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Abstract: Due to their complete non-biodegradability, current food packages have resulted in major
environmental issues. Today’s smart consumer is looking for alternatives that are environmentally
friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established
fact that complete replacement with environmentally friendly packaging materials is unattainable,
and bio-based plastics should be the future of the food packaging industry. Natural biopolymers
and nanotechnological interventions allow the creation of new, high-performance, light-weight,
and environmentally friendly composite materials, which can replace non-biodegradable plastic
packaging materials. This review summarizes the recent advancements in smart biogenic packaging,
focusing on the shift from conventional to natural packaging, properties of various biogenic packaging
materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to
develop active and intelligent biogenic systems, such as the use of biosensors in food packaging.
Lastly, challenges and opportunities in biogenic packaging are described, for their application in
sustainable food packing systems.

Keywords: biogenic; smart packaging; biodegradable; material; food

1. Introduction

Growing anxieties concerning the ecological impact of waste, carbon footprint, con-
sumer inclination towards ready-to-eat foods with enhanced shelf life, and the sustainability
of fossil fuels have all fueled a surge in scientific collaboration to develop or find alterna-
tives to traditional food packaging materials. Moreover, conventional packaging materials
for food are estimated to exceed 700 million annually and are expected to reach one billion
by the end of 2021 [1]. As a result, the plastic industry is the prime source of plastic
pollution, which is expected to increase two fold by 2050 [2]. Food packaging industries
are increasingly inclined towards biogenic plastics or biopolymers made from renewable
resources, to solve the environmental challenges and limited supplies of petroleum-based
polymers. Biogenic plastics are made from renewable raw resources that can be regenerated
through natural processes.

Smart biogenic packaging is an innovative, swiftly emerging concept, where sustain-
ability and real-time monitoring of food are coupled together, ensuring safe and healthy
food, alongside commercial and ecological prosperity. Smart biogenic packaging integrates
active and intelligent packaging solutions to provide consumers with more reliable infor-
mation about food product conditions. It also generates a shielding effect for the food
by incorporating active substances such as antimicrobial agents in a biogenic polymer
matrix [3]. Biosensors can play a vital role in detecting food pathogens, harmful additives,
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or allergens. These sensors are composed of a bioreceptor that detects a biochemical signal
and a transducer that transforms this into a quantitative response [4]. Various companies
are now producing biosensors to identify specific pathogens in food samples, to avert
unpleasant situations and assure food safety. To get highly precise and sensitive results,
microbial whole-cell sensors, nucleic acid, and bacteriophage-based sensors can be used.
Multiple techniques of incorporating biosensors in food packets are described subsequently
in this article.

A vast amount of literature has been published on the impact of petro-based packag-
ing materials on the environment. Hence, it has become pertinent to evaluate the various
biogenic polymers, their properties, prerequisites, and deviances, to raise awareness about
green packaging; thereby, encouraging its prominence. This review is expected to em-
power the food industry and regulatory authorities to deploy this unique, clean, and
environmentally friendly approach on a large scale.

2. Transformation from Conventional Packaging to Biogenic Packaging

Plastics are frequently used for packing because they are light, inexpensive, and
adaptable to many applications. However, due to the low biodegradability of these
petroleum-based polymers, environmental issues have been growing [5]. Polyolefins
and their replacements, polyesters, and polyamides are the three main types of conven-
tional packaging materials used in the food and food product industries. Polymers such
as polypropylene (PP), low-density polyethylene (LDPE), linear low-density polyethylene
(LLDPE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), polystyrene (PS),
and oriented polystyrene (OPS) are examples of polyolefins and their alternatives. Water
bottles are mostly polyesters, such as polyethylene terephthalate (PET) and other aliphatic
and aromatic polyesters. PAs are typically used in films or trays for food products that are
extremely sensitive to oxygen. The majorities of these components are not biodegradable
and will accumulate in landfills over time, causing environmental harm. Even though
numerous recycling techniques exist, packing materials are frequently contaminated with
leftover food, making recycling cumbersome and consequently unviable. Environmental
awareness and strict environmental restrictions are driving research into alternatives to
food packaging materials, and attempts are being made at both academic and industry level
to incorporate bioplastics into various consumer items [6]. Although plastic packaging has
proven to be workable, the production of petroleum-based plastics emits greenhouse gases
(particularly CO2), and their disposal results in plastics ending up in landfills, becoming
refuse in land and water streams, and eventually contaminating the waterways, due to
a lack of collection or careful management [7]. The food packaging sector is trying to
determine how to make plastic more environmentally responsible.

Additionally, food-packaging companies and the food industry have been attempting
to replace old, nonrenewable petroleum-based materials with abundant, low-cost, renew-
able, and biodegradable alternatives, to become more sustainable. The overall question is
how can plastic become (more) sustainable? In this context, the food-packaging produc-
ers and food industries have been using abundant, low-cost, renewable, and biodegrad-
able alternatives to the traditional, nonrenewable petroleum-based resources, such as
bioplastics [8].

