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Abstract

A nonsense mutation adds a premature stop signal that hinders any further translation of a

protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions,

we used the DMD gene as an ideal model. First, because dystrophin absence causes

Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystro-

phy (BMD). Second, the DMD gene is X-linked and there is no second allele that can inter-

fere in males. Third, databases are accumulating reports on many mutations and

phenotypic data. Finally, because DMD mutations may have important therapeutic implica-

tions. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and litera-

ture and revised critically all data, together with data from our internal patients. We totally

collected 2593 patients. Positioning these mutations along the dystrophin transcript, we

observed a nonrandom distribution of BMD-associated mutations within selected exons and

concluded that the position can be predictive of the phenotype. Nonsense mutations always

cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found

milder BMD cases due to early 5’ nonsense mutations, if reinitiation can occur, or due to late

3’ nonsense when the shortened product retains functionality. In the central part of the gene,

all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while

mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in

predicting the natural history and the efficacy of therapeutic use of drug-stimulated transla-

tional readthrough of premature termination codons, also considering the action of internal

natural rescuers. More in general, our survey confirm that a nonsense mutation should be

not necessarily classified as a null allele and this should be considered in genetic

counselling.
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Introduction

A nonsense mutation is classically considered a loss-of-function change, with ribosomes that

dissociate from mRNA and transcript degradation. Shortened protein products are usually

quickly ubiquitinated and digested by the proteasome. All these mechanisms must be very effi-

cient to prevent cell accumulation of toxic or ectopic protein garbage [1]. This suggests that

the functional effect of a nonsense mutation may be considered equivalent to the full deletion

of a gene (null or amorph allele). However, the difference between the two causes is striking: in

the case of a nonsense mutation the cell retains almost all the genetic information, while in the

case of deletion does not. We searched for exceptions by studying nonsense mutations of the

DMD gene encoding a 427kDa- protein, named dystrophin. This is an ideal model. First,

because DMD is X-linked and in hemizygous males there is no second allele that may compli-

cate the genotype/phenotype correlation. Second, because in males the null alleles are fully

penetrant in the form of Duchenne muscular dystrophy (DMD) and well distinct from the

hypomorphic alleles that cause Becker muscular dystrophy (BMD). Third, because a huge

number of different nonsense mutations and phenotypic data have been reported since 1992.

Finally, because DMD nonsense mutations are the target for treatments based on readthrough

strategies [2, 3]. Dystrophin defects disrupt the associated glycoprotein complex at the sarco-

lemma and several pathogenic cascades are thus activated [4]. They quickly lead to structural

and functional disruption of the muscles and to a progressive muscle weakness. DMD is the

most severe phenotype, in which the progressive muscle disruption cause an early loss of

ambulation, skeletal alterations with respiratory and cardiac involvement, and sometimes cog-

nitive impairment [5]. Conversely, BMD represents the milder phenotype with a slower pro-

gression of muscle weakness, tardive loss of ambulation, and variable cardiac and respiratory

involvement [6]. DMD diagnosis cannot be questioned in teenagers, considering the dramatic

phenotype in males, such as difficulty running, climbing stairs, getting up from the floor with

a positive Gowers maneuver, creatine kinase values up to 100 times the normal maximum

value, and the high accuracy of natural history data available. Even if phenotype variants have

been reported, these are never strong enough to associate the dystrophin absence to a BMD

phenotype. Another point regards clinical trials, because any phenotype variability in patients

with nonsense mutations may reduce the statistical significance of any therapeutic improve-

ment [7, 8].

The full mutational analysis of the DMD gene is considered part of the standard of care for

DMD. The DMD gene, consisting of 79 exons generally separated by huge introns, is prone to

intragenic deletions or duplications that when include exons cause DMD or BMD [9–11]. The

first nonsense variants and other small defects were only identified six years after the DMD
gene cloning [12, 13]. Unlike most disease genes, single nucleotide substitutions and small

insertion/deletion of bases are a less frequent cause of disease [14, 15]. Random nonsense

mutations were found in 10–15% of DMD cases [16]. This randomness of lethal X-linked

mutations confirms the Haldane’s rule and offers a possibility of unbiased analysis [17]. In

1996, a pivotal study paved the way for a new therapeutic option for genetic disorders caused

by nonsense alleles: gentamycin was shown to induce the readthrough of ribosome overcom-

ing a single stop codon in the context of an open reading frame in the cystic fibrosis gene [18].

