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Cancer somatic mutations have been identified as a source of antigens that can be
targeted by cancer immunotherapy. In this work, expanding on previous studies, we
analyze the HLA-presentation properties of mutations that are known to drive resistance
to cancer targeted-therapies. We survey a large dataset of mutations that confer
resistance to different drugs and occur in numerous genes and tumor types. We show
that a significant number of them are predicted in silico to be potentially immunogenic
across a large proportion of the human population. Further, by analyzing a cohort of
patients carrying a small subset of these resistance mutations, we provide evidence that
what is observed in the general population may be indicative of the mutations’
immunogenic potential in resistant patients. Two of the mutations in our dataset had
previously been experimentally validated by others and it was confirmed that some of their
associated neopeptides elicit T-cell responses in vitro. The identification of potent cancer-
specific antigens can be instrumental for developing more effective immunotherapies. In
this work, we propose a novel list of drug-resistance mutations, several of which are
recurrent, that could be of particular interest in the context of off-the-shelf precision
immunotherapies such as therapeutic cancer vaccines.

Keywords: immunogenomics, cancer vaccines, cancer targeted therapy, tumor neoantigen predictions, drug
resistance, resistance mutations
INTRODUCTION

Cancer cells express a typically aberrant protein repertoire compared to that of normal cells. These
aberrations, whether functional (drivers) or non-functional (passengers), have the potential to
generate peptide antigens that are not (or are only partially) subjected to central or peripheral
tolerance. As such, when presented by human leukocyte antigen (HLA) complexes on the surface of
cancer cells, these antigens might lead to recognition by cytotoxic T-cells and, eventually, to
immunomediated tumor clearance (1, 2). Tumors, however, can develop sophisticated escape
mechanisms (3) and immune evasion is now recognized as one of the hallmarks of cancer (4).

Cancer immunotherapies seek to restore the ability of the host’s immune system to recognize
tumor antigens and attack the cells that express them (5). Checkpoint blockade therapies (CBTs), in
particular, act by inhibiting negative immune-checkpoint receptors and thus reinvigorating the
org October 2020 | Volume 11 | Article 5249681

https://www.frontiersin.org/articles/10.3389/fimmu.2020.524968/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.524968/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.524968/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:marco.punta@icr.ac.uk
mailto:punta.marco@hsr.it
mailto:stefano.lise@icr.ac.uk
https://doi.org/10.3389/fimmu.2020.524968
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.524968
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.524968&domain=pdf&date_stamp=2020-10-08


Punta et al. Immunogenicity of Cancer Resistance Mutations
cytolytic activity of the patient’s T-cell repertoire (6). Asmentioned
above, cancer cells that present an aberrant immunopeptidome are
most likely to be targeted by T-cells. Despite remarkable successes,
CBTs are to date approved for treatment in a limited number of
solid malignancies, with only a fraction of patients responding (7).
As great efforts are being made toward improving the scope and
efficacyofCBTs (8), there is growing interest for the identificationof
patients’ specific, highly immunogenic antigens that could be used
for more targeted treatments (9), possibly in combination with
CBTs. These include therapeutic cancer vaccines (10–12) that can
be produced ex vivo and delivered to the patient in the form of
peptides, peptide-encoding RNA/DNA molecules, or using
peptide-loaded autologous dendritic cells or viruses (13).
Identification of tumor antigens that can serve for these purposes
is thus a priority (14, 15).

Historically, peptides belonging to a normal cell proteome but
preferentially or almost exclusively expressed in cancer cells
(“tumor-associated antigens” or TAAs) were the first to be
targeted for the clinic (11, 16, 17) along with oncoviral
antigens (encoded by oncogenic viruses) (18). Although the
clinical development of vaccination strategies against TAAs
continues, they are now generally regarded as less-than-ideal
and often weak effectors, primarily because of incomplete tumor
specificity and partial central tolerance (13, 19). Increasingly,
researchers are focusing their attention on cancer-specific
peptides such as those associated with passenger mutations
(10, 20–26), somatic gene fusions (27), aberrantly expressed
tumor transcripts (28) or tumor-specific alternatively spliced
isoforms (29) and post-translational modifications (30, 31).

In this study, building on previous works (32–34), we present
a comprehensive in silico survey of the antigenic potential of
peptides associated with cancer drug resistance mutations.
Resistance mutations emerge in the context of targeted
therapies, which are aimed at tumors that depend for their
growth on specific oncogenes (35). This addiction makes such
tumors vulnerable, at least in principle, to drugs that inhibit the
relevant protein(s). Targeted therapies are available for an
increasing number of hematological and solid malignancies
[e.g (36–38)], however, a significant fraction of patients either
don’t respond to treatment or eventually relapse. Intrinsic
(germline or somatic) and acquired (somatic) resistance is
mediated by a range of different molecular mechanisms (39).
Among them is the pre-existence (possibly, if somatic, at very
low allele frequencies) or the acquisition following treatment of
protein-modifying mutations on the targeted oncogenes or on
other genes in the same or alternative pathways (40, 41).

Resistance mutations possess a number of properties that are
appealing in the context of precision immunotherapy: they are
tumor-specific, thus generating neoantigens that are less likely to
be subjected to central or peripheral tolerance or to elicit an
autoimmune response (42); because they drive resistance, they are
expected to be specifically expressed in therapy-resistant clones;
they are usually found on oncogenes, hence making therapy-
escape by the tumor through their down-regulation harder; and,
finally, several of them are known to recur in different patients (i.e.,
they are not patient-specific) making them potential targets for
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developing off-the-shelf rather than fully personalized and
potentially highly expensive precision therapies (43). Here, we
report on 226 resistance mutations (source: COSMIC) that pertain
to numerous genes, tumor types, and drugs and we study their
potential immunogenicity in relation to a set of 1,261 individuals
from the 1000 Genomes (1000G) project encompassing a
landscape of 194 HLA-A, -B, and -C class I allotypes. By
analyzing in silico their HLA class I presentation properties, as
well as those of their associated wild type peptides, we show that
several of these mutations generate neopeptides that are predicted
to have immunogenic potential across a significant fraction of
individuals in our 1000G dataset. Further, we investigate a cohort
of 92 patients from the Hartwig Medical Foundation database
(44), carrying a small subset of these resistance mutations (four in
total). Our analysis indicates that in a fraction of these patients the
neopeptides associated to the mutations are predicted to be
potentially immunogenic and, when set against a backdrop of
control patients, we see no evidence that the mutations undergo
negative selection by the immune system. Also, comparison with
HLA-presentation properties of these four mutations in the 1000G
population suggests that estimates based on the latter can be
indicative of the immunogenic potential of the wider set of
COSMIC mutations in resistant patients. In the context of
previous publications that showed how neopeptides from two
resistance mutations [E255K in BCR-ABL1 (32) and T790M in
EGFR (33, 34)] could elicit T-cell responses in vitro, our results
support the idea that drug resistance mutations might be an
important (and, in time, potentially expanding) source of tumor
antigens for precision immunotherapies. In particular, this opens
up the possibility of tracking the development of recurrent
resistance mutations (for example, in circulating tumor DNA),
while patients are treated on a particular drug, and using an off-
the-shelf vaccine targeting the relevant resistance neoantigen to
prolong the period of clinical benefit.
METHODS