As far as consumer behavior is concerned, eco-friendliness has become the fashion of
the day, thanks to the growing popularity of worldwide environmental protection and the
notion of sustainable development. As such, the logistics industry pays more attention to
green packaging. Although most customers lack specific knowledge of green packaging,
they have demonstrated a considerable willingness to pay for it. Furthermore, consumers
would place a higher value on the usability of green packaging, such as accessibility,
renewability, and preventative abilities, compared to the costs and aesthetics of green
packaging [9]. Another notable variation in consumer behavior toward plastic use is
the rise in popularity of ready-to-eat foods, particularly in urban regions, where modern
lives tend to limit the available time. Understanding the pro-environmental behavior of
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convenience food customers is particularly difficult, since there is frequently a conflict
between eco-friendly intentions and the time limits imposed by modern city living [10].

Due to the strong demand from industry, new bio-based polymers and bio-based con-
ventional polymers are predicted to drive rapid growth in research and development over
the next decade. Global reliance on petrochemical-based materials and their environmental
consequences has increased the strain on nonrenewable resources. As a result, sustainable
alternatives are preferred, since they are significantly greener, relatively clean, degradable,
reusable, and functional after use [11]. It is noteworthy that, although progress has been
made in the development of alternative packaging methods, there is still no perfect solution
that can meet all of the sustainability criteria, while also fulfilling the primary role of food
packaging: to keep and transport the packaged items in good condition [12].

Evaluating the long-term viability of food packaging necessitates a more holistic
approach that considers various factors. This should include the use of materials that,
among other things, produce no greenhouse gas emissions, can be recycled or reused,
generate no landfill trash, consume less water, are created with renewable energy, do not
pollute the air, and do not impair human health. Although progress has been made in the
development of alternative packaging methods, there is still no perfect solution that can
meet all of the sustainability criteria and, in the end, fulfills the function of food packaging:
to store and transport the packed goods in good condition [13].

3. Biogenic Packaging Polymers in Food Packaging-Types

Biogenic packaging is a new generation of packaging, which is garnering worldwide
recognition due to its environmental amenability and biodegradability. Biogenic polymers
or resins are used to make artificial or organic processed macromolecules into sustainable
packaging materials from bio-based (agricultural and marine) sources, and which are
biodegradable and/or recyclable [14,15]. Biogenic polymers are associated with the notion
of sustainability and also exhibit a lower carbon dioxide (CO2) footprint, contrary to
traditional packaging materials. New biogenic polymers are continuously evolving, with a
plethora of properties [16] to help relieve concerns about the exhaustion of fossil reserves
and the global warming exacerbated by the use of petrochemicals.

Technological innovations for converting these naturally derived resources into value-
added chemicals and innovative polymerization methods for producing superior quality,
cheap polymers with configurable frameworks and functionalities are critical components
of long-term development. In addition, the present need is to develop ultra-modern
and cutting-edge techniques for unfolding their internal arrangement and facilitating
their use in advanced sectors, such as in biogenic sensors [17]. Based on their origin,
biogenic polymers are schematically grouped under three classes (Figure 1): the first
encompasses the polymers derived naturally from biomass, the second class includes
polymers biosynthesized by microflora, and the third is synthetic biogenic polymers, made
from bioderived monomers.

3.1. Naturally Derived Biogenic Polymers

Sustainable polymers are derived from easily procurable and biocompatible materials
such as biomass rather than traditional fossil fuels such as oil and gas, especially through
biological and biochemical processes (Table 1). Researchers have made substantial efforts
to synthesize novel, natural biogenic polymers that are chemically equivalent to, and that
can replace or outperform, petroleum-based polymers [18]. Table 1 encompasses several
naturally derived biogenic polymers, with their compositional units and properties.

3.1.1. Cellulose/Nano-Cellulose

Cellulose is an organic, sustainable, structural polysaccharide composed of D-glucose
monomers. Cellulose can be derived from various bio-sources such as wood, cotton, hemp,
and agricultural by-products, etc. [19]. Aside from paper manufacturing, cellulose without
alteration has very few applications, particularly in the food packaging industry. The
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enzymatic, chemical, or mechanical modification of cellulose leads to the generation of
carboxymethyl cellulose, methyl cellulose, and hydroxypropyl cellulose, which can be
judiciously used as a coating material for food packaging applications. Composite films
are made from cellulose acetate, chitosan, and silica. Enhancement in tensile strength (TS)
and reduction in oxygen transmissibility have been reported.
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Furthermore, the hydrophilic inclination of the film, due to the presence of chitosan
was overcome using silica, by tuning it to be hydrophobic, which is a desirable property in
food packaging [20]. Compared to commercially available polyethylene, the cellulose-based
film fabricated from delignified banana stem fibers by Ai et al. [21] demonstrated higher
gas and moisture permeability. The increased permeability aided ethylene release, thereby
delaying the ripening of bananas and extending the storage period of mangoes.