However, any possible therapeutic window was closed by severe side effects of gentamycin. A

high-throughput screening of synthetic molecules resulted in the selection of a new com-

pound, named PTC-124 from PTC Therapeutics (New Jersey, USA) that showed an important

increase of protein production in cells and mdx mice, carrying a nonsense variant in exon 23

[2, 19, 20]. This drug, commercial name Ataluren (Translarna), can be administered orally

and, compared with aminoglycosides, shows fewer side effects, in about 5% of treated subjects.
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These include vomiting, diarrhea, nausea (feeling sick), headache, stomachache and flatulence

[21, 22]. Despite weak Phase II results, its use was approved in member states of the European

Union, Iceland, Israel, Kazakhstan, Liechtenstein, Norway and the Republic of Korea, for the

treatment (40 mg/kg/day) of� 2 years DMD boys caused by nonsense mutation, or aged� 5

years in Brazil and Chile [3, 23]. The possibility of readthrough-based treatments provided fur-

ther impetus in searching for nonsense mutations in DMD boys as early as possible. Nowa-

days, next generation sequencing (NGS) protocols are being applied to fully sequence DNA in

children with suspected muscular dystrophy [24–27].

Our present survey on the positional effect of nonsense mutations may have important

implication for therapeutic use of drug-stimulated translational readthrough of premature ter-

mination codons.

Methods

We collected the published unique nonsense variants in the dystrophin gene (DMD,

NM_004006.2) from three main databases: Leiden Open Variation Database (LOVD) [28],

Human Genome Variant Database (HGMD) [29], and ClinVar [30]. Data filtering was based

on their classification as “Pathogenic” variants and considering their molecular consequence

differently termed in the three databases (by using HGVS nomenclature in LOVD, “Term” in

HGMD, and “nonsense” in ClinVar). We selected 702 nonsense variants in LOVD, 823 in

HGMD and 236 in ClinVar. Removing the duplicates among the databases and integrating all

the data, we obtained 849 unique nonsense mutations so far published (until April 2020).

LOVD also provides a rough indication of the variant recurrence, as it allows researcher to

resubmit a known variant found in additional patients [31]. Literature data were used to care-

fully correlate the specific phenotype to the nonsense variant observed in each patient. We

reviewed these data together with our internal cohort of 1,102 patients that included already

published cases [13, 15, 27] and further 128 cases. Genomic DNA was extracted from leucocyte

according to the standard procedure [32]. We performed Multiplex Ligation-dependent Probe

Amplification (MLPA), according to the manufacturer’s recommendations (MRC Holland)

and/or Log-PCR, as previously described [33]. MLPA/LogPCR negative patients were analyzed

for single nucleotide variants or small ins/del performing the NGS MotorPlex panel [26, 27] or

by a panel focused on>5,200 genes responsible for Mendelian Disease (Sure Select Agilent

Custom Constitutional Panel). We also used Human Splice Finder (HSF) [34], a bioinformatic

tool able to predict possible effects of the mutations on canonical or cryptic splice sites and on

specific exonic splicing enhancer/silencer sequences (ESE/ESS) [35]. ProteinPaint [36] was

used to graphically represent the distribution of nonsense mutations along DMD gene. The

Ethics Committee of Vanvitelli University approved the study with ID 5586/19 and 8635/19.

Results and discussion

To search for the most comprehensive number of annotated nonsense mutations in the DMD
gene, we added to our internal cases all the variants retrieved from public databases (LOVD

[28], HGMD [29] and ClinVar [30]) or from literature. The largest published study was carried

out on 243 patients with nonsense mutations by Flanigan et al [37], but all recent papers were

also considered [38, 39]. Since in some cases, nonsense variants reported in public databases

did not have a clear clinical diagnosis, we critically reviewed the associated reports to be sure

of the assigned phenotype. In our patient cohort, we had accurate information on 61 cases

with nonsense mutations in the DMD gene, part of which was previously published (S1 Table)

[13, 15, 40]. Altogether, we collected 2593 patients with 849 unique nonsense mutations (S2
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Table). The reports were classified in five groups based on the phenotypic annotation of the

patients: DMD, BMD, DMD/BMD, ND (Not Defined) and Other, as showed in Table 1.