Mutation Datasets
We downloaded directly from Marty et al. (45). the following
mutation datasets: passenger mutations (1,000 in total), recurrent
mutations (1,000), germline single nucleotide polymorphisms
(SNPs) (1,000), random mutations (3,000). In Marty et al.,
recurrent and passenger mutation lists are derived from The
Cancer Genome Atlas (TCGA) data (46). In particular, recurrent
mutations, which we will refer to as driver mutations here, are
defined as those found within a list of 200 tumor-associated genes
(47) and observed in at least three TCGA samples. All somatic
TCGAmutationsnotoccurring in the listof tumor-associatedgenes
are consideredaspassengers.GermlineSNPsare commongermline
variants that are sampled from the Exome Variant Server. Finally,
randommutations aregenerated randomly inhumanproteins from
Ensembl (release 89; GRCh37). From the initial list of 1,000 driver
mutations, we further extracted those that are observed in at least 30
TCGApatients andwe labeled them as highly recurrent (HR) driver
mutations (32 in total).
October 2020 | Volume 11 | Article 524968
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Our list of resistance mutations was obtained from the
CosmicResistanceMutations.tsv file that we downloaded from the
COSMIC website (COSMIC version 86). From this initial list, we
manually removed a few entries (COSM5855836, COSM1731743,
COSM5855814, COSM3534174, COSM763) that appeared to be
duplicates of other entries (COSM5855837, COSM1731742,
COSM5855815, COSM3534173, COSM125370, respectively),
those for which information about the exact amino acid
substitution was not provided in COSMIC and non-missense
mutations. Overall, we obtained 226 resistance mutations
(Supplementary Table 1). Note that four of them also appeared
in our list of 32 HR driver mutations (NRAS Q61R and Q61K,
PIK3CA E545K, BRAF V600E), while 11 in total overlapped with
the full list of driver mutations. Genes, tissues, tumor subtypes, and
drugs to which these mutations are associated are reported in
Supplementary Table 2. In the file from COSMIC, each
mutation is listed as many times as the number of patients in
which it has been reported in the scientific literature. Although this
can provide us with valuable information on the prevalence of
different mutations in patients with a specific tumor type that have
been treated with the same drug, comparisons across different
tumor types, genes, and drugs are more complicated. Indeed, the
number of cases reported in COSMIC can be influenced by several
factors, including a tumor’s incidence or the time that has passed
since a drug’s approval. For example the EGFR C797S mutation, a
mutation of particular clinical relevance conferring resistance to the
lung carcinoma third-generation EGFR inhibitor osimertinib (48),
is reported inCOSMIC to have occurred in nine patients. These are
much fewer, for example, than the 487 records for the T790M
mutation. Osimertinib, however, is a relatively recent drug (FDA-
approved in 2015) when compared to some of the drugs T790M
confers resistance to (e.g., Gefitinib, FDA-approved in 2003). Here,
notwithstanding these limitations, we made use of the number of
occurrences in COSMIC to obtain at least a rough separation
between rare and more frequent resistance mutations, with the
latter being the ones that were more likely to be relevant in the
context of off-the-shelf cancer vaccine development. In particular,
we defined a set of highly recurrent (HR) resistance mutations (at
least 20 patients in COSMIC, 22 mutations in total)
(Supplementary Table 1). Yet another two subsets of resistance
mutations we used were “resistance-BCR-ABL1” and “resistance-
no-BCR-ABL1,”which containonlyCOSMICresistancemutations
foundornot found inBCR-ABL1, respectively (102and124 in total,
Supplementary Table 1). Note that although patients reported to
have multiple resistance mutations might carry compound
mutations that could be generating multiple-mutant neopeptides,
this type of information is generally not available from COSMIC
(zygosity is also for the most part unknown); as a consequence, we
considered all resistance mutations we selected as being
“isolated”mutations.

Generation of Mutation-Associated
Peptides
In order to calculate the HLA-presentation likelihood for the
peptides generated by the above sets of mutations, we needed to
map each mutation to a protein sequence. Here, we used human
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protein sequences from EnsEMBL as found in the
Homo_sapiens.GRCh37.pep.all.fa.gz file (downloaded from
EnsEMBL and, hereafter, referred to as “EnsEMBL protein
file”). For resistance mutations, we obtained from the
CosmicResistanceMutations.tsv table the EnsEMBL transcript
ids, all of which had a corresponding protein entry in the
EnsEMBL protein file. For all other sets of mutations, we first
extracted the gene id from table S3 of (45); then, we generated
(Jan 2018) from the UCSC Genome Table Browser the mapping
between gene ids [Human Genome Organization Gene
Nomenclature Committee (HGNC) symbols] and canonical
EnsEMBL transcripts and, additionally, from the EnsEMBL
BioMart the mapping between gene ids and non-canonical
EnsEMBL transcripts. Finally, given a mutation and its
associated gene id, we tried to map the mutation to the
EnsEMBL canonical transcript sequence for that gene id. If we
were not successful, we tried to map the mutation to a non-
canonical transcript sequence for the same gene id. If even in this
second case we could not find any appropriate mapping, we
discarded the mutation. For mutations that we were able to map
to a transcript, we could then find the corresponding protein
sequence in the EnsEMBL protein file. According to this
protocol, occasionally, two different mutations found in the
same gene could end up being mapped to two different
EnsEMBL transcripts and hence protein sequences. We only
considered missense mutations (in particular, single amino acid
substitutions); we did not consider indels. The final mutation
count for each set was as follows: 961 passengers, 999 drivers (32
of which constitute our HR drivers list), 970 germline SNPs, and
2,758 random mutations, along with the 226 resistance
mutations already mentioned above. These final lists of
mutations are reported in Supplementary Table 1 together
with their Population-Wide Median Harmonic-Mean Best
Rank (PMHBR) score (when using all three HLA genes for
calculating the score, see below). The ids of the EnsEMBL
transcripts used for genes in these datasets are shown in
Supplementary Table 3.

For each mutation part of the datasets in Supplementary
Table 1, we used an in-house Python script to generate all
possible peptides of length 8 to 11 that spanned the mutation.
For mutations that did not fall within the first 10 or last 10
positions of a transcript this meant generating a total of 38
peptides (or correspondingly less otherwise). A wild type peptide
associated to a specific mutant peptide is identical to the mutant
peptide except for the fact that the mutated amino acid is
reverted to the wild type one.