Nanocellulose is an ideal material for food packaging, because of its excellent rigidity
(comparable to that of polyethylene terephthalate) and lower oxygen portability (equivalent
to that of ethylene vinyl alcohol). Nanocomposites are considered an effective alternative
to improve the effectiveness of the polymers above to a level suitable for food packaging
applications [22]. Numerous research studies have reported that using nanostructured
cellulose fibers as a strengthening material in composite packaging can result in significant
improvements in gas permeation properties, thermal stability, and biodegradability [23].
Bio-based films derived from cellulose nanofibrils and oil showcased excellent ductability
and stability at temperatures up to 300 ◦C [24]. Ghaderi et al. [25] illustrated that nanocom-
posites formed from cellulose nanofibers extracted from sugarcane bagasse with polylactic
acid ameliorated the water vapor permeability. Pan et al. [26] reported that fish gelatin film,
when reinforced with microcrystalline cellulose, had higher tenacity and elasticity values
than pure films. At the same time, the elongation at break was lower.

3.1.2. Chitin/Chitosan

Chitin is the second most abundant natural polymer after cellulose, is derived from
exoskeletons of crustaceans, and has emerged as a promising alternative to petroleum-
based packaging materials in the food packaging industry [27]. Chitin’s composition is
identical to cellulose, except for having an acetamide group on the alpha carbon atom
instead of the secondary hydroxyl group in the cellulose molecule. It is utilized for the
generation of chitosan through deacetylation by an alkali [28].

Chitosan is a soluble form of chitin and is applied in the packaging industry, due
to its low cost and abundant natural availability [29]. The properties of chitosan are



Polymers 2022, 14, 829 5 of 23

mainly dependent on the degree of acetylation [30]. The existence of a non-polar acetyl
group imparts hydrophobic characteristic properties to chitosan [31]. Chitosan-based
packaging films have been shown to exhibit fairly good mechanical properties and are
also less permeable to gases. However, natural polymers showcase a higher affinity
for moisture, thereby illustrating increased water vapor permeability [32]. A variety of
strategies have been used to optimize the characteristics and properties of immaculate
polymers by the amalgamation bioactive substances or blending them with other natural
biopolymers. Laksmanan et al. [33] ascertained that the pores existing in a blend of chitosan
and microbial-derived extracellular polymeric substances allowed a continuous exchange
of gases, while minimizing moisture transfer, making it more suitable for food packaging.
The moisture, barrier, mechanical, and optical properties of chitosan and rice starch film
improved by exposing it to ultrasonic treatment. It was found that due to the internal
formation of cross-linkages by rice starch, the seepage of water in the composite films was
hindered. In addition, TS and elongation at break also improved [34].

Bioplastics articulated from the consolidation of chitosan, montmorillonite, and ginger
essential oil showed good oxygen barrier properties, retarding oxidation in foods with
unsaturated fats [35]. It was reported that the embodiment of eugenol-loaded chitosan
nanoparticles in thermoplastic flour upgraded the moisture barrier tendency and exhibited
superior antioxidant activity [36]. Collagen has captured experts’ interest as a possible
synthetic polymer alternative. Chitosan-based composite films demonstrated outstanding
thermal stability, compatibility, and adhesion [37]. Ahmed and Ikram [38] testified that
biodegradable chitosan and gelatin biocomposite packaging films had an increased TS,
ultra-violet barrier properties, and decreased water vapor permeability. As a result, it is
reasonable to believe that chitosan, when coupled with proteins/carbohydrates, essential
oils, and other ingredients, could provide a variety of pre-programmed properties to give
bio-based packaging desirable attributes.

3.1.3. Carrageenan

Carrageenans are high molecular weight biopolymers obtained from the Rhodophyceae
family of seaweed cell walls. These are water-soluble, extremely flexible, linear sulfated
galactan polysaccharides, with spiral helical structures found in the cavities of the cellulose
network in plants [39,40]. These spiral helical confirmations are capable of producing many
types of gels at ambient temperature. They are typically found in two forms: native, and
degraded. On a commercial scale, carrageenan is used as an additive in the food processing
industry, as stabilizers, gelling agents, thickeners, etc. However, owing to its inherent
properties, it is also used as the base material for the production of bio-based packaging
materials [41]. In addition, bio-nano-composite films of carrageenan have an enhanced
biodegradability index, which can mitigate environmental impacts [42].

Although the packaging generated from carrageenan has good a gas barrier capa-
bility, it has reduced water resistance characteristics; thereby, hampering its usage in
food packaging [43]. As a result, the carrageenan matrix is frequently intermingled with
different polymers, to optimize the barrier properties. It was observed that when kappa-
carrageenan is blended with polyvinyl alcohol, a positive modification in water vapor
transmissibility, TS, bursting ability, and water solubility of the film was produced [44].
Similarly, Martiny et al. [45] demonstrated a significant reduction by 54 percent in water
vapor permeability of carrageenan films imbibed with olive leaves extract; in addition, the
formed films were more flexible. In agreement with the previous study, a steady refine-
ment was noticed in the mechanical properties and water vapor permeability of Ipomoea
batatas and kappa-carrageenan blended films [46]. Similar results were also obtained by
Sedayu et al. [47] in the case of carrageenan and nanocellulose composite films.