To evaluate any positional effect of nonsense mutations, we first considered their distribu-

tion along the DMD gene in association with different phenotypes (Fig 1). Three main BMD-

associated coding regions are evident: N-terminus, C- terminus and central part of the rod

domain. BMD-associated nonsense mutations are listed in Table 2. Fig 2 describes the percent-

age of DMD/BMD frequency for each DMD exon with a blue color code for BMD cases and

orange for DMD cases. From the analysis of this figure, we immediately observed a non-ran-

dom distribution of milder cases in specific exons. We also found that mutations in adjacent

exons, in the middle part of the gene, had completely different phenotypic consequences. For

example, mutations in exons 30 and 32 were DMD-linked, while mutations in exons 29 and 31

were BMD-linked. We identified four exons with 15 unique nonsense mutations never associ-

ated with DMD. These were exons 2, 31, 72 and 73, for which we only found BMD patients or

milder phenotypes. In addition, we highlighted other 21 exons with 236 nonsense mutations

associated with BMD, DMD phenotype or undefined phenotypes at different frequencies

(Table 3). Finally, nonsense mutation in the remaining 51 exons are associated with DMD in

100% of cases, as originally expected for “loss-of-function” mutations [41].

Table 1. Summary of nonsense mutations and patients classified on the basis of reported phenotypes.

Disease Unique nonsense mutations Number of patients

DMD 579 2022

BMD 54 180

DMD/BMD 104 245

ND 88 103

OTHER
�

25 43

TOTAL 849 2593

�This category includes heterozygous symptomatic carrier, hyperCK, or cardiomyopathic phenotypes.

https://doi.org/10.1371/journal.pone.0237803.t001

Fig 1. Graphical representation of the distribution of nonsense mutations in the DMD gene. Nonsense mutations associated with DMD (orange) or BMD (blue) are

reported. The ProteinPaint graph [36] highlights three main regions for BMD phenotypes, while the vast majority of nonsense mutations are associated with DMD. The

number in the circle indicates that different nucleotide changes determine the same nonsense codon.

https://doi.org/10.1371/journal.pone.0237803.g001
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Table 2. Summary of reported nonsense mutations associated to BMD/mild phenotype.

EXON CDS Protein hg19 Patients Effect Reference

1 c.8G>A p.(Trp3�) g.33229422C>T 1 - [28]

1 c.9G>A p.[Trp3�, Leu2_Met124del, Leu2_Met128del] g.33229421C>T 27 exon 2-3-4-5 skipping [38]

1 c.11G>A p.(Trp4�) g.33229419C>T 6 - [42]

2 c.49C>T p.(Gln17�) g.33038300G>A 1 - [39]

2 c.67A>T p.(Lys23�) g.33038282T>A 1 - [28]

2 c.72G>A p.(Trp24�) g.33038277C>T 1 - [43]

3 c.103C>T p.(Gln35�) g.32867928G>A 2 - [44]

3 c.163G>T p.[Glu55�, Phe32Metfs�13] g.32867868C>A 1 frame-shift deletion of exons 3–7 [45]

5 c.336G>A p.(Trp112�) g.32841433C>T 3 - [42]

21 c.2704C>T p.(Gln902�) g.32503135G>A 2 - [46]

25 c.3328G>T p.[Glu1110�, Leu1093_Gln1144del] g.32481660C>A 1 exon 25 skipping [45]

25 c.3340A>T p.(Lys1114�) g.32481648T>A 3 - [8, 9]

25 c.3352G>T p.(Glu1118�) g.32481636C>A 2 - [47]

25 c.3358G>T p.(Glu1120�) g.32481630C>A 1 - [48]

25 c.3409C>T p.(Gln1137�) g.32481579G>A 3 - [49]

25 c.3413G>A p.(Trp1138�) g.32481575C>T 4 - [50]

26 c.3515G>A p.[Trp1172�, Val1145_Lys1201del] g.32472867C>T 1 exon 26 skipping [51, 52]

27 c.3631G>T p.[Glu1211�; Arg1202_1262del; Arg1202_1357del] g.32466728C>A 1 exons 27 or 27-28-29 skipping [53, 54]

27 c.3700G>T p.(Glu1234�) g.32466659C>A 1 - [9]

28 c.3843G>A p.(Trp1281�) g.32459375C>T 2 - [55]

28 c.3850G>T p.[Glu1284�, Glu1263_Asp1307del, Glu1263_Glu1357del] g.32459368C>A 2 exon 28 or 28–29 skipping [42]

29 c.3935T>A p.[Leu1312�, Glu1263_Glu1357del, Ser1308_Glu1357del] g.32456494A>T 1 exon 29 or 28–29 skipping [28, 56]

29 c.3940C>T p.[Arg1314�, Glu1263_Glu1357del, Ser1308_Glu1357del] g.32456489G>A 31 exon 29 or 28–29 skipping [51, 56]

29 c.4000G>T p.[Gly1334�, Glu1263_Glu1357del, Ser1308_Glu1357del] g.32456429C>A 1 exon 29 or 28–29 skipping [28, 56]

29 c.4012G>T p.(Glu1338�) g.32456417C>A 1 - [9]

31 c.4240C>T p.(Gln1414�) g.32408292G>A 1 - [9]

31 c.4250T>A p.[Leu1417�; Ile1413_Lys1449del] g.32408282A>T 4 exon 31 skipping [57]

31 c.4285A>T p.(Lys1429�) g.32408247T>A 1 - [9]

31 c.4294C>T p.[Gln1432�, Ile1413_Lys1449del] g.32408238G>A 3 exon 31 skipping [58]

33 c.4576G>T p.(Gly1526�) g.32404525C>A 1 - [28]

35 c.4979G>A p.(Trp1660�) g.32383183C>T 1 - [15]

35 c.4980G>A p.(Trp1660�) g.32383182C>T 1 - [28]

35 c.5002G>T p.(Glu1668�) g.32383160C>A 1 - [59]

37 c.5260G>T p.(Glu1754�) g.32380970C>A 1 - [60]

37 c.5287C>T p.[Arg1763�, Arg1719_Lys1775del] g.32380943G>A 22 exon 37 skipping [61]

38 c.5398G>T p.(Glu1800�) g.32366573C>A 3 - [9]

38 c.5404C>T p.(Gln1802�) g.32366567G>A 5 - [62]

38 c.5407C>T p.[Gln1803�, Ala1776_Met1816del] g.32366564G>A 5 exon 38 skipping [46, 56]

39 c.5452G>T p.(Glu1818�) g.32364194C>A 1 - [28]

39 c.5480T>A p.[Leu1827�, Ala1776_Lys1862del, Asn1817_Lys1862del] g.32364166A>T 2 exons 38–39 skipping [28, 56]

40 c.5725G>T p.(Glu1909�) g.32361265C>A 1 - [9]

41 c.5835G>T p.(Glu1946�) g.32360304C>A 1 - [28]

49 c.7105G>T p.[Glu2369�, Glu2367_Lys2400del] g.31854930C>A 5 exon 49 skipping [61]

56 c.8353A>T p.(Lys2785�) g.31525435T>A 1 - [9]

72 c.10279C>T p.[Gln3427�, Pro3422_Arg3443del] g.31191705G>A 7 exon 72 skipping [61]

73 c.10362T>A p.(Tyr3454�) g.31190497A>T 1 - [28]

74 c.10412T>A p.(Leu3471�) g.31187701A>T 2 - [57]

(Continued)
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For each exon, the fraction of blue color is proportional to the percentage of independent

BMD cases with nonsense mutations, while the fraction of orange color is proportional to the

percentage of DMD cases; exons without nonsense mutations are in gray. For each exon, the

shape of box extremities represents the phase, where in-frame junctions are indicated by verti-

cal lines.An arrow shape represents an exon starting (or ending) at the 2nd or 3rd nucleotide of

a codon. Methionines in exons 6 and 8 are reported with a green circle.

N-terminus

The distribution of nonsense mutations along the dystrophin molecule (Fig 2) is also quite sur-

prising. Although it may be expected that the effect of a mutation at the beginning of the

nascent polypeptide chain can be recovered from a re-initiation phenomenon [63], it is not

clear how this can occur much further downstream. After the first start codon, the following

methionines are two in exon 6 (position 124 and 128) [38] and three in exon 8 (230, 253 and

272) [64]. This could explain why nonsense mutations in exon 1, 2, 3 and 5 may be also associ-

ated with non-DMD phenotypes, but not why exon 4 mutations appear to be 100% DMD-

linked.

C-terminus

At the 3’ end, premature stop codons are understandably associated with milder phenotypes,

because major part of the proteins has already been produced and therefore the truncated

products may be partially functional. This prediction is supported by nonsense mutations of

Table 2. (Continued)

EXON CDS Protein hg19 Patients Effect Reference

74 c.10429C>T p.(Gln3477�) g.31187684G>A 1 - [28]

74 c.10543G>T p.[Glu3515�, Ile3465_Arg3518delinsMet] g.31187570C>A 1 exon 74 skipping [52]

75 c.10759G>T p.(Glu3587�) g.31165430C>A 1 - [28]

75 c.10792G>T p.(Glu3598�) g.31165397C>A 1 - [46]

76 c.10873C>T p.(Gln3625�) g.31164456G>A 1 - [54]

76 c.10888C>T p.(Arg3630�) g.31164441G>A 1 - [9]

76 c.10910C>A p.(Ser3637�) g.31164419G>T 4 - [61]

https://doi.org/10.1371/journal.pone.0237803.t002

Fig 2. Color representation of the distribution of phenotypes in relation to DMD exons.

https://doi.org/10.1371/journal.pone.0237803.g002
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exons 72–76, also considering that most 3’ DMD exons are alternatively spliced [58, 65, 66].

No nonsense mutation in exons 77, 78 and 79 has been so far described in DMD/BMD

patients. Recently, the last gnomAD v.3 reports a nonsense variant at position p.Arg3681� in

exon 78, found in six African individuals (5 females and 1 male), and reported as variant of

uncertain significance [67, 68].

This could suggest that nonsense mutations at the last 3’ end of the gene are not deleterious

for the dystrophin function.

Internal rod (in-frame exons)

A nonsense mutation in the middle of an open reading frame (ORF) generally undergoes non-

sense mediated (mRNA) decay, a translation-coupled mechanism that eliminates mRNAs con-

taining premature translation-termination codons [69]. Thus, even if it is possible a

therapeutic induction of translation readthrough, the mRNA is degraded and therefore the

expected phenotype should be severe. It is overly complex to measure the percentage of reduc-

tion of transcripts from muscle tissue in relation to the position of each nonsense mutation,

but it seems clear that in many cases the phenomenon could be not stringent. Indeed, alterna-

tively spliced isoforms could be actively selected by this mechanism, enriching the mRNA frac-

tion with an ORF compared to those with stop codons.

Table 3. Patients with nonsense mutations in the same exons but with discordant phenotypes.

DMD

EXON

FRAME TOT DMD BMD DMD/BMD Not Defined Other

Nonsense

mutations

Patients Nonsense

mutations

Patients Nonsense

mutations

Patients Nonsense

mutations

Patients Nonsense

mutations

Patients Nonsense

mutations

Patients

1 - 4 35 1 1 3 34 0 0 0 0 0 0

2 out 4 5 0 0 3 3 0 0 1 2 0 0

3 in 5 16 2 12 2 3 1 1 0 0 0 0

5 in 7 18 3 4 1 3 3 11 0 0 0 0

21 out 18 44 12 37 1 2 1 1 3 3 1 1

25 in 18 58 7 15 6 14 4 27 1 2 0 0

26 in 21 48 13 37 1 1 1 1 5 8 1 1

27 in 13 19 9 14 2 2 0 0 1 1 1 2

28 in 12 24 5 10 2 4 3 8 0 0 2 2

29 in 12 57 4 8 4 34 1 10 3 5 0 0

31 in 7 12 0 0 4 9 2 2 1 1 0 0

33 in 14 32 11 27 1 1 1 1 0 0 1 3

35 in 15 55 8 48 3 3 2 2 2 2 0 0

37 in 10 39 8 16 2 23 0 0 0 0 0 0

38 in 9 34 2 4 3 13 4 17 0 0 0 0

39 in 16 65 8 49 2 3 1 5 3 3 2 5

40 in 16 34 9 21 1 1 3 6 2 2 1 4

41 in 20 76 10 58 1 1 4 11 4 4 1 2

49 in 5 10 1 1 1 5 1 1 2 3 0 0

56 out 8 11 6 9 1 1 1 1 0 0 0 0

72 in 2 10 0 0 1 7 1 3 0 0 0 0

73 in 2 2 0 0 1 1 0 0 1 1 0 0

74 in 10 18 4 5 3 4 2 8 1 1 0 0

75 out 8 14 3 7 2 2 1 3 1 1 1 1

76 out 6 13 2 6 3 6 1 1 0 0 0 0

https://doi.org/10.1371/journal.pone.0237803.t003
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On the other hand, if a portion of mRNA skips the exon with a mutation, a smaller protein

could still be produced on the condition that the skipped exon is in-frame. Previous works

hypothesized that mutations in in-frame exons might cause milder phenotypes via spontane-

ous exon skipping of the mutated exon, which may weaken the mutation consequence [14,

37]. This favorable precondition is the rule for most central dystrophin exons: all of them

between 23 and 42 are in-frame. Apart from exon 29 that is alternatively spliced in normal

muscle, all these other exons appear to be required [70]. Interestingly, consecutive exons may

have divergent phenotypic associations. The skipping could restore the transcript and several

reports have demonstrated that specific nonsense mutation can convert exonic splicing

enhancer sequences (ESE) to silencer elements (ESS) [37, 71–73]. However, the situation is

very strange for some exons such as 25, 31, 37 and 38 where many different nonsense muta-

tions all lead to a mild phenotype (Table 2) [8, 45, 46, 56, 58, 61]. What is the explanation? Are

these four exons easily skippable and thus are lost wherever they are mutated?

In addition, there is also the possibility of a multiple exon skipping. Nonsense mutations in

the exon 27 cause the skipping of the exons 27–29 [53, 54]. Finally, it has been described that

nonsense mutations in the exon 28 and 29 induce the skipping of single involved exon or the

skipping of double exons (exons 28–29); moreover, mutations in the exon 39 cause 38–39

exons skipping [28, 42, 51, 56].

Internal rod (out-of-frame exons)

The explanation remains obscure for a few cases in out-of-frame exons. To provide an hypoth-

esis, we checked two BMD-associated nonsense mutations in exons 21 and 56. The splice-site

predictor software HSF [34] indicates that c.8353A>T, p.Lys2785�, in the exon 56, could cause

the creation of two new splice acceptor sites. Only one allows to maintain the protein frame,

thus explaining the BMD phenotype (Fig 3). By contrast, investigating the consequence of the

variation c.2704C>T, p.Gln902�, in the exon 21, no splicing alteration was predicted. It is pos-

sible that self-correcting exon skipping may involve more than one exon and in this case pre-

diction of phenotype effect based on small mutations location is not possible [74]. Therefore,

to explain the reported association with BMD phenotype, it could be speculated about a poten-

tial coupled skipping of the exons 21–22, which could restore the protein frame (Fig 2).

By analyzing the c.8353A>T (p.Lys2785�) variant using the splice-site predictor software

HSF, the nucleotide change is predicted to activate a cryptic acceptor splice site able to partially

Fig 3. Prediction of a cryptic acceptor splice site in DMD exon56.

https://doi.org/10.1371/journal.pone.0237803.g003
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rescue reading-frame of exon 56, retaining the last 12 amino acids. A second weaker cryptic

acceptor splice site is underscored, no rescuing reading-frame.

Conclusions

By positioning all reported nonsense mutations along the dystrophin transcript, we observed a

skewed concentration of BMD within selected exons. Previous data from large cohort of

patients, [37, 61] and the present survey show that a milder than expected phenotype can be

produced by the spontaneous elimination of a nonsense mutation from dystrophin mRNA in

some central exons. The reported exceptions further confirm that natural mechanisms for res-

cue do exist. The observation suggests that exon skipping in the specific exons identified in

this work could be a biologically more favored therapeutic approach than recovering deletions.

Antisense oligonucleotides (AON) or new molecules, designed to induce the jump of specific

exons are desirable. While on another fifty exons on the effects of the readthrough strategies

can be more easily monitored.

Our graphical output may be of practical use both in genetic counselling and in recruitment

of patients for translational readthrough of premature termination codons. From a more gen-

eral point of view, our data confirm that multiple mechanisms can partially rescue nonsense

mutations that should be not necessarily classified as null variants. This should be considered

for the interpretation of NGS results.
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