Datasets of Healthy Individuals and
Patients With Known HLA Allotypes
We obtained a list of 1000G healthy individuals with their
associated HLA class I allotypes from ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/technical/working/20140725_hla_genotypes/
20140702_hla_diversity.txt. This dataset included 1,267 unique
individuals from the 1000 Genomes Project, covering 14
populations and four major ancestral groups (49). Each
individual was annotated with their six HLA class I allotypes.
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However, in several cases each of the six allotypes were
represented by multiple entries. These typing ambiguities
reflect allotypes that do not differ on exons 2 and 3 of the
HLA gene, that is, the exons carrying the antigen recognition
sites. In these cases, we considered only the first reported entry
for each allotype. We excluded individuals that had allotypes that
were not well defined at the four digit level or that were not
present in the NetMHCpan-4.0 library of HLA allotypes
(NetMHCpan-4.0 is the method that we use for predicting
HLA-presentation, see below), these were: HLA-A03:03N,
HLA-B44, HLA-C15, HLA-C14XX, HLA-C0140, and those
labeled “0000.” The complete list of 1,261 individuals and
associated allotypes that we used is given in Supplementary
Table 4. In the following, we refer to this as the 1000G dataset
and use it to represent the HLA class I haplotypes that we expect
to find in individuals within the general population. We
additionally used a list of haplotypes from 7,726 TCGA
patients obtained from the file “Shukla_Wu_Getz_Polysolver_
HLA_Types_2015.tsv” (50) and deposited under controlled
access in dbGAP (accession code: phs000178). Note that from
the original list of 7,727 haplotypes in the file, we removed the
haplotype of one of the patients with an HLA allotype, HLA-
A*01:04N, for which NetMHCpan-4.0 could not predict peptide
binding likelihoods.

The Hartwig Medical Foundation
Database: Extraction of a Subset of
Patients With COSMIC-Annotated
Resistance Mutations
The Hartwig Medical Foundation Database (HMFD) (44) is a
large resource of metastatic tumor data, generated through whole
genome sequencing and matched with detailed clinical
information (https://www.hartwigmedicalfoundation.nl/en/
database/). We obtained access to the HMFD and downloaded
the vcffiles containing the somatic variant calls for 4,479 patients.
In these samples, we looked for COSMIC resistance entries for
which we had knowledge of the exact genomic position of the
single nucleotide substitution leading to the missense mutation
(124 total out of 226 mutations in COSMIC). For us to consider a
resistance mutation called in an HMFD sample, the variant had
to have a PASS flag and occur on the same transcript on which it
was annotated in COSMIC. We found 238 patients that carried a
resistance mutation that satisfied all of the above criteria and
when discarding samples with multiple such mutations.
Minimum, median, and maximum variant allele frequencies
for the 238 mutations in these patients were 3.7, 25.6, and
96.8%, respectively. From this list of 238 samples we further
removed cases that in HMFD had no associated metadata
specifying pre-biopsy treatments and/or had a tumor tissue
type that did not match the one reported in COSMIC for the
same resistance mutation and/or were not first-biopsy samples
or, finally, for which the downloaded cram file was not labeled as
deduplicated. This left us with a list of 127 samples spanning a set
of 21 different COSMIC resistance mutations in total. For our
analysis, we finally selected the four mutations with the highest
count in this list, namely: D538G in ESR1 (42 samples), Y537S in
Frontiers in Immunology | www.frontiersin.org 4
ESR1 (26 samples), T790M in EGFR (13 samples), and T878A in
AR (11 samples) for a total of 92 samples. These four mutations
covered three different tumor types: breast (D538G and Y537S in
ESR1), lung (T790M in EGFR), and prostate (T878A in AR).
Although most patients for whom we considered samples
underwent several treatments before the first biopsy, we
checked that at least one of the treatments had been associated
to the respective resistance mutation in the literature (51–53). All
samples with D538G in ESR1 and all but one with Y537S in ESR1
belonged to patients that had pre-biopsy “aromatase inhibitor”
treatment; the only patient with the Y537S ESR1 mutation that
had no aromatase inhibitor treatment had undergone tamoxifen
hormonal therapy pre-biopsy. All 13 samples with T790M in
EGFR belonged to patients that underwent “anti-EGFR”
treatment pre-biopsy. All 11 samples with T878A in AR
belonged to patients that underwent “anti-AR” treatment pre-
biopsy. Note that these four mutations are also reported by
COSMIC to commonly occur; in particular, COSMIC reports the
presence of D538G and Y537S ESR1 in 35 and 22 patients,
respectively, T790M EGFR in 487 patients and T878A AR in 17
patients. For comparison purposes, we additionally downloaded
35, 25, and 34 samples, respectively, for breast, lung, and prostate
tumors. These samples were such that their vcf files did not
feature any of the 226 COSMIC mutations with a PASS flag (this
time, we looked for the matching amino acid substitution
irrespective of the genomic position at which the mutation
occurred) and were such that the patients they belonged to had
undergone pre-biopsy treatments involving aromatase inhibitors
(breast), anti-EGFR (lung) and anti-AR (prostate). Note that,
although we initially aimed to collect 35 samples for each tumor
tissue, we could not find more than 26 in lung satisfying the
above criteria and, additionally, one sample each for lung and
prostate was discarded after download because the cram file was
not labeled as deduplicated. Further, we identified candidate
driver mutations in the 186 HMFD samples under study
(spanning both the ones carrying resistance mutations and the
controls) from the list of TCGA recurrent mutations defined in
Marty et al. (45). We identified a total of 65 different driver
mutations in 121 samples; of these, 13 (in 55 samples)
overlapped with the highly recurrent set in TCGA, i.e., present
in at least 30 TCGA patients. Finally, we picked randomly 1,000
passenger mutations found in the selected HMFD samples as
missense mutations that had a PASS flag in the vcf files and were
not found in genes where we had a driver (Marty et al) or
resistance (COSMIC) mutation. Of these, 917 were left after
mapping gene ids to EnsEMBL transcripts (see above); their
associated neopeptides were generated as described above.

For all of the 92 resistant patients and 94 control patients we
considered, we predicted HLA class I haplotypes with the
program POLYSOLVER [(v1.0) (50)] using their associated
whole-genome sequencing (WGS) germline samples [median
depth of sequencing around 38x (44)]. In particular, we ran the
shell_call_hla_type script, with the following parameters: race =
unknown, includeFreq = 1, and insertCalc = 0. Note that
although POLYSOLVER was originally developed to run on
whole exome sequencing data, benchmarking experiments
October 2020 | Volume 11 | Article 524968
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indicate that it performs well also on WGS data at depth of
sequencing 30x or higher (54–56).

We report the list of HLA haplotypes and HMFD patients’ ids
for all HMFD samples we considered together with either the
resistance mutation we found in their associated patients or, for
the controls, the tumor tissue type in Supplementary Table 5.

HLA-Presentation Scores
All HLA-presentation scores that we describe in the following are
defined starting from eluted ligand likelihood percentile ranks of
peptides with respect to HLA allotypes; these rank scores are
obtained from the NetMHCpan-4.0 prediction method (57).

BR: Best Rank Score of a Mutation
Each missense mutation is associated to a set of (maximum 38)
mutated peptides (see Generation of Mutation-Associated
Peptides above). For each peptide in this set, we used the
program NetMHCpan-4.0 (57) to calculate the eluted ligand
likelihood percentile rank and predict the interaction core
peptide (Icore) with respect to all HLA allotypes observed in
our datasets (see above). The elution rank takes values in the
range from 0 to 100, with lower values representing higher
presentation likelihoods. The Icore is the part of the original
peptide predicted by NetMHCpan-4.0 to be located in the HLA
binding site, thus the peptide most likely to interact with the T-
cells. In some of the cases in which the Icore is shorter than the
original peptide, it may not span the mutation at all and may thus
be equivalent to a wild type peptide. We defined the presentation
score of a mutation with respect to a specific HLA allotype as the
minimum elution rank among all associated peptides [this is the
same as the “best rank” score used in (45)] but excluding those
with a wild type Icore. We called this presentation score BR.

PMHBR: Population-Wide Median Harmonic-Mean
Best Rank Score of a Mutation
In Marty et al. (45), the authors define a patient-specific
presentation score for a mutation by using a harmonic mean
to combine the six best rank scores of the patient’s six HLA
allotypes (Patient Harmonic-Mean Best Rank or PHBR, see
below). Unfortunately, COSMIC does not contain information
about the HLA allotypes of the patients that develop specific
resistance mutations. As a consequence, in order to provide an
equal-ground comparison between all groups of mutations, we
alternatively defined a score that is representative of the
presentation properties of a mutation across a whole
population. We calculated our Population-Wide Median
Harmonic-Mean Best Rank (PMHBR) for a mutation m as:

PMHBR mð Þ = median 1000Gf gor   TCGAf g
6

o6
i=1

1
BRi mð Þ

0
BB@

1
CCA (1)

where the internal summation is taken over all six HLA allotypes
of a given individual or patient (two each for HLA-A, -B, and -C)
and the median is taken over the full set of 1,261 individuals in
the 1000 Genomes Project dataset or, alternatively, the full set of
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7,726 patients in TCGA. In other words, PMHBR is the median
of the PHBR scores (see below) of a mutation calculated over a
set of individuals or patients (note that also Marty et al. (45)
define a median PHBR score although they calculate it for groups
of mutations).

Lower PMHBR scores correspond to higher likelihoods for
the mutation to be presented across our 1000G or TCGA
populations. Because HLA-C proteins are generally expressed
at lower levels with respect to HLA-A and HLA-B (58), in the
Supplementary Materials we also report analyses in which
the two HLA-C allotypes were omitted from the calculation of
the harmonic average in (1).

IBR/PBR: Individual/Patient Best Rank Score
We additionally defined individual’s and patient’s best ranks
(IBR and PBR, respectively) for a mutation m as the minimum
BR of the mutation when considering all of the HLA allotypes of
the individual, that is:

IBR=PBR mð Þ = minindividual0s=patient0s  HLAs  BRð Þ (2)

Note that with “individuals,” throughout this work, we always
refer to members of the 1000G healthy population, while
“patients” can be those found in TCGA or in the HMFD. IBR
and PBR were useful for calculating the percentage of individuals
or patients in which a mutation was likely to be presented
according to a pre-defined threshold. For example, we could
calculate the percentage of individuals or patients for which IBR
(m) or PBR(m), respectively, were <0.5 or, alternatively, <2.0
(see Results).

IHBR/PHBR: Individual/Patient Harmonic Mean Best
Rank Score
These are patient-specific harmonic average scores that we use
in the analysis of passenger, driver, and resistance mutations in
HMFD patients and are defined exactly as in Marty et al. (45). In
particular, for a mutation m:

IHBR=PHBR mð Þ =  
6

o6
i=1

1
BRi mð Þ

(3)

where the internal summation is taken over all six HLA allotypes
(two each for HLA-A, -B, and -C) of a given individual (in the
1000G dataset, IHBR) or patient (in the HMFD dataset, PHBR).

Comparison Between Mutant and Wild Type Peptide
HLA-Presentation Scores
Given a mutation and an individual (or patient) with their
associated HLA allotypes, we compared the individual’s
(patient’s) HLA-presentation scores of mutant versus wild type
peptides in the following ways. We first calculated the minimum
eluted ligand likelihood percentile rank scores across all of the
individual’s (patient’s) HLA allotypes for each pair of mutant
Icore and corresponding wild type peptide generated by the
mutation (we called these the mutant and wild type peptide
MinRank, respectively; note that the MinRank is a property of
the single peptide rather than of the mutation like the previously
October 2020 | Volume 11 | Article 524968
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defined BR). We then did one of two things: i) we asked that at
least one pair existed such that the MinRank of the mutant
peptide was lower than a given threshold and the MinRank of the
wild type peptide was equal or higher than the same or different
(higher) threshold or ii) we asked that at least one pair existed
such that the MinRank of the mutant peptide was lower than a
given threshold and, additionally, lower than the one of the wild
type peptide. In both cases, we used thresholds of 0.5 or 2.0.
Indeed, NetMHCpan-4.0 eluted ligand likelihood percentile rank
score values below 0.5 are usually said to indicate high
presentation likelihood, values between 0.5 and 2.0 to indicate
low presentation likelihood and values >2.0 to indicate that a
peptide is not likely to be presented. We additionally used
MinRank scores for the analysis of the immunogenic potential
of individual peptides (rather than mutations) in the
general population.

Statistical Analysis and Plots
Throughout this study, statistical analysis was performed and
plots were drawn using GraphPad Prism version 8.1.2 for OS X,
GraphPad Software, La Jolla California USA, www.graphpad.
com. In particular, to calculate multiple comparison-adjusted p-
values we performed Kruskal-Wallis tests and Dunn’s post hoc
tests; to calculate p-values of pair-wise comparisons we
performed two-tailed Mann-Whitney tests; to calculate p-
values for paired groups’ comparisons we performed two-tailed
Wilcoxon tests.
RESULTS

In order for protein peptides to be immunogenic, it is necessary for
them to be presented by HLA class I complexes and, additionally,
to be able to escape central and peripheral tolerance. We start by
comparing predicted HLA class I presentation scores of resistance-
mutationassociatedneopeptides to those ofneopeptides ofdifferent
origin, across the general population (Figure 1 and, additionally,
Supplementary Figure 1 for a violin plot of the same data).We use
healthy individuals from the 1000 Genome project as
representatives of the general population and the PMHBR
defined inMethods as a HLA-presentation score. We can see that
passenger anddrivermutations that are not highly recurrent feature
similar PMHBR score distributions (the same is true for germline
SNPs and randommutations, Supplementary Figure 2). However,
ifwe consider highly recurrentdrivers (HRdrivers,Methods)we see
that their distribution of PMHBR scores is shifted toward higher
values, indicating a lower likelihoodof the associatedneopeptides to
be HLA-presented in the general population. Although these
differences are not significant, the trend is in line with the
observations made by Marty et al. that highly recurrent oncogenic
mutations have universally poorHLAclass I presentationand that a
drivermutation’s frequency in cancer patients negatively correlates
with the population ability to present it (45). If we now look at
resistancemutations, we see that their PMHBR scores are generally
lower than theonesofbothpassenger anddrivermutations and that
this appears to be independent on their level of recurrence. We
Frontiers in Immunology | www.frontiersin.org 6
observe, in particular, that neopeptides associated to highly
recurrent resistance mutations are predicted more likely to be
HLA-presented across the general population than neopeptides
generated by highly recurrent driver mutations (see also
Supplementary Figures 3, 4 for different levels of recurrence in
these two sets of mutations). In Supplementary Figures 5 and 6,
respectively, we show the PMHBR score distributions for the
datasets in Figure 1 when using only the HLA-A and HLA-B
allotypes and when using all HLA haplotypes from patients taken
from the TCGAdataset (46), respectively (Supplementary Table 6
for the PMHBR scores). In Supplementary Figures 7, 8, instead,
we calculate the percentage of 1000G healthy individuals that are
predicted (IBR score < 0.5,Methods) toHLA-present at least one of
the neopeptides associated to a given mutation and plot the
corresponding distributions for each of the five datasets. In all
instances, we observe similar trends as those seen in Figure 1. Only
when excluding from the resistance set those mutations that occur
in the BCR-ABL1 fusion gene (constituting about half of thewhole)
differences with respect to the other sets of mutations appear to be
less significant suggesting that BCR-ABL1 mutations are on
average particularly likely to be HLA-presented (Supplementary
Figure 9). At the same time, when plotting PMHBR scores for each
resistance gene separately, we see that additional genes contribute
low PMHBR scores to the resistance mutation dataset (e.g., ALK,
MET, SMO etc.) (Supplementary Figure 10).

In Figure 2A, we show a heatmap with the BR score-based
HLA-presentation profiles (Methods) of all 226 COSMIC
resistance mutations along with the 32 HR driver mutations
for 70 common HLA allotypes. It can be seen how neopeptides
from HR driver mutations are quite often predicted not to be
HLA-presented (red), and also that differences exist in HLA-
presentation profiles of resistance mutations in different genes
(compare with Supplementary Figure 10). In Figures 2B, C as
examples, we show the BR score-based HLA-presentation profile
of two resistance mutations of particular clinical relevance. The
EGFR C797S mutation represents a major challenge for
treatment of osimertinib-resistant tumors in non-small cell
lung cancer (48). T315I, until approval of the third-generation
inhibitor ponatinib (59), was the most common mutation
associated with resistance to BCR-ABL1 inhibitors (60, 61) and
is the second most commonly reported mutation in the COSMIC
dataset. From these profiles, we see that both mutations are
predicted to generate neopeptides that produce low BR scores
(that is, are predicted to have high presentation likelihood) across
most HLA allotypes that are being considered. For comparison,
we show the BR score-based HLA-presentation profiles of two
common driver mutations, chosen as the most commonly
observed in the TCGA dataset, in Supplementary Figure 11.

Next, we focus on resistance mutations with at least five
occurrences in COSMIC as those that would be of particular
interest in the context of off-the-shelf targeted immunotherapeutic
approaches. We show, this time separately for each of these
resistance mutations, the percentage of 1000G healthy
individuals predicted to present the associated neopeptides (IBR
score < 0.5, 61 mutations in total; Figure 3 and percentages for all
226 mutations in Supplementary Table 7). The same analysis
October 2020 | Volume 11 | Article 524968
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when considering only HLA-A and HLA-B allotypes for
calculating the IBR score can be found in Supplementary
Figure 12. We first notice that our results are in line with
previous studies that showed that several BCR-ABL1 mutations
(32) [and T790M in EGFR (33, 34)] are likely to be HLA-
presented (Supplementary Figure 13), although those studies
considered a much smaller set of HLA allotypes. Second and more
importantly, we show that several other resistance mutations
occurring in different tumor tissues (Figure 3) and in several
other genes (Supplementary Figure 14) are also predicted as
likely to be HLA-presented across the population. In general, we
can see that 39 of 61 mutations in Figure 3 generate neopeptides
that are predicted to be HLA-presented by at least 50% of
individuals in our 1000G dataset. These 39 mutations occur in
six different tumor tissues and across 12 different genes. When
considering a more relaxed threshold for HLA-presentation
(IBR < 2.0) all but one of these mutations are predicted to be
presented by at least half of individuals in the 1000G dataset
(Supplementary Figure 15). As an example, neopeptides
associated with the osimertinib resistance mutation C797S in
EGFR and to T315I in BCR-ABL1 are predicted to be presented
Frontiers in Immunology | www.frontiersin.org 7
in 99 and 83% of individuals, respectively (for an IBR threshold
<0.5). Interestingly, the two mutations that have been previously
validated as able to elicit T-cell responses in healthy donors and
patients alike (E255K in BCR-ABL1 and T790M in EGFR) are not
among our top-ranked ones (21st and 29th, respectively). We next
investigate the possibility that resistance mutation neopeptides,
while likely to be HLA-presented in the general population, may
be subjected to tolerance, in which case they would not be
immunogenic. Under normal circumstances, tolerance ensures
that there are no T-cells that can recognize germline wild type
peptides, thus preventing auto-immune responses (62). Since
neopeptides are generated by somatic mutations, they are very
likely to differ from any germline wild type peptide. At the same
time, neopeptides originating from missense mutations, such as
those that we analyze here, differ fromwild type peptides only by a
single amino acid substitution. Given that T-cell binding
properties allow for at least some promiscuity in peptide
binding affinity (63), missense mutation-associated neopeptides
might still be subjected to some degree of tolerance. A common
way to identify neopeptides that are more likely to be
immunogenic is to select for those that have wild type
FIGURE 1 | Distribution of PMHBR scores for different sets of mutations. Lower PMHBR values correspond to a higher likelihood of being presented by HLA class I
complexes across our set of 1000G healthy individuals. We consider passenger and driver mutations from TCGA and resistance mutations from COSMIC. Driver
mutations are split according to their level of recurrence in TCGA patients (drivers-not-HR = less than 30 patients, HR-drivers = at least 30 patients). Similarly,
resistance mutations are split according to their level of recurrence in patients as reported in COSMIC (resistance-not-HR = less than 20 patients, HR-resistance = at
least 20 patients). Note that absolute numbers in the level of recurrence for driver versus resistance mutations are not easily compared (see Methods). The dotted
horizontal line is a guide for the eye and corresponds to the value of the median of the distribution for passenger mutations. Note that, for the sake of readability, the
part of the y-axis corresponding to values of PMHBR above 10 is compressed. Asterisks indicate significance of differences between PMHBR score distributions
calculated using a Kruskal-Wallis test followed by Dunn’s post hoc test. p-values are adjusted for multiple testing (all vs. all). (*) stands for p-value < 0.05, (***) for p-
value < 0.001 and (****) for p-value < 0.0001. The lower and higher edges of each Tukey box represent the 25 and 75% percentile value, respectively. The horizontal
line inside each box represents the median value.
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counterparts with low HLA-presentation likelihood (64). The
rationale is that if a wild type peptide is poorly presented, T-
cells that bind to it and hence possibly to very similar peptides are
less likely to have been negatively selected. It is important to stress,
however, that even a neopeptide for which the wild type
counterpart is strongly HLA-presented may be immunogenic if
the mutation it carries makes it eligible to binding by a different T-
cell pool with respect to the wild type. In Figure 4, we compare the
presentation likelihood of resistance mutation-associated
neopeptides with that of their wild type counterparts across
1000G healthy individuals (only for the 61 mutations recorded
in at least five patients in COSMIC; values for all mutations are in
Supplementary Table 7). In particular, we report the percentage
of individuals in which at least one mutant peptide is predicted
highly likely to be presented (MinRank < 0.5) while the
corresponding wild type peptide is not highly likely to be
presented (MinRank ≥ 0.5). We can see that for 13 mutations
the percentage of individuals is at least 50% (see Supplementary
Figure 16 for HLA-A and HLA-B only). Again, mutations
previously shown to be immunogenic do not exhibit the highest
Frontiers in Immunology | www.frontiersin.org 8
rankings in this plot (BCR-ABL1 E255K is 11th and EGFR T790M
is 44th). In Supplementary Figures 17–20, we show the same
analysis when using alternative criteria for evaluating the
difference between mutant and wild type peptides. Finally, in
Supplementary Figures 21, 22, we show the resistance mutations’
associated neopeptides (length 8 to 11) that we predict to have the
highest percentage of individuals more likely to present them
(MinRank < 0.5 or MinRank < 2.0) than to present their wild type
counterparts (MinRank ≥ 0.5 or MinRank ≥ 2.0, respectively).
With respect to the previously validated neopeptides associated
with the E255K BCR-ABL1 and T790M EGFR resistance
mutations we observe the following. We predict the BCR-ABL1-
associated neopeptide KVYEGVWKK to be highly likely to be
HLA-presented by the HLA-A*03:01 allotype, or the allotype for
which immunogenicity has been validated (%rank = 0.005), and
almost 100-fold more likely to be presented than its wild type
counterpart EVYEGVWKK (%rank = 0.33). However, since the
wild type peptide is also predicted as likely to be presented (%rank
< 0.5), KVYEGVWKK does not fare high in our plots that use a
fixed threshold for both mutant and wild type peptides while it
A B

C

FIGURE 2 | BR score-based HLA-presentation profiles of all COSMIC resistance mutations and highly recurrent (HR) driver mutations. (A) Heatmap of BR scores
for 226 resistance mutations and 32 HR driver mutations (rows) versus 70 common HLA allotypes (those with frequency >1% in 1000G, columns). Low BR values
(green) indicate high predicted likelihood of HLA-presentation of at least one neopeptide associated to the mutation. High BR values (red) indicate that there is no
neopeptide associated to the mutation that is predicted likely to be HLA-presented. The middle point in the scale (white) corresponds to BR = 2.0, which is the
threshold for peptide presentation (<2.0 means presentation, >=2.0 means no presentation). Values of BR above 4 are all colored with the same shade of red as
BR = 4.0. HLA allotypes are ordered according to decreasing frequency in 1000G and separately for the three HLA-A, -B, and -C genes (vertical lines). Resistance
mutations are grouped according to the gene they occur in (horizontal lines). For the sake of readability, we write only some of the resistance gene names and HR
driver mutations are grouped all together. (B) BR scores for resistance mutation C797S in EGFR and (C) T315I in BCR-ABL1. Blue bars (primary y-axis) represent
the BR scores of the mutation with respect to the HLA allotypes reported on the x-axis. Red bars (secondary y-axis) represent the frequency of each HLA allotype in
the 1000G dataset. We report BR scores for only the HLA-A, -B, and -C allotypes that have frequency >1% in 1000G. The two dotted lines mark elution rank value
limits for strong likelihood of presentation (SB, i.e., BR score < 0.5) and weaker likelihood of presentation (WB, i.e., 0.5<= BR score < 2.0). Note that in panels
(B, C), for the sake of readability, the part of the primary y-axis corresponding to values of BR above 4 is compressed.
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scores definitely better when considering a <0.5% rank threshold
for the mutant and simply asking that the wild type has higher
ranking than the mutant peptide (Supplementary Figure 23). In
contrast, we don’t predict the T790M-associated mutant peptides
that have been previously validated as immunogenic
(MQLMPFGCLL, LIMQLMPFGCL, IMQLMPFGC) to be likely
to be presented by the experimentally validated HLA-A*02:01
allotype (%ranks = 2.12, 16.0, and 5.74, respectively). We do
however observe a separate, not previously tested T790M-
associated neopeptide (LTSTVQLIM) as one that has high
immunogenic potential across the population (third from top in
Supplementary Figure 22).

So far, we have shown that several recurrent resistance
mutations are predicted to have immunogenic potential in a
significant fraction of healthy individuals in the general
population (i.e., 1000G). An important question, however, is
whether this is true also in patients that carry the mutations or,
rather, resistance mutations are observed primarily in patients
with HLA haplotypes unlikely to present the associated
neopeptides. Although evidence of negative selection has been
reported for driver mutations (45), it would seem less probable
for resistance mutations which typically appear later during
cancer evolution, when immune-evasion by the tumor is likely
to have already occurred. This is in line with our observation
that, contrary to what seen for driver mutations, the PMHBR
scores of resistance mutations do not increase with increasing
Frontiers in Immunology | www.frontiersin.org 9
levels of recurrence (Figure 1 and Supplementary Figures 1, 3,
4). We obtain a similar result when considering a subset of
mutations that occur within the same gene and in response to the
same drug, that is, when removing the confounding effect of
different dates of approval for different drugs on the number of
patients in which a mutation was observed (see the plot in
Supplementary Figure 24 where we compare PMHBR scores of
all BCR-ABL1 mutations that confer resistance to the drug
imatinib, differences are not significant, Kruskal-Wallis and
Dunn’s). Even so, we decided to investigate this important
aspect more directly, by gaining access to the Hartwig Medical
Foundation database (HMFD) (44). The HMFD is a large cancer
resource that includes patients who have undergone targeted
therapy and for which the HLA haplotypes of the patients can be
predicted from WGS germline data. We selected four recurrent
resistance mutations in three different solid tumor tissues
(Methods): i) ESR1 D538G (breast), ii) ESR1 Y537S (breast),
iii) EGFR T790M (lung), and iv) AR T878A (prostate). We
extracted data for respectively i) 42, ii) 26, iii), 13 and iv) 11
patients carrying these mutations and we predicted their HLA
haplotypes (Methods). As controls, we additionally considered a
set of HMFD patients with breast, lung, or prostate cancer
treated with the same (or similar) targeted therapy as the
groups above but that did not develop the corresponding
resistance mutations. In Figure 5, we compare the patient-
specific PHBR score distribution (Methods) for patients with
FIGURE 3 | Estimates for the percentage of individuals in the general population predicted to HLA-present resistance mutation-associated neopeptides. For each
mutation, the histogram illustrates the percentage of individuals in the 1000G dataset with an IBR < 0.5 (the IBR score is defined in Methods). Mutations on the x-
axis are ordered according to decreasing percentages of individuals. We plot only mutations that have been observed in at least five patients (according to COSMIC).
Colors indicate the different tumor tissues in which the resistance mutations have been observed; “haema&lymph” stands for hematopoietic and lymphoid tissue.
Asterisks (*) mark mutations that have been shown to elicit T-cell responses in previous works (32–34).
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and without the mutations for the four mutations separately and,
additionally, for all mutations together. Further, for all of the
above cases, we report the PHBR distributions calculated on
healthy 1000G individuals (Supplementary Figure 25 for violin
plots; PHBR scores are reported in Supplementary Table 5). We
observe that none of the pairwise differences in PHBR scores
between HMFD patients with and without the mutations are
significant (Mann-Whitney tests), suggesting that these
resistance mutations don’t tend to occur preferentially in
patients that have lower likelihood of presenting them. Some
differences with 1000G-based estimates are to be expected as a
result of the different population structure in HMFD versus
1000G, the former collecting data from patients in the
Netherlands and the latter covering individuals from a wide
range of world populations. Despite this, when comparing the
PHBR scores of the HMFD patients’ groups with those of 1000G
individuals only pairwise differences between HMFD_no_MUT
and 1000G in the D538G_ESR1 and All_4 sets are significant
(both with p-value < 0.01, Mann-Whitney tests with no multiple
comparison adjustment). In general, we see how across
mutations PHBR scores appear to scale similarly to what
estimated from 1000G healthy individuals, with ESR1
mutations generally less likely to be HLA-presented than
T790M EGFR and T790M EGFR less likely to be HLA-
presented than T878A AR (note that the higher the PHBR
Frontiers in Immunology | www.frontiersin.org 10
score, the lower the likelihood to be presented; compare also
with Figure 3). PHBR score distributions of drivers and
passengers in HMFD patients (Methods) show trends that are
similar to the ones seen for PMHBR scores calculated on 1000G
individuals in Figure 1 (Supplementary Figures 26A, B where,
merely for completeness, we also report PHBR scores of the four
resistance mutations we have analyzed). In Figure 6A, we
compare the percentage of HMFD patients with and without
the four resistance mutations that are predicted to HLA-present
(PBR < 0.5) at least one of the associated neopeptides along with
the corresponding percentages in 1000G healthy individuals. As
expected, these estimates reflect the PHBR score distributions of
Figure 5 (Supplementary Figure 27A for similar plots
considering only HLA-A and HLA-B). In Figure 6B, we
compare the percentage of patients that are predicted to HLA-
present (at least) one of the neopeptides associated to the
mutation (MinRank < 0.5) and not highly likely to present the
corresponding wild type peptide (MinRank ≥ 0.5)
(Supplementary Figure 27B for HLA-A and HLA-B only). In
this case, patients carrying the resistance mutations are predicted
to have slightly higher likelihood of presentation than both
patients without the mutations and 1000G healthy individuals
although this could to some extent be due to statistical
fluctuations. Next, we look for evidence of selection within
individual patients rather than within individual mutations. To
FIGURE 4 | Population-wide comparison of HLA class I presentation likelihood between resistance mutation-associated neopeptides and their corresponding wild
type peptides. For each mutation, the histogram illustrates the estimated percentage of individuals for which at least one mutant peptide-wild type peptide pair exists
such that the MinRank of the mutant peptide is <0.5 and the MinRank of the corresponding wild type peptide is ≥0.5 (see Methods for definitions). Mutations on the
x-axis are ordered according to decreasing percentages of individuals. We plot only mutations that have been observed in at least five patients (according to
COSMIC). Colors indicate the different tumor tissues in which the resistance mutations have been observed; “haema&lymph” stands for hematopoietic and lymphoid
tissue. Asterisks (*) mark mutations that have been shown to elicit T-cell responses in previous works (32–34).
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this end, we take advantage of the fact that two resistance
mutations in our HMFD set, D538G and Y537S in ESR1,
occur in response to the same targeted drug-therapy. We ask
whether in patients that carry only one of the two mutations, the
one that is observed has on average a higher PHBR score than the
one that is not observed. If so, this would suggest that, in a
patient, these ESR1 mutations are selected to have a lower
likelihood of presentation. Again, we find no significant
difference (Wilcoxon tests) between the PHBR scores of
mutation pairs (both when using all data, Supplementary
Figures 28A, B, and when using a 50%-50% balanced dataset,
not shown; see Supplementary Table 5 for all the raw data).
Overall, in the four recurrent resistance mutations we have
analyzed in HMFD patients we appear to find no evidence of
negative immune selection. Also, comparison with 1000G
healthy individuals suggests that analysis performed on the
latter can be informative of the immunogenic potential in
cancer patients for mutations in the wider COSMIC dataset.
Frontiers in Immunology | www.frontiersin.org 11
The complete list of resistance mutations that we analyze here
along with estimates of the percentage of individuals in the
1000G dataset that are likely to present their associated
neopeptides and, separately, that are more likely to present
their associated neopeptides than their wild type counterparts
can be found in Supplementary Table 7. Lists of resistance
mutation-associated neopeptides that are more likely to be HLA-
presented than their wild type counterparts are instead reported
in Supplementary Table 8 (peptides associated to resistance
mutations observed in at least five patients in COSMIC and
estimated to be presented by at least 1% of 1000G individuals).
DISCUSSION AND CONCLUSIONS

Cancer immunotherapies seek to invigorate a patient’s immune
response against the tumor (5). This response is typically
mediated by tumor antigens that originate from the cancer
cells’ aberrant immunopeptidome. Cancer drug resistance
mutations are one class of somatic variants that generate
tumor-specific, potentially immunogenic antigens. Previous
studies showed that two resistance mutations, E255K in BCR-
ABL1 and T790M in EGFR, are indeed immunogenic (32–34);
additionally, Cai et al. (32) suggested that this property might be
shared by a larger number of BCR-ABL1 resistance mutations.
These previous studies looked at presentation by a small number
of class I HLA allotypes [five HLA-A and three HLA-B allotypes
in (32) and only HLA-A*02:01 in (33, 34)]. We asked whether
these immunogenic properties could be shared by a larger
number of cancer drug resistance mutations and when
considering a much larger set of class I HLA allotypes. Using
in silico predictions we present, for the first time, a general survey
of the immunogenic potential of 226 missense resistance
mutations associated with several genes (19 total) and tissues
(9 total). We show that many of these mutations generate
neopeptides that are predicted to be HLA-presented by a large
proportion of the general population. Additionally, for several
resistance mutations and in a significant percentage of
individuals, these potential neoantigens are predicted more
likely to be HLA-presented than their wild type counterparts,
and are therefore less likely to fall under central or peripheral
tolerance. Importantly, by looking at data from the Hartwig
Medical Foundation database, we found no evidence that
resistance mutations undergo negative selection by the
immune system in resistant patients. This is in agreement with
the observation that HLA-presentation scores of resistance
mutations in the general population and their level of
recurrence in patients do not appear to be correlated.

In this work, we have considered only missense mutations,
which constitute the vast majority of drug resistance mutations
currently annotated in COSMIC; however, insertions and
deletions are also known to confer resistance to some drugs. In
a recent publication, for example, we showed that revertant
frameshift mutations in patients treated with PARP-inhibitors
could encode neopeptides predicted to be HLA-presented in the
general population (65). Notably, neopeptides generated by this
FIGURE 5 | Distribution of PHBR scores in different groups of the Hartwig
Medical Foundation Database (HMFD) patients treated with targeted drugs.
Lower PHBR values correspond to a higher likelihood of being presented by
HLA class I complexes. For each mutation, “HMFD_with_MUT” and
“HMFD_no_MUT” represent patients treated with similar targeted drugs,
however, “HMFD_with_MUT” (orange) are patients that developed the
mutation while “HMFD_no_MUT” (yellow) are patients that did not develop it.
“1000G” (blue) are all the healthy individuals in our 1000G dataset. On the x-
axis, for each mutation we report in parentheses the number of patients/
individuals considered in each of the three groups (the order is
“HMFD_with_MUT", "HMFD_no_MUT", "1000G"). Note that when considering
all four mutations together, for a fair comparison, “no_MUT” patients and
“1000G” healthy individuals have been sampled (randomly with replacement)
so to obtain a proportion of scores derived from each mutation similar to the
one observed among “with_MUT” patients. “HMFD_no_MUT” for ESR1
D538G and Y537S are the same group of breast cancer patients. Asterisks
indicate significance of pairwise differences between score distributions
calculated using Mann-Whitney tests with no multiple comparison adjustment.
(**) stands for p-value < 0.01. Pairwise tests were performed only between
distributions in the same mutation group. The lower and higher edges of each
Tukey box represent the 25 and 75% percentile value, respectively. The
horizontal line inside each box represents the median value.
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type of somatic alterations, if presented, would be more likely to
be immunogenic as they will generally differ substantially from
any wild type protein peptide (66).

Our study comes with a number of limitations. The most
obvious one is that our results are based on computational
predictions (64). Although the most recent breed of prediction
methods (such as theNetMHCpan-4.0 program thatwe use here)
integrate peptides’ HLA-elution mass spectrometry data, they
are still likely to over-predict the number of presented peptides
(67–69). Also, higher presentation likelihood with respect to the
corresponding wild type peptide is probably a poor proxy for a
mutant peptide’s immunogenicity (i.e., actual recognition by T-
cells). Despite these important caveats, as mentioned above,
computational predictions have been used previously to
identify potentially immunogenic neopeptides from the BCR-
ABL1 E255K and EGFR T790M resistance mutations, which
were later proved effective in priming naïve T-cells (32–34); two
of these studies showed, additionally, that T-cells specific for
resistance neoantigens could be detected in patients (32, 33).
Further, methods that predict HLA-presentation have been
widely adopted in and instrumental to studies that showed
neoantigen load correlation with CBT response (70),
established the occurrence of immune-evasion by neoantigen
elimination (71–73), investigated personalized cancer vaccines
against melanoma and glioblastoma in small clinical trials (21–
24) and suggested negative immune-selection for highly
recurrent driver mutations (45). In particular, several studies
have shown that lists of predicted neoantigens are indeed
enriched in neopeptides capable of stimulating T-cell responses
both in vitro and in vivo (20–24, 74). Another potential concern is
the fact that some of the proteins inwhich resistancemutations to
current targeted therapies occur are membrane-inserted.
Membrane proteins are generally believed to undergo
degradation in lysosomes (75) rather than via the ubiquitin-
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proteasome pathway, which leads to HLA class I presentation of
protein peptides. There is compelling evidence that nevertheless
membrane protein peptides are presented by HLA class I
complexes (76). Furthermore, tumors are known to develop
immune-escape strategies including, but not limited to, loss of
heterozygosity at the HLA locus, down-regulation of HLA genes
and up-regulation of immune checkpoints (3). As a consequence,
we cannot exclude that patients that develop mutations
conferring resistance to targeted therapies carry tumors that
may be refractory to a targeted immunotherapeutic approach
[see, for example, results in (33)]. In recent years, however,
treatments such as CBTs (6) have become available that are
able of thwarting one of tumors’ immune escape mechanisms by
restoring immune surveillance in at least some groups of patients
and could thus potentially be used in combination with more
targeted immunotherapies. Finally, there are limitations in terms
of the composition of the mutation datasets that we have
analyzed in particular for what concerns representation of
mutations resistant to different drugs and occurring in different
tumor types (for example, COSMIC does not include all known
resistance mutations and the frequency of occurrence for
mutations resistant to more recently approved drugs is likely to
be grossly underestimated).

In conclusion, expanding on previous studies, we have
presented data that suggests that resistance mutation-
associated neoantigens could be particularly interesting targets
for precision immunotherapies such as cancer vaccines (77).
Most recent work in the field has focused on tumor neoantigens
associated with protein-modifying passenger mutations (21–24).
However, vaccines derived from passenger mutations, which are
private, would represent fully personalized treatments with
potentially high development costs and scale-up issues for
translation into the clinic (43). In contrast, recurrent
neoantigens such as those potentially derived from resistance
A B

FIGURE 6 | (A) Estimates for the percentage of patients or individuals predicted to HLA-present neopeptides associated to four different resistance mutations.
Groups of patients and of healthy individuals as well as notations are as described in Figure 5. For each mutation in each group, the histogram illustrates the
percentage of patients with a PBR < 0.5 [HMFD patients] or IBR < 0.5 (1000G). Both IBR and PBR scores are defined in Methods. (B) Comparison between mutant
peptides and corresponding wild type peptides for the same mutations and groups of patients/individuals shown in panel (A). For each mutation and each group,
the histogram illustrates the estimated percentage of patients or healthy individuals for which at least one mutant-wild type peptide pair exists such that the MinRank
of the mutant peptide is <0.5 and the MinRank of the corresponding wild type peptide is ≥0.5 (see Methods for definitions). Estimates in (A, B) for 1000G are the
same as those reported for these mutations in Figures 3 and 4, respectively.
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mutations could serve as a basis for developing off-the-shelf
vaccines, which could be used in combination with targeted drug
therapies, as well as with other types of immunotherapies. We
believe that the recent advances in cancer immunotherapy and
the ever-increasing number of approved targeted therapies
provide an unprecedented background on which to test the
potential immunogenicity of recurrent resistance mutations.
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