3.1.4. Starch

Starches are widely available polysaccharides and one of the most affordable groups
of biodegradable polymers. They are also referred to as hydrocolloid biopolymers. Biopoly-
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mers are made from various starches, including rice, potato, corn, cassava, tapioca, and
others [48]. Due to the firm configuration of polysaccharide molecules, they block the diffu-
sion of oxygen and carbon dioxide gases. However, these bio molecules are prone to water
transmission through films; their fragile nature and lack of mechanical stability have led to
the concept of coupling with lipids or other biopolymers to counter these limitations [49].
Composite biofilms made with cassava, pinhão thermoplastic starch, compostable polyester
poly butylene adipate co-terephthalate, green tea, and rosemary extracts helped improve
water vapor permeability [50]. A progression in flexibility, water vapor resistance, and
TS was perceived in a starch-based film reinforced with cellulose nanofibers [51]. Similar
results were remarked by Ali et al. [52] in starch films with polysaccharide-based crystals.
Moreover, the Young’s modulus and protection from UV rays produced an augmentation
in TS. With the addition of salicylic acid to the starch matrix, improvements in TS and
impediment of water vapor permeability were observed. In addition to this, the films had
good activity against S. aureus and B. subtilis [53].

3.1.5. Proteins

Proteins employed for the formation of films are derived from renewable sources
and are easily degradable compared to their plastic counterparts. Protein macromolecules
comprise precise amino acid sequences joined by amide linkage and molecular arrangement
that can be degraded by proteases [54]. They are frequently used as film-forming substances.
Proteins possess an additional benefit in their amphiphilic nature, besides electrostatic
charge and denaturation properties [55]. Various changes can be brought about in the
secondary, tertiary, and quaternary structure of proteins to suit the needs of film-forming
substances. These variations can be made using heat, irradiation, chemical, mechanical
treatment, pressure, and enzymatic applications.

Proteins originating from milk (casein and whey protein), plant sources (soy protein,
maize zein), wheat gluten, pea protein, rice bran protein collagen, albumin from eggs,
myofibrillar protein of fish, and keratin are among the most frequently utilized proteins in
edible film and coating compositions [56]. For instance, chitosan added to rapeseed protein
hydrolysate augmented the density, mechanical properties, and TS of the film. Further-
more, it also exhibited antibacterial action against E. coli, B. subtilis, and S. aureus [57,58].
The flexibility, elongation at break, ultra-violet ray blocking capacity of fish gelatin film
increased with the incorporation of citric acid [59].

3.2. Microorganism-Derived Biogenic Polymers

Microbiota are involved in synthesizing several biogenic polymers with diverse char-
acteristics in food packaging.

Table 1. Properties of naturally derived biogenic polymers used in food packaging.

Biogenic Polymer Monomeric Unit Structure of Monomeric Unit Properties

Cellulose/Nanocellulose D-glucose
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3.2.1. Polyhydroxyalkanoates (PHA)

Bacillus sp., Cupriavidus nector, and other bacteria ferment surplus carbon-based
feedstocks to generate bio-based, biodegradable, and compostable biopolymers: polyhy-
droxyalkanoates [69]. PHAs are demarcated by dint of several monomeric carbons in
their chains: short chains have three to six carbons, medium-chain lengths include seven
to sixteen carbons, and long chains have more than sixteen carbons. The properties of
PHA polymers can be customized according to the application, by integrating various
polymers into the polymer chain. Aside from chain length variability, many PHAs with
different functional groups, such as halogens and aromatic groups, have been successfully
fabricated [70]. PHA’s are increasingly being preferred as a substitute for petro-based
packaging materials because of their superior thermal stability. PHAs with a medium chain
length are used as coatings for cheese and cutlery for serving food [71].

The first PHA to be discovered was Poly-3-hydroxybutyrate (PHB). The most preva-
lent PHA packing resins are PHB and its copolymer with poly-hydroxy valerate. Only
polypropylene and polyethylene can compete with PHB, in terms of mechanical character-
istics. Its superior mechanical features, such as high elastic modulus and TS, and excellent
moisture and gas barrier capabilities, qualify it for food packaging [72]. Despite some
covetable attributes, its practical industrial application is limited due to its (i) innate aging
due to secondary crystallization, which leads to brittleness over time [73]; (ii) sluggish
crystallization results in the formation of big spherulites, causing high fracturability [74];
(iii) thermally instable [75], and (iv) high manufacturing cost [76].

3.2.2. Bacterial Cellulose

Bacterial cellulose has garnered worldwide attention because of its exceptional physi-
cal and chemical characteristics, such as biocompostibility, being environmentally friendly,
marked mechanical properties, low cost of production, and hydrophilic nature [77]. Bacte-
rial cellulose is a linear and unbranched microbial polymer, generated as an exopolysaccha-
ride by certain bacteria such as Acetobacter, Gluconacetobacter, Sarcina, Agrobacterium, etc.
Unlike plant cellulose, it lacks pectin, lignin, and hemicellulose, which makes its isolation
and purification process simpler and requiring of less energy input compared to plant-
derived cellulose, which includes the usage of toxic chemicals [78]. It comprises ultrafine
nanofibrils that materialize into a three-dimensional mesh-like structure, further stabilized
by inter and intra-molecular hydrogen bonding [79]. The high fiber content, degree of
crystallinity, and TS provides it with an edge compared to plant cellulose [80]. Scientists
have made tremendous efforts to develop highly-functional bacterial cellulose composites
with tailor-made characteristics [81].

Reviewing the literature showed that in situ and ex situ processes can be harnessed to
functionalize bacterial cellulose [82]. The most prevalent procedure for biopolymer com-
posite synthesis is the in situ approach, which involves first adding reinforcing elements to
the culture medium, such as agar, sodium alginate, starch, montmorillonite carboxymethyl-
cellulose, and so on. This method’s superiority is due to its simplicity. Furthermore, the
additional compounds become an intrinsic component of the 3D fibril structure, giving the
composite stability and favorable properties. A major constraint of this process is that these
added polymers may be insoluble in culture media and may potentially hinder bacterial
growth [83].

On the other hand, ex situ modification is based on the bacterial cellulose production
process. In this post-production process, bioactive chemicals are injected into a porous,
nanofibrillar bacterial cellulose matrix. The abilities to employ bioactive chemicals and
preserve the natural structure of bacterial cellulose are the most important aspects of this
approach. One of the downsides is that only nanoparticles can gain entry to the bacterial
cellulose pores [84]. Owing to the chemical reactivity of bacterial cellulose, due to hydroxyl
groups, many permutations and combinations are feasible for fulfilling the requirements of
the food packaging industry.
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An improvement in tensile and barrier characteristics was observed when bacterial
cellulose in combination with silver nanoparticles was dispersed in chitosan nanocomposite
films [85]. Light and mechanical properties and biodegradability were also augmented
by combining bacterial cellulose with carboxymethylcellulose [86]. Bacterial cellulose bio-
based packaging is one of the fastest-growing trends in the food sector, with benefits for the
natural environment, human health, and the quality of stored food goods. However, several
hurdles remain for low-cost commercial production of BNC-based packaging materials,
such as the insubstantial yield of known bacterial nanocellulose strains and the relatively
high operational expenses (e.g., expensive culture medium, bioactive agents), particularly
when compared to synthetic alternatives.

3.2.3. Pullulan

Pullulan is an edible, linear, unbranched, non-ionic, water-soluble, non-mutagenic,
and commercially accessible exopolysaccharide generated from the fermentation medium
Aureobasidium pullulans resembling yeast. Pullulan can be processed into an odorless, thin,
tasteless, and transparent packaging material [87]. It comprises maltotriose monomeric
units linked together by α-(1-6)-glycosidic bonds. The single linkage pattern governs
its characteristic features of flexibility, elasticity, and solubility [88,89], whereas hydroxyl
groups are responsible for its barrier properties [90]. It has low viscosity in comparison
to other polysaccharides, does not gel, and has strong oxygen barrier qualities in films
and coatings; in addition, it has good durability in aqueous solutions over a wide pH
range [91]. However, its use in food packaging applications is limited by its high cost. As a
result, pullulan is intermingled with other biopolymers to reduce costs and improve its
material properties.

The development of pullulan-based composite films reinforced by zinc oxide nanopar-
ticles and propolis intensified UV blocking capacity, improving mechanical strength by
25 percent. Furthermore, this alloying helped in optimizing its water vapor permeability.
In addition, the composite film produced a very good action against L. monocytogenes
and E.coli [92]. Cinnamon essential oil at 12% and Tween 80 added to a pullulan matrix
complimented the action against food pathogens and antioxidant activity of the blended
film. However, a decrement in water permeation, TS, and transparency was observed [93].

Another study by Luís et al. [94] reported that pullulan and apple fiber films had better
TS and elasticity at p-value <0.05 than pure pullulan films. Moreover, a boost in hydropho-
bicity was reported. They also could scavenge free radicals, reduce lipid peroxidation,
and stop the growth of the recognized foodborne pathogens S. aureus, L. monocytogenes,
B. cereus, E. coli, P. aeruginosa, S. typhimurium, and E. faecalis. Pullulan alkyl esters were
synthesized with varying degrees of substitution and carboxylic anhydrides. Films made
from pullulan esters demonstrated maximal barrier efficiency against oxygen and mois-
ture, proving their suitability for extending the shelf life of packed food products [95].
Bionanocomposite packaging developed by intermixing pullulan with cellulose nanofibers
showed an improved tenacity by 60 percent and thermal stability. Water vapor and oxygen
transmission rates diminished by 32 and 38 percent, respectively, with the addition of
cellulose nanofibers [19]. Its proven safety record as a nature-friendly and biocompatible
biopolymer has gained widespread regulatory recognition. As per the United States Food
and Drug Administration, pullulan falls under the ‘generally regarded as safe (GRAS)’
category [96].

3.2.4. Alginate

Alginates are structural polysaccharides obtained from brown algae (Phaeophyceae)
and bacteria such as Pseudomonas and Azotobacter. Alginate is composed of monomeric unit
consisting of (1,4)-linked -D-mannuronic acid (M) and -L-guluronic acid (G) residues [97].
The various combinations of M and G blocks produce at least 200 different alginates [98]. Al-
ginates have low toxicity, compatibility with living organisms, are environmentally friendly,
and have superior film-forming ability. However, they are highly hydrophilic, leading
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to an amplification in water vapor transmission rate [99]. An amalgamation of copper
sulfide nanoparticles at 0.5 percent in alginate-based blend films improved mechanical, UV
blocking, and hydrophobic properties. These films exhibited decent action against E. coli
and L. monocytogenes [100]. In a similar study, the imbibition of thymol in alginate-based
film increased elongation at break, TS, and UV barrier characteristics. However, reduced
solubility in water, water permeation, and swelling ratio were found [101]. Various other
biocompatible compounds have been added or incorporated to improve the characteristics
of alginate-based packaging: (a) for good mechanical properties: micro fibrillated cellulose
and calcium chloride; (b) for declining water vapor transmission rate: calcium chloride,
(c) for enhancing flexibility, glycerol or sorbitol may be added [102].

3.2.5. Xanthan Gum

Xanthan Gum is a high molecular weight, extracellular polysaccharide synthesized by
fermentation of carbohydrates by bacteria Xanthomonas campestris. The basic monomeric
unit of xanthan gum is D-glucose units with a trisaccharide side chain. Two mannose
units of a side-chain are differentiated by guluronic acid. When in contact with water,
xanthan gum showcases remarkable endurance against a wide range of pH variations,
acid, and alkalis, by a toughening and insulating effect developed by anionic trisaccharide
side chains [103]. The composite film obtained by a combination of xanthan gum (4 g
per liter), pectin, and sodium alginate exhibited a TS of 29.65 MPa, elongation at break of
19.02 percent, and WVTR 18.12 × 10–11 g/m2.s.pa, proving a better choice for packaging of
fresh-cut fruit and vegetables [104]. According to Rukmanikrishnan et al. [105], composite
films obtained by the interaction of xanthan gum and agar had good light properties, and
were transparent, biocompatible, and more stable at a wide range of temperatures

3.3. Synthetically Derived Biogenic Polymers

Polymers are obtained by modifying natural polymers or produced synthetically
from synthetic monomers, so that they can degrade naturally without leaving detrimen-
tal by-products in the environment such polylactic acid, polybutylene succinate, and so
on (Table 2). Synthetic biopolymers have received considerable attention due to their
distinctive benefits over natural polymers, in terms of their reliability and versatility for
complementing a broad array of applications; as well as, due to their biodegradability and
environmental friendliness.

3.3.1. Polylactic Acid (PLA)

PLA is aliphatic polyester with lactic acid as its basic constitutional unit. Lactic acid
is produced by fermentation of carbohydrates obtained from corn, wheat, potato, or agri-
cultural wastes, such as whey and molasses [106]. However, corn is the most preferred
biomaterial because it serves as an impeccable feedstock for the process of fermentation;
thereby, resulting in the generation of pure lactic acid [107]. However, the commercial appli-
cability of PLA is restrained because of its easy fracturability, lower softening temperature,
poor water and gas permeation capability, premature aging, and diminished shock toler-
ance [108]. To overcome these limitations and broaden its applicability, it is recommended
to prepare blends or composites of PLA and reinforce them with various fillers [109]. A
blended film comprising PLA and lignin was developed. A significant decrease in swelling
ratio and stretchability was noticed. However, a substantial advancement was observed
in its light barrier characteristics, antimicrobial activity, and compostability. Regarding
the environmental conditions, bio-decomposition of PLA typically takes 6–24 months.
Silva et al. [110] incorporated kraft lignin at different concentrations in PLA composites to
reduce the bio-decomposition time. The researchers concluded that PLA-lignin composites
containing 10 percent lignin could significantly reduce bio-decomposition time.

Moreover, these composites had comparable TS to that of pure PLA packaging.
Kim et al. [111] proposed incorporating zinc oxide nanoparticles into a PLA film. The com-
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posite films offered excellent antagonistic action against E. coli and Staphylococcus aureus.
Moreover, the films demonstrated excellent ultra-violet ray barrier properties.

An amalgamation of lignin in PLA increased the thermal stability, but was responsible
for reducing the degree of crystallinity, because lignin inhibits the dexterity of PLA chains
during crystallization. Bio-decomposition of PLA-lignin multilayer films may be attributed
to the fact that degradation initiates during the amorphous phase and progresses to the
crystalline phase [112]. PLA multilayer films with gelatin supplemented with an extract
from almond shells showed a lower oxygen gas penetrability. Their mechanical strength
was analogous to commercially available plastic packaging materials [113]. Akin to this
study, PLA films reinforced with magnesium oxide nanoparticles demonstrated better gas
resistance and tensile characteristics, as well as optimized antibacterial effectiveness and
UV monitoring competence. Hence, the integration of magnesium oxide nanoparticles
in PLA seems to become a very enticing strategy for developing new food packaging
materials [114].

PLA fibers display a low aroma withholding capacity and are extremely water-
resistant. Besides this, by dint of their fat and oil resistance and good aroma barrier
characteristics, they are a widely known precursor for the synthesis of thermoformed
containers for food packaging [115]. PLA has a comparable TS and elastic modulus to
polyethylene terephthalate (PET), but has a much lower elongation at break [116]. Further-
more, its impact strength is comparable to that of polystyrene (a relatively brittle polymer).
Another drawback with PLA food packaging is that it produces a loud noise that consumers
perceive as an undesirable property [117]. Zych et al. [118] found that plasticization of PLA
with epoxidized soybean oil methyl ester achieved an increase in elongation at a break of
nearly 800 percent. Furthermore, these films recorded significantly less noise compared to
the packaging material of pure PLA. It was envisaged that by employing different concen-
trations of PLA coating on soy protein isolate film, transparency, permeation, and strength
properties of the film could be increased.

Moreover, PLA is becoming more popular in the catering industry as a substitute for
traditional plastics, because it is deemed safe for direct contact with food [119]. Owing to
its thermoplastic properties, comparable to traditional synthetic polymers, it is suitable for
a wide range of applications in the food and packaging industry. It acts as a good substitute
for low-density polyethylene, high-density polyethylene, polystyrene, etc., which are
frequently used to fabricate rigid containers, disposable containers, and so on [120,121].

3.3.2. Polybutylene Succinate and Polybutylene Succinate Adipate

Polybutylene succinate (PBS) is a biodegradable aliphatic polyester derived from the
poly-condensation reaction of succinic acid and 1,4-butanediol [122]. PBS has various
advantages, including being heat proof and having well-balanced mechanical properties,
which are useful in a variety of applications [123]. As a result of its superior fat transfer
resistance at elevated temperature, PBS is a reasonable choice compared to petroleum-
based polymers and perfluorinated chemicals [124]. PBS copolymers were synthesized
by mixing with various compounds containing glycol moiety. A reduction in crystallinity
was observed, making these copolymers extra flexible [125]. Thurber and Curtzwiler [114]
deduced that PBS blends could replace perfluoroalkyl substances and the petro-based poly-
mer packaging used in ready-to-eat foods. A convincing enhancement in TS was recorded
in PBS and microfibrillated cellulose composites by Zhou et al. [126]. Xu et al. [127] reported
an increase in TS and a decrease in oxygen and water permeation in blends of PBS with
nanocrystalline cellulose and chitin whiskers. Films prepared from PBS and polybutylene
adipate-co-terephthalate (PBAT) showed a decrement in water and gas permeability.

Moreover, with an increase in the concentration of PBAT, an increment in elongation
at break and a more textured surface break was produced [128]. The blow film extru-
sion method produced composite film of PBS, PBAT, and linear low-density polyethylene
(LLDPE). Films with more PBS had diminished water vapor transport property and oxygen
gas permeability; thereby, inhibiting fungus growth in packed bread, due to dehydra-
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tion [129]. By enhancing the concentration of kenaf fiber in PBS, the firmness, durability,
and fracture strain of a blended film depreciated, due to inadequate adhesion between the
two [130].

Polybutylene succinate adipate (PBSA) is synthesized by adding adipic acid to source
materials during PBS synthesis. PBS has a higher crystallinity and is better suited for
molding, whereas PBSA has a lower crystallinity and is better suited for film applications.
The amalgamation of PBSA with hydrolyzed cellulose produced a packaging with enhanced
mechanical properties. It could be successfully employed to produce molded containers to
be utilized in agriculture and plant nurseries [131].

Table 2. Properties of synthetically-derived biogenic polymers used in food packaging.

Biogenic Polymer Monomeric Unit Structure of Monomeric
Unit Properties

Synthetic Biogenic Polymer

Polylactic acid
(PLA)/Polylactide Lactic acid/lactide
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4. Biogenic Smart Packaging

Active and intelligent packagings are emerging tools for food packaging, ensuring
and enhancing food safety. They can be attained either by using active ingredients such as
antimicrobials in food, or intelligent indicators such as biosensors to detect contamination
or spoilage in food. Active food packaging is the most common, with edible films and
coatings found in meat, seafood, fruits and vegetables, and dairy products. Due to detri-
mental effects on human health and the environment, natural antioxidant and antimicrobial
sources, such as natural extracts, are becoming more popular in the packaging research
sector as active components in edible film and coating formulations. The intelligent food
packaging method employs indicators and sensors embedded in the packaging and mon-
itors changes in the physiological characteristics of the foodstuffs (due to microbial and
chemical degradation) [144].

4.1. Antimicrobial Biogenic Packaging Using Nanotechnology

Edible films are now increasingly being produced to maintain food quality and in-
crease food safety. Film-forming dietary components, including proteins, polysaccharides,
and lipids, are commonly used to create the film matrix. Active compounds, such as
antioxidants and antimicrobials, can be added to these composites to improve their func-
tional qualities [145]. Not only should an ideal edible film protect food from pollutants
and food-borne diseases, but it should also maintain its structural integrity. Materials
generally recognized as safe (GRAS) and that can be eaten with food should be utilized
in edible films. Antioxidants, food additives, vitamins, and antibiotic chemicals can all be
carried by these films. Antimicrobial agents, such as organic acids, bacteriocins, essential
oils, and extracts, are employed to treat edible films. Microbial growth, lipid oxidation,
and textural change in Pacific white shrimp were all prevented by essential oil (carvacrol,
citral)-containing films [146], as a suitable example. The release of these chemicals into
food during preservation improves food safety [147]. Another example is propolis (bee
glue) in biodegradable sheets to prevent the fungal spoiling of kashkaval cheese [148].

Furthermore, nanotechnology-based innovations such as bio-nanocomposites and
nanoencapsulation technologies have been used to improve the efficiency of complemen-
tarity in antimicrobial bio-based packaging technologies [149]. Nanotechnology is a branch
of science concerned with materials at the nanoscale (less than 100 nanometers). The
surface-to-volume ratio of nanomaterials is high. As a result, these materials are much
more reactive than their bulk counterparts. Nanomaterials differ from macroscale mate-
rials in terms of their physical and chemical characteristics. We can now make nanoscale
edible coatings for packaging perishable food items, such as meat, fruits, and cheese, using
nanotechnology and nanomaterials. The packaging can also contain active ingredients
that act as an antibacterial and antioxidant covering [150]. The addition of nano-titanium
dioxide to TPS-based films by blown extrusion extended the shelf life of packaged bananas,
while simultaneously acting as an oxygen scavenger [151]. Moreover, several incorporated
antimicrobial agents also enhanced the compatibility between polymer blends, which
improved the smoothness of microstructure and films properties, while extending shelf-life;
e.g., sodium nitrite [152,153], potassium sorbate, sodium benzoate [154], carvacrol [155].

4.2. Biobased Sensors

A biosensor is an analytical device that measures the concentration of a chemical in
a sample. Sensors are the most promising technology for future IP system development
and enhancement. Detectors are generally divided into three functional sections: sensing,
signal conditioning (signal processing), and the interface, which displays the observed
attributes. The first part detects physical or chemical qualities and converts them to an
electric signal in most cases. The signal conditioning unit processes the resulting signal.
This unit amplifies, linearizes, and scales the signal [156]. Sensors can be of numerous
types, as classified in Table 3. The most common type is a bioreceptor (enzyme, whole-
cell, antibody, aptamer, nucleic acid) linked to an appropriate transducer. The transducer
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converts the physicochemical or biological signal generated by the precise interaction
between the target molecule and the biocomponent into a measured attribute. The choice
of bioreceptor and transducer is determined by the sample’s properties and the property
to be measured. The bioreceptor is the key component of a biosensor, responding only
to a single analyte and not to any interference that may be present in the sample under
investigation [157]. The biosensors often give information, such as the degree of freshness
of the product packaging, via a color change that can be easily detected by both the food
distributor and the consumer. However, most of the indicators presently in use are synthetic
materials that are non-renewable and non-biodegradable. As there is a pressing need to
increase the sustainability of food packaging, sensor selection should reflect this need [158].

Table 3. Classification of various biosensors, along with their key features.

Classification
System Biosensor Key Features Reference

Bioreceptors Based

Enzyme biosensors Enzyme based microreactors are developed that interact with
the food environment and detect changes. [159]

Antibody biosensors
Antibody layer in the sensor is used to recognize the target,

often a pathogenic or spoilage microbe and convert it
into a signal.

[160]

Aptamer biosensors

Aptamers can be defined as a type of oligonucleotides that have
high specificity and affinity for the target organisms in food that

cause spoilage. Biosensors based on aptamers have great
potential as a tool for pathogen detection in food.

[161]

Whole cell
biosensors

Living cells as biosensors offer features such as a easy
fabrication process and flexibility of detection stratagems. [162]

Nano biosensors

Magnetic nano-sensors can be useful in detecting various
residues (such as pesticide, antibiotics), additives (antioxidants)

or analytes (bisphenol A, aflatoxins) in food in extremely
low quantities.

[163]

Transducer Based

Electrochemical
biosensors

They can be further categorized into amperometric,
potentiometric, voltammetric, conductometric, and

impedimetric. Low cost, ease of operation, portability,
simplicity, and easy miniaturization are some of the advantages
of electrochemical biosensors. Recent works showed that they

work best with two-dimensional nanomaterials, as these
enhance the sensitivity, repeatability, and specificity of the

electrochemical biosensors.

[164]

Optical biosensors

This works on the principle of a signal generation proportionate
to the concentration of analyte in a sample. They enable

screening of a plethora of analytes or compounds and the use
nanostructured materials for assessment of optically active

materials. They enable smart colorimetric detection, making the
food package active and smart. The low cost of fabrication is

one of the striking features of optical biosensors.

[165]

Electronic biosensors

Biosensors that act as electronic tongues or noses have been
developed based on pattern recognition principles, and act as

freshness indicators for various fruits and vegetables.
Observation by the naked eye is a huge advantage.

[166]

Gravimetric
biosensors

They are also known as mass-based biosensors. These produce
measurable signals upon detecting a change in mass on the

sensor surface.
[167]

Acoustