium, P-gp-expressing polar-

ized cell lines were the most frequently used experimental

system. The cells lines included human colon adenocarci-

noma cells (Caco-2), Madin–Darby canine kidney cells

transfected with MDR1 cDNA (MDCKII-MDR1), and

Lilly Laboratories Cells – Porcine Kidney Nr. 1 cells trans-

fected with MDR1 cDNA (LLC-PK1-MDR1). The sub-

stantial lab-to-lab variability in IC50 values observed by

consortium members most likely resulted from differences

in P-gp expression levels and possibly in expression levels

of a digoxin uptake transporter in the cell systems used.

It was also found that IC50 values based on efflux ratios

were typically lower than those based on unidirectional flux

and noted that data transformation results in propagation

of error. Therefore, a recommendation was put forward to

determine P-gp IC50 values for digoxin transport based on

unidirectional B>A flux only, without data transformation

prior to IC50 fitting (in this case subtraction of transport in

the presence of a positive control inhibitor) to minimize

propagation of error (Bentz et al. 2013).

One of the problems faced by the consortium was deter-

mining the extent to which differences in the quality of the

transport inhibition data accounted for differences in IC50

values, rather than differences in experimental systems and

data transformations. Members of the IC50 consortium ini-

tially used the standard error of the IC50 (SEIC50) estimate

to assess the quality of fits. This was problematic for two

reasons. First, estimates of the IC50 for a single data set var-

ied when estimated with different software packages. Some

software estimated the standard error of the IC50, others

the standard error of the log(IC50) (recall that these cannot

be interconverted by taking logs). Even among packages

that estimated standard errors for the log(IC50), the esti-

mate of the IC50 could vary several fold, presumably

because different packages used different methods to calcu-

late the variance of the log(IC50) estimate, which is a

derived quantity (see Data S1 eqs. A1–A4). Second, given
this variability, there was no clear criterion that could be

used to distinguish good from poor data.

In Bentz et al. (2013), a t-statistic was developed to

objectively assess when data quality (variability in mea-

surements, insufficient range of inhibitor concentrations,

or other factors that confound a sigmoidal profile) limits

the interpretation of estimated IC50 values. This statistic

was calibrated through visual inspection of logistic IC50

fits of untransformed data by members of the P-gp IC50

consortium and all fits with a t-statistic value below a

fixed threshold were judged of poor quality and excluded

from further analysis.

In this manuscript, that t-statistic calibration is further

supported by quantitative simulations of commonly

observed error (as in the data in Bentz et al. 2013) added

to error-free data and evaluation of the effect of that

error on the confidence in the IC50 estimate. The authors

simulated the sensitivity of IC50 estimates to (1) measure-

ment errors (variability in replicate measures of transport

activity), (2) transformation of error-contaminated trans-

port activity data prior to IC50 fitting, (3) lack of clearly

described “no inhibition” and/or “complete inhibition”

plateaus, and (4) algorithms used in fitting the data (e.g.,

two and three parameter fits). These simulations provide

strong quantitative support for the recommendations pro-

vided in Bentz et al. (2013) for the determination of IC50

values for P-gp and demonstrate quantitatively the

adverse effect of data transformation prior to IC50 fitting

(both calculation of efflux ratios or subtraction of inhibi-

tion in the presence of a positive control inhibitor) on

the robustness of the IC50 value. Furthermore, the simula-

tions validate uniform statistical criteria for robust IC50

fits in general (not just for P-gp), which can be easily

implemented across the pharmaceutical industry.

Materials and Methods

Computations

Unless specifically noted, all calculations, including statis-

tics, were performed using a 64-bit installation of MAT-

LAB Version 7.11 (Release 2010b).
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Statistics

Logistic regressions (logistic fits), parameter, and standard

error estimates were fitted using nonlinear least squares

regression from MATLAB’s statistics toolbox. Standard

errors of log(IC50) estimates were calculated as recom-

mended by Lyles et al. (2008). Linear least squares regres-

sions were performed using MATLAB (Quinn and Keough

2002; Press et al. 2007). Analysis of variance (ANOVA) and

analysis of covariance (ANCOVA) were calculated via gen-

eral linear models (Rao 1998; Quinn and Keough 2002).

Monte Carlo simulations of error sensitivity

Ideal error-free IC50 curves were simulated for inhibition of

digoxin transport in basolateral-to-apical (B>A) and api-

cal-to-basolateral (A> B) transport directions by increasing

concentrations of verapamil. The simulations used the ele-

mentary rate constants (on-, off-, and efflux rate constants)

determined for digoxin and verapamil in MDCKII-MDR1

cells obtained from the Netherlands Cancer Institute

(Lumen et al. 2013). In all simulations, it is assumed that

P-gp is the only transporter involved in transport of

digoxin across the monolayer, that is, digoxin uptake trans-

porters are not included as part of the simulation. This

assumption does not affect the conclusions of this work.

Figure 1A shows the simulated error-free IC50 curve for

transport inhibition of 10 lmol/L digoxin in the B>A
direction after 2 h for 18 verapamil concentrations using

the kinetic parameters and model given in Lumen et al.

(2013). Error-free transport activity was then interpolated

from the ideal curve at 7, 9, 11, or 15 inhibitor concentra-

tions spaced evenly on a logarithmic scale (constant ratio

between adjacent concentrations). Seven inhibitor concen-

trations was the most common number used in the data set

analyzed in Bentz et al. (2013). Random errors were added

to this ideal, error-free data set by Monte Carlo simula-

tions. Each data set with added error consisted of triplicate

repeats at each inhibitor concentration, as was the norm

for data sets analyzed in Bentz et al. (2013).

Measurement errors (variability in replicate
measures of transport activity)

To analyze the two most common types of errors that were

observed in Bentz et al. (2013), we added simulated errors

to the ideal transport data in order to assess their effects.

Two types of random errors were added to the ideal trans-

port data to mimic types of variability seen in the data ana-

lyzed in Bentz et al. (2013). First, to simulate measurement

errors, normally distributed random errors were added to

each transport activity measurement, that is, to transport

activity measured at each inhibitor concentration. This is

referred to as “homogeneous error.” Standard deviations

for this error ranged from 0% to 30% of the full scale devi-

ation (difference between transport activity without inhibi-

tor and with P-gp fully suppressed). IC50 curves were

simulated with three levels of error (2%, 10%, and 20%)

added to each of the inhibitor concentrations. The magni-

tude of this “homogeneous error” varied widely in the data

analyzed by Bentz et al. (2013), but averaged around 10%

of the full range of transport activities. A second type of

error was used to simulate situations where all replicates at

a particular inhibitor concentration significantly departed

from the fitted sigmoid curve – so the mean activity for that

concentration of the inhibitor fell noticeably above or

below the sigmoid curve. This is referred to as “heteroge-

neous error.” In this case, in addition to the homogeneous

errors described earlier, all activities at particular inhibitor

concentrations were perturbed by an additional error with

standard deviation equal to 15% of the full scale deviation

(as found in the data collected in Bentz et al. 2013). This

was done at randomly chosen inhibitor concentrations with

the probability that any particular inhibitor concentration

would be chosen equal to 25% (approximately the inci-

dence of such problems in the empirical data). Ten thou-

sand simulated data sets were created for each level of error

and number of inhibitor concentrations (7, 9, 11, or 15).

Transformation of transport activity prior
to IC50 fitting

IC50 is usually estimated via the classic Hill equation

Act ð½inhib�Þ ¼ Act1 þ Act0 � Act1

1þ ½inhib�
IC50

� �b ; (1)

where Act([inhib]), activity measured at a particular inhibi-

tor concentration; Act∞, activity when P-gp is completely

inhibited (positive control); Act0, activity measured in

absence of inhibitor (negative control); b, slope factor or

Hill coefficient; [inhib], the concentration of the inhibitor.

Lyles et al. (2008) argue that the Hill equation is most

easily estimated by fitting a maximum-likelihood, nonlin-

ear logistic to [inhib] and Act[inhib]. The following logistic

equation, a transform of equation (2), was used in Bentz

et al. (2013) and in the current work:

Act ð½inhib�Þ ¼ Act1 þ Range

1þ expðaþ b lnf½inhib�gÞ ; (2)

where Range, Act0 � Act∞; ln{IC50} = �a/b.
This approach requires four parameters to be fit (a, b,

Act∞, Range), but if Act∞ and/or Range can be treated as

known, the number of fitted parameters can be reduced

to three or two. Ln is the natural logarithm.
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Each of the 10,000 simulated error-contaminated trans-

port activity versus inhibitor concentration curves were fit

to a logistic model (eq. 2) using two parameter (a and b)
and three parameter (a, b, and range) fits. As in Bentz et al.

(2013), Actmin (=Act∞) was normalized to zero at the lowest

mean transport activity at any inhibitor concentration

(nearly always with the positive control inhibitor of P-gp).

For two parameter fits, transport activities were normalized

to a 0–1 scale, that is, with Act∞ = 0 and Range = 1. Thus,

equation (2) for a two parameter fit the model becomes
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Figure 1. “Ideal” noise-free B>A digoxin transport activity fitted using estimated transport parameters (Lumen et al. 2013) for MDR1-MDCK-NKI

cells and 18 concentrations of verapamil as a transport inhibitor (A). Parameters used here assumed that no digoxin transporters other than P-gp

were active. Similar curve for A>B transport was generated but is not shown. “Homogeneous” random errors are added to each of three

replicate “measurements” at each of seven inhibitor concentrations (B). Three levels of error (standard error/range) are illustrated with the noise

standard error set to 2%, 10%, and 20% of the transport activity difference between the two plateaus.
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Actð½Inhib�Þ ¼ 1

1þ expðaþ b � lnf½inhib�gÞ (3)

yielding

lnfIC50g ¼ �a=b (4)

Standard errors of fitted parameters were calculated as

maximum-likelihood estimates, the most commonly used

method for nonlinear regressions. Because ln{IC50} was a

function of two fitted parameters (eq. 4), we estimated

the standard error of ln{IC50} using the multivariate delta

method (Faraway 2006; Bolker 2008; see also Data S1).

All natural logarithms were converted to log base 10 for

presentation here and log will mean log base 10. For data

in Bentz et al. (2013), most laboratories used two or three

parameter fits, thus we concentrate here on those models.

Transformation of transport activity prior
to IC50 fitting

To assess the effect of data transformations on the quality

of the IC50 fit, three transformations were selected which

represented the major classes of transformations (Choo

et al. 2000; Tang et al. 2002; U.S. FDA/CDER 2006, 2012;

Balimane et al. 2008; Lumen et al. 2010; Bentz et al. 2013).

Unidirectional B [ A Acti;UBA ¼ BAI � BAPoscon

BAnegcon � BAposcon

(5)

Net secretory flux Act i;NSF ¼ BAi � ABi

BAnegcon � ABnegcon
(6)

Efflux ratio ¼ Acti;ER ¼
BAi

ABi
� 1

BAnegcon

ABnegcon
� 1

(7)

In equations (5–7), BA indicates transport activity in

the B>A direction and AB indicates transport activity in

the A>B direction. Subscript “i” indicates the activity

measured at a particular concentration of the inhibitor,

“negcon” indicates activity measured without inhibitor

(maximum P-gp transport activity, Act0 in eq. 2), and

“poscon” indicates activity measured with P-gp fully sup-

pressed (minimum P-gp transport activity, Act∞ in eq. 2).

All transformations were applied to each simulated data

set generated for the error sensitivity analysis above and

their results compared to those for the logistic fit of the

untransformed (native) transport activities.

Simulation of missing data segments

One of the major problems in empirical data encountered

by Bentz et al. (2013) was failure to include (or inability

to measure activity within) important ranges of inhibitor

concentrations. Reasons for this included failure of the pre-

planned range of inhibitor concentrations to include posi-

tive or negative control activity plateaus or the steep linear

portion of the curve, and in some cases, evidence of inhibi-

tor toxicity (Bentz et al. 2013). To simulate this problem,

we divided the 18 inhibitor concentrations in the “ideal”

data set into six segments: a negative control plateau at low

inhibitor concentrations, two negative control “shoulders”

where the inhibitor first clearly affects activity, the nearly

linear portion of the curve surrounding the IC50, a positive

control shoulder as the curve approaches full suppression,

and a positive control plateau where activity is nearly com-

pletely suppressed (Fig. 1A). For these simulations, each of

the shoulders included only one inhibitor concentration.

Simulated data sets were constructed with errors as above

but with inhibitor concentrations within designated seg-

ments of the curve deleted from the data set. Analyses pro-

ceeded as with the error sensitivity analyses above except

that we used only the inhibitor concentrations from the

ideal data within the included segments.

Figure of merit statistics, ta and tb

In Bentz et al. (2013), the t-statistics, like those provided

by standard linear model routines (like SAS, R, and SPSS

(IBM SPSS Statistics for Windows, Version 22.0. Armonk,

NY: IBM Corp) in reporting regression effects) and used

in Wald tests of linear hypotheses (Quinn and Keough

2002; Fox and Weisberg 2011) were used as “figure of

merit” to evaluate data sets for precision, conformity to

the sigmoid model, and overall quality of the estimated

IC50. In particular, two statistics were developed to assess

the sigmoidicity of the IC50 fits:

ta ¼ â
�
SEa and tb ¼ b̂

�
SEb (8)

where â, the fitted estimate of a in equation (3); b̂, the fit-
ted estimate of in equation (3); SEa, standard error for the

estimate of a; SEb, standard error for the estimate of b.
To present a single statistic summarizing both values,

tab was estimated

tab ¼ ffiffiffiffiffiffiffi
tatb

p
: (9)

Because the software used by many pharmaceutical profes-

sionals to perform nonlinear logistic fits does not allow ready

access to either a or SEa, while b and SEb are readily avail-

able, the use of a statistic based on tb alone was also investi-

gated. To evaluate whether these statistics correlated well

with important characteristics of the fits, tab, ta, and tb values

for all of the simulated data sets were determined. The rela-

tionship of the tab statistics to errors in the parameter esti-

mates (a or b), the standard error of the IC50, and the root-

mean-square error (RMSE) for the logistic fit was evaluated.

ª 2014 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

2014 | Vol. 3 | Iss. 1 | e00078
Page 5

M. O’Connor, et al. Confidence Intervals for IC50 Fits



The use of these t-statistics as a figure of merit for a

logistic fit assumes that the value of the parameter (a or

b), and hence the value of the t-statistic should be some-

thing other than zero, (eq. 8, 9). When the concentration

of the inhibitor is expressed in lmol/L, and the IC50 can

be close to 1 lmol/L, then the log(IC50), a, and ta can all

be close to zero. Thus, all fits were done with the concen-

tration of the inhibitor expressed as mol/L, and the value

of the IC50 transformed for presentation. If one uses ta or

tab, this procedure is necessary. The values of b and tb do

not depend on how the inhibitor concentration is

expressed. Thus, if one uses tb as a figure of merit, the

re-expression of the inhibitor concentrations is unnecessary.

Example calculations of t-statistics

A two parameter logistic fit to a randomly chosen IC50

data set returned the values of a and b and their standard

errors shown in Table 1. Also shown are the calculated

values for the ln{IC50} values (in the units of inhibitor

concentration used in the fit), ta, tb, and tab.

Results

A fraction of the transport inhibition curves collected by

the P-gp IC50 initiative contained problematic data and the

associated IC50 values were consequently excluded from fur-

ther data analysis. Several types of experimental error affected

the quality of the IC50 fit: experimental variability in the

transport measurement at each inhibitor concentration, devi-

ation from the sigmoidal curve of all replicates at a specific

inhibitor concentration and an insufficient inhibitor concen-

tration range, leading to poorly defined “no inhibition” or

“complete inhibition” plateaus. In this work, simulations

were performed to quantitatively assess the effect of the mag-

nitude of the error on the confidence in the fitted IC50

value. The magnitude and frequency of the simulated error

was based on that found in the P-gp IC50 initiative data set.

Sensitivity of fits to random homogeneous
error in the data at each inhibitor
concentration

Figure 1A shows the simulated error-free IC50 curve for

inhibition of digoxin transport in the B>A direction.

Error-free transport activity was interpolated from this

ideal curve at seven inhibitor concentrations spaced

evenly on a logarithmic scale (constant ratio between

adjacent concentrations). These ideal data were fitted to a

logistic IC50 equation (IC50 = 1.63 lmol/L). Figure 1B

shows the effect of adding random homogeneous error to

the transport measured at each of the seven inhibitor

concentrations by Monte Carlo simulation as described in

the Materials and Methods section. A total of 10,000 dis-

tinct inhibition curves with added error were generated

for each level of added error with a few examples illus-

trated in Figure 1B. Each of these 10,000 curves was fitted

to a two and three parameter model and IC50 values and

slope factors determined. For each of the fits the conven-

tional statistical parameters were calculated (standard

error of the IC50 and RMSE and correlation coefficient,

r2, of the fit), as well as the novel t-statistic parameters

tab, ta, and tb. Most of the simulations described in this

work were performed with seven inhibitor concentrations,

as was the case in Bentz et al. (2013). In some cases a lar-

ger number of inhibitor concentrations was used for com-

parison (see Data S1).

All three potential t-statistic parameters (tab, ta, and tb)

for the IC50 fits of the simulated data were highly corre-

lated with one another; minimum r2 > 0.99995 for two

parameter fits. For three parameter fits the r2 value for

the relation between tab and tb fell as low as 0.98, because

of a small number of cases where the algorithm overesti-

mated the range (eq. 2) and tb differed from tab. Thus,

especially for two parameter fits, aside from computa-

tional convenience (as indicated in the Materials and

Methods section), there is little reason to prefer one mea-

sure over the others. In this work we have presented tab
as t-statistic, but ta and tb gave equivalent results.

Figure 2 shows that adding random homogeneous

error to each transport measurement increased the devia-

tion in estimates of both the log{IC50} (Fig. 2A) and the

slope factor of the IC50 relationship (Fig. 2B) from the

ideal value estimated from error-free data (represented by

the value “0” on the respective y-axes). For most values

of tab (tab > 2) that deviation was centered on the ideal

IC50 and slope values estimated from the error-free data.

Larger introduced homogeneous errors were also associ-

ated with larger standard errors in the fitted log{IC50}
and larger RMSE (standard error of the residuals) and

Table 1. Example of calculation of t-statistics.

Parameter a SEa b SEa ln{IC50} (mol/L) ta tb tab

Definition IC50 locator

equation (2)

Standard error

of a estimate

equation (8)

Slope factor

equation (1)

Standard error

of b estimate

equation (8)

�a/b

equation (2)

a/SEa
equation (8)

b/SEb
equation (8)

sqrt{tatb}

equation (9)

Example 11.3 0.756 0.9 0.0599 �12.54 14.95 15.05 15.00
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thus smaller r2 (correlation coefficient) of the fit (Data

S1).

In the error sensitivity simulations, tab was smoothly

and monotonically related to the magnitude of the intro-

duced random homogeneous error at each inhibitor con-

centration (SE/range, or % SE). Figure 2 shows that for

both the log{IC50} and the slope factor, the greater the

introduced error, the greater the deviation from the ideal

log{IC50} or slope value and the lower the value of tab.

tab was also smoothly and monotonically related to the

standard error for each estimated IC50 and RMSE and r2

for the fit (Data S1).

Relationship between tab and the confidence
in the IC50 value: effect of the magnitude of
the error on the confidence interval

Figure 3 shows the simulated probability distributions for

the error in the IC50 for several values of tab determined

utilizing a kernel-based technique (Martinez and Martinez

2007). For a tab value of 7, there is a slightly greater than

95% probability that the fitted IC50 is within twofold of

the true IC50. For a tab value of 5, there is a slightly greater

than 95% probability that the fitted IC50 is within threefold

of the true IC50. For a tab of 3, the probability that the fit-

ted IC50 is within threefold of the true IC50 is 90%.

Sensitivity of the IC50 fits to
transformations of transport activity data
prior to IC50 fitting

Several mathematical transformations of transport activity

data have been used (reviewed in Balimane et al. 2008 and

in Lumen et al. 2010). Analyses in Bentz et al. (2013) sug-

gested that these activity transformations fell into three

empirically defined groups, with results from different

members of the same group yielding highly correlated

results. Thus, one member of each of the three groups was

examined, equations (5–7). In equation (5), unidirectional

B>A transport activity is calculated by subtracting B>A
transport in the presence of a prototypical P-gp inhibitor

from B>A transport in the absence of inhibitor. In equa-

tion (6), net secretory transport is calculated by subtract-

ing transport in the A>B direction from that in the B>A
direction. In equation (7), transport activity is expressed

as the efflux ratio by dividing B>A transport with A>B
transport. In each case, the transport activity at the vari-

ous inhibitor concentrations is then expressed as a fraction

of transport activity in the absence of inhibitor. The IC50

fit is then performed on this transformed transport activity

versus inhibitor concentration data curve.

To investigate the effect of data transformation prior to

IC50 fitting on the quality of the IC50 fit, transport
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Figure 2. Relation of tab to deviation of log(IC50) of error-contaminated data from the ideal value of the logIC50 (A), and the slope (b) parameter

from equation (2) (B). For error-contaminated data 10,000 simulated data sets were created for each value of added error (standard error/range).

All data sets shown here used seven equally spaced values of log{[inhibitor]}.
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activity was calculated for 10,000 simulated data sets

according to each of the three transport inhibition equa-

tions. For the net secretory transport and the efflux ratio

equations simulations in both B>A and A>B direction

were required. The tab was calculated for each of the fit-

ted IC50 values and compared with the tab obtained for

logistic fits of untransformed data (eq. 3). The line of

unity in Figure 4 indicates identical tab values for fits per-

formed on untransformed and transformed data. The dots

falling below this line indicate a lower tab for the fits per-

formed on transformed data. The different colors repre-

sent different levels of simulated homogeneous error. The

unidirectional B>A transformation (Tang et al. 2002)

yielded tab values similar to, but slightly smaller than, the

native fit (Fig. 4A). Errors in estimated log{IC50} were

very slightly, but significantly (via ANCOVA and paired t

test), larger than those using the same data sets via native

fit (Fig. 5). The net secretory flux (Choo et al. 2000) and

efflux ratio (Balimane et al. 2008) transformations yielded

noticeably lower tab values (Fig. 4B and C) and signifi-

cantly larger (and more variable, ANCOVA, paired t-test)

errors in estimated log{IC50} (Fig. 5), than native logistic

fits using the same data sets. Interestingly, the net secre-

tory flux transformation yielded a larger tab statistic than

the native logistic fits in a small minority of cases, how-

ever, since the vast majority of fits had smaller tab statis-

tics, we did not further investigate. The efflux ratio

(eq. 7) transformation yielded almost uniformly, and sig-

nificantly, smaller tab statistics values.

Sensitivity of heterogeneous error
to deviation from sigmoidicity

As described earlier, adding random homogeneous error

to ideal data at all inhibitor concentrations lead to a

broader range of log{IC50} and slope estimates and smal-

ler t-statistics (Fig. 2), as well as larger SE for the Log

IC50 and RMSE values for the fits. Another relatively

common observation in the empirical data collected in

Bentz et al. (2013) was deviation from sigmoidicity of all

replicates at a particular inhibitor concentration (hetero-

geneous error, exemplified by replacement of red symbols

by blue symbols at two inhibitor concentrations in

Figure 6).

Figure 3. Relationship between the maximum fold error of the fitted IC50 value, the confidence interval that the maximal fold error is less than a

certain value, and the tab for the IC50 fit.
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Figure 7 compares the effect of homogeneous error at

each inhibitor concentration alone to the presence of both

homogeneous and heterogeneous error on the IC50 esti-

mate and tab. For each error type, 10,000 simulated data

sets were generated for each value of added error (SE/

range) as shown in the box plots (Fig. 7). Box plots in

red give distribution of values from simulated data sets

when homogeneous error alone is added to the transport

measurement at each inhibitor concentration. The blue

box plots represent addition of homogeneous error as

described earlier plus heterogeneous error at 25% of

inhibitor concentrations chosen at random. Both types of

error had similar effects, that is, increased variance in

IC50 (Fig. 7A) and decreased tab as the magnitude of the

error increased (Fig. 7B). The effect of heterogeneous

error (deviation from sigmoidicity) is most obvious when

homogeneous error was small (e.g., SE/range of 0.02). As

homogeneous error becomes large, it obscured the effects

of the heterogeneous error (e.g., SE/range of 0.2).

Sensitivity of error contaminated fits
to missing segments of the IC50 curve

Another observation from the data collected in Bentz et al.

(2013) was sparse data to describe “no inhibition” or “com-

plete inhibition” plateaus. This scenario was simulated by

removing different data segments (inhibitor concentra-

tions) from the error-contaminated data. According to Fig-

ure 1A, the sigmoidal curve is divided into six sections

from left to right: negative control plateau, negative control

shoulder 1 and 2, linear segment, positive control shoulder,

positive control plateau. A six digit binary code identifies

which segments are included in the IC50 curve (1 included,

0 excluded). The simulations were performed for ideal data

with homogeneous error added to each measurement (for

SE/range of 0.05) and added deviation from sigmoidicity

(heterogeneous error) at 25% of inhibitor concentrations

(this case is also one of the simulated scenarios in Figure 7:

blue box plot for SE/range of 0.05).
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Figure 4. Comparison of tab obtained using data transformation equations (eq. 5–7) to tab obtained using native two parameter logistic fits using
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Figure 5. Comparison of absolute value of estimation error

(mean � 95% confidence interval) in log{IC50} estimates using data

transformation equations (eq. 5–7) and native two parameter logistic

model fit on the same data sets with varying levels of added random

error for each measurement (SE/range). Estimation error = estimate �
log{IC50} from ideal, noise-free data.
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Eliminating points in the nearly linear segment span-

ning the IC50 (the scenario on the extreme right in Fig-

ure 8) led to a large increase in the variance of the

estimated IC50 values among replicate simulations, but no

shift in the average log{IC50}. In contrast, eliminating

lower inhibitor concentrations lead to systematic errors in

log{IC50}. When segment 1, segment 1 and 2, or segment

1, 2, and 3 were missing, the log{IC50} was overestimated

by approximately 1.5-, two-, and threefold on average,

respectively (Fig. 8A). For each of these scenarios, these

IC50 values were significantly different from each other

(P < 0.0001 by Tukey post hoc comparisons after ANOVA).

Eliminating the negative control plateau and shoulders

also led to an underestimation of the negative control

transport activity (Fig. 8B). The estimated log{IC50} was

strongly correlated (r2 = 0.77, P < 0.0001) with the esti-

mated transport activity at the negative control plateau,

indicating that the underestimation of the negative control

plateau value results in misestimation of the IC50 value.

Removing the positive control plateau and/or shoulder

had little effect on the estimated IC50 in our simulations

(Fig. 8). The different sensitivity of the log{IC50} estimate

in this scenario was associated with different effects on

estimated activity at the positive versus negative controls.

Omitting the positive control plateau and shoulders did

not increase the estimated minimum transport activity

(data not shown). Because all laboratories reporting data

for Bentz et al. (2013) used and reported a separate positive

control that completely inhibited P-gp transport, mini-

mum transport at high inhibitor concentration could still

be estimated even when those high inhibitor concentra-

tions were not included in the fit. Our fitting routines in

Bentz et al. (2013) took advantage of this information to

set the minimum activity. The simulations have been per-

formed similarly. Hence, omitting the positive control

(and shoulder) did not affect the minimum estimated

transport activity or the IC50 estimate. Consequently, the

estimated log{IC50} was poorly correlated (r2 = 0.01) with

the estimated transport activity at the positive control pla-

teau. All data in Figure 8 used a small homogeneous mea-

surement error added to each simulated activity (SE/

range = 0.05) as well as heterogeneous error added to

25% of the inhibitor concentrations. Larger values of ran-

dom homogeneous error added to the data produced

more variability in the IC50 estimate (Data S1).

The effect of missing data segments was one of the few

ways in which two parameter (a, b) and three parameter

(a, b, range) logistic estimates of IC50 differed strongly.

For two parameter fits, omitting data at the lowest inhibi-

tor concentrations (negative control plateau and shoul-

ders) lowered the maximal transport activity and hence

overestimated IC50 (Fig. 9). In contrast, for three parame-

ter fits omitting lower inhibitor concentrations increased

maximum transport activity estimated by the logistic

model and underestimated IC50 (Fig. 9). Both effects were

large compared to those seen in two parameter fits.

Figure 6. Example of simulated data set created by adding noise to idealized data. Homogeneous error, with SE = 10% of full range, is added

to each of three replicate “measurements” at each inhibitor concentration (red data points). Heterogeneous error is added to 25% of the points

(blue data points, here at inhibitor concentrations 0.8 and 20 lmol/L), by shifting all three data points up or down by 15% of the full range,

simulating problems with measurement at that concentration.
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Discussion

A challenge faced by the P-gp IC50 consortium was the

variable quality of data generated by participating labora-

tories. The t-statistic was developed in Bentz et al. (2013)

as an objective statistical tool to eliminate data sets of

poor quality. That statistic was calibrated based on visual

inspection of IC50 curves. The simulations conducted

herein explore factors that play a significant role in esti-

mating robust IC50 values such as (1) measurement error,

(2) transformations of transport activity data prior to

IC50 fitting, (3) segments of the fit missing from the data,

and (4) the use of two or three parameter logistic models.

Furthermore, in this work the t-statistic is validated by

comparing it with traditional estimators of the quality of

fit. Finally, calibration of the t-statistic (beyond visual

inspection of IC50 curves) is provided here through calcu-

lation of associated confidence intervals.

The data quality issues encountered in the P-gp IC50

initiative highlighted the need for a simple measure of the

quality of fit that can be applied uniformly across the

pharmaceutical industry. With this criterion in mind, tra-

ditional estimators of the quality of fit such as the sum

squared error and RMSE were rejected because of their

dependence on units of the x- or y-axes of the inhibition

curve (inhibitor concentration or transport activity,

respectively), dependence on scale such as ln{IC50}, log
{IC50}, or IC50, dependence on the number of fitted

parameters (two, three, or four parameter fits will return

different r2 for fits for the same data) or because of

uncertainty of how the estimate was calculated in differ-

ent packages, for example, SE(IC50). The t-statistic does

not depend on how the data are expressed (units of

inhibitor concentration, use of full range of probe sub-

strate transport versus setting that range to between 0

and 1) and can therefore be easily implemented as a uni-

form quality criterion for IC50 fits across the pharmaceu-

tical industry.

The rationale in synthesizing the t-statistics presented

herein was that they were related to standard Wald test
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Figure 7. Effects of added error on estimated IC50 (A, ideal value = 1.637 lmol/L) and tab (B). Box plots in red give distribution of values from

10,000 simulated data sets for each magnitude of added error (standard error/range) when homogeneous error is added to each measurement.
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statistics as supplied in R, Splus, and SAS to test statistical

significance of the fitted parameters, and focused on two

parameters (a, b) that determine log{IC50}. Because some

of the software packages used to fit logistic models do

not provide “a” nor its standard error, a statistic based

exclusively on b was also evaluated. The simulations

showed that tab was very highly correlated with tb except

in a few cases of three parameter fits with tab < 5 (data

not shown). Thus, for two parameter fits, there is no sta-

tistical reason to prefer tab or tb and the choice of statistic

can be made based on convenience.

Both tab and tb were monotonically, smoothly, and

tightly correlated with other measures of fit quality

including the potential range of errors in log{IC50} and

slope factor among simulations (Fig. 2A and B), RMSE,

r2, and the estimated standard error of log{IC50} for any

given fit (Data S1), and the likelihood of errors in IC50

estimates (Fig. 3). Note that a small value of tab increased

the variance of log{IC50} estimates (decreased precision

of the estimate, Figure 2A and Data S1) and therefore the

probability of an error of a specified size (Fig. 3). How-

ever, the average or expected (systematic) error stayed

small (Data S1).

Random error added to the ideal data degraded the

precision of estimates of both log{IC50} and the slope (b)
(Fig. 2A and B), and caused deterioration in all measures

of the quality of the fit including the root mean square

error (RMSE), the predicted standard error of the log

{IC50} estimate, and tab (Data S1). When the added error

exceeded 20% of the full range of transport values (SE/

range equals 0.2), or when tab fell below 3–5, variance in

estimates increased rapidly and the quality-of-fit statistics

deteriorated (Fig. 2 and Data S1). For a tab value of 7,

there is a 95% probability that the estimated IC50 value is

within twofold of the true value (Fig. 3).

For the determination of IC50 values for inhibition of

P-gp-mediated transport, transport activity is typically

transformed prior to performing the IC50 fit. Several dif-

ferent data transformations are in use. The unidirectional

B>A transport transformation, the simplest of the three

evaluated in this work (eq. 5), divides each activity level

(minus the minimum activity) by the entire dynamic

range of transport activity. This transformation performed

nearly as well as the native (untransformed) logistic fit.

The tab was only slightly smaller (Fig. 4A) and the errors

in log{IC50} were slightly larger and more variable

(Fig. 5) than the values obtained with the untransformed

data.

The other two transformations (net secretory flux and

efflux ratio, eq. 6 and 7) are more complicated and incor-

porate both B>A and A>B transport. In the net secretory

flux transformation (eq. 6), A>B transport is subtracted

from B>A transport, while the efflux ratio transformation

(eq. 7) uses the ratio of the two. In both transformations,

the activity at each inhibitor concentration is then divided

by the dynamic range. In the simulations performed in

this study, both transformations were associated with lar-

ger and more variable errors in log{IC50} estimation

(Fig. 5) and smaller tab values than the native logistic fit

(Fig. 4B and C). In short, there is no reason to prefer any

of the three activity transformations to native logistic

regression in the setting of any of the errors simulated

herein. For laboratories participating in Bentz et al.

(2013), A>B transport of digoxin was substantially lower

than B>A transport, but without a proportionate decrease

in measurement error. Thus, it appears likely that inclu-

sion of the noisier A>B transport was responsible for the

relatively poor performance of the fits using data pre-

pared with those transformations. Errors for efflux ratios

in particular can be large due to small A>B values in the

denominator.

One of the common problems identified for data sets

in Bentz et al. (2013) was an insufficient number of data

points at either of the plateaus of the inhibition curve.

The consortium elected to use six inhibitor concentra-

tions in addition to a no inhibitor and positive inhibitor

control to manage the resources required to generate this

data set. Since IC50 values for the selected inhibitors were

published, these values could serve as a reference point

for choosing an appropriate inhibitor concentration

range. Due to the unanticipated wide range in IC50 val-

ues, the concentration ranges chosen based on published

IC50 values were not always optimal.

Simulations revealed that (1) omission of inhibitor

concentrations at the negative control plateau (low inhibi-

tor concentration) could lead to average two- to threefold

overestimates of IC50’s even with random homogeneous

error smaller than that typically seen in data analyzed by

Bentz et al. (2013) and (2) those misestimations corre-

sponded to underestimation of the transport activity at

the missing plateau (Fig. 8). When the maximal transport

activity at the plateau was not represented in the data set,

the algorithm for two parameter logistic fits underesti-

mated activity at the plateau, lowering estimated activity

at the IC50, and thus overestimating the IC50. The con-

verse did not occur at the positive control (high inhibitor

concentration) plateau because labs participating in Bentz

et al. (2013) used separate positive controls that fully sup-

pressed P-gp transport activity.

In the data used for Bentz et al. (2013), most laborato-

ries used six inhibitor concentrations, no-inhibitor con-

centration, and the separate positive control mentioned

earlier. As mentioned earlier, the intermediate six inhibi-

tor concentrations often failed to approach the plateaus,

and sometimes missed the central, linear portion of the

curve, compelling Bentz et al. (2013) to recommend
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increasing the number of inhibitor concentrations

employed to construct an inhibition curve to 8–12. One
alternative strategy for highly soluble compounds is to do a

“dose ranging” trial with inhibitor concentrations running

from 0.001 to 1000 lmol/L with 109 steps in inhibitor

concentration to find a preliminary IC50. One could then

use 4–6 intermediate inhibitor concentrations around the

putative IC50 to pin down the linear part of the curve.

The simulations showed that either two or three

parameter models performed similarly for fitting IC50 val-

ues as long as the magnitude of the added error was rela-

tively small (SE/range < 0.02) and all important segments

of the inhibition curve were represented in the data. With

more measurement noise or missing segments of the

curve, however, three parameter fits yielded log{IC50}
estimates that sometimes deviated strongly from the two

parameter fits (Fig. 9 and Data S1) and tab values

decreased (with ta and tb occasionally diverging from one

another). Thus, the two parameter fits seem more tolerant

and enable generation of IC50 values meeting the tab sta-

tistic criterion.

In Bentz et al. (2013), the cutoff value for the t-statistic

was determined by group consensus after visual inspec-

tion of all fits. Fits with tab < 3 were excluded. For values

of tab > 3 the probability that the IC50 value generated by

an IC50 initiative participant is less than fourfold different

from the true IC50 value for the particular system used is

95%. The actual fold difference observed between partici-

pants in the P-gp IC50 initiative was much greater than

this (with 13 of the 15 inhibitors investigated showing a

difference between highest and lowest IC50 values of at

least 20-fold).

While this work analyzes the variation in the IC50, it

would be desirable to know the variation in the inhibi-

tor’s P-gp dissociation constant KI, which depends on the

intracellular concentration of drug and inhibitor (Lumen

et al. 2010, 2013; Chu et al. 2013; Bentz and Ellens 2014).

Direct measurement of intracellular concentration,

defined as the cytosolic concentration of free unbound

compound, is difficult (Chu et al. 2013). Fitting the KI

using transport kinetics requires that the intracellular

concentration be an explicit variable of the kinetic model

(Tran et al. 2005; Sun and Pang 2008; Tachibana et al.

2010; Agnani et al. 2011; Korzekwa et al. 2012; Lumen

et al. 2013; Bentz and Ellens 2014). Fitting the data pub-

lished in Bentz et al. (2013) using the kinetic model in

Lumen et al. (2013) to obtain KI estimates is currently

underway.

In conclusion, the analysis herein provides a quantita-

tive assessment of critical data quality factors that con-

tribute to the reliability of the fitted IC50 value (error in

replicates of transport activity, segments of the inhibition

curve missing from the fit, data transformation prior to

fitting, and two or three parameter fits). Furthermore, a

t-statistic was calibrated (tab or tb) to provide a measure

of confidence in the fitted IC50 value. Since IC50 values

are used in conjunction with drug concentrations to

assess the risk of a DDI, it is important to provide a sta-

tistical measure of the confidence in the value of the IC50.

The statistic based on SEb is easily available in common

software packages and is estimated similarly in different

software packages, unlike the standard error of the IC50

estimate. Therefore, tb can be easily implemented as a

uniform statistical criterion for IC50 fits across the phar-

maceutical industry. A tab or tb of 7 is required for 95%

probability that the fitted IC50 value will be within two-

fold of the true value.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. Appendix on technical results.

Figure S1. Relation of tab to the standard error of the log

(IC50) estimate for each data set (Lyles et al. 2008, A),

and the root mean square error (standard error of the

residuals, B). All simulations shown here have error

added to each measurement, but no additional errors at

selected concentrations of the inhibitor. For each value of

added error (SE/range), 10,000 simulated data sets. All

data sets shown here used seven equally spaced values of

log([inhibitor]).

Figure S2. Effects of increasing random error (SE/range)

on estimated IC50 and estimated activity at the negative

and positive control plateaus for scenarios with progres-

sively larger range of missing data at the negative control

plateau. A six digit binary code identifies which segments

are included in the plot (1 included, 0 excluded). Seg-

ments left-to-right were negative control plateau, negative

control shoulder 1 and 2, linear segment, positive control

shoulder, and positive control plateau.

Figure S3. Linear regression of average error in log(IC50)

for 10,000 replicate simulations at each combination of

missing segment scenario and error added to idealized

data (SE/range = 0.05, 0.1, 0.2) on average maximum

transport activity(negative control) and minimum activity

(positive control). r2 = 0.998. Blue mesh represents

response surface. Circles represent regression data values

(with stems from data point to the surface – usually too

small to see). Black curves are contours, with heavier

curve at error(log(IC50)) = 0.

Figure S4. The effects of changing number of inhibitor

concentrations on IC50 estimation. (A, B) Mean (and

95% confidence interval) and standard error of error in

IC50 (deviations from logIC50 for ideal data without

error) for simulated data sets with added error (SE of

individual measurements/full activity range). (C, D) esti-

mated transport activity (mean and 95% confidence inter-

val) at negative control (no inhibitor) and positive

control (P-gp fully suppressed) for same simulations as in

A and B. In A, C, and D, when 95% confidence interval

error bars are not visible, they are smaller than the plot

symbol.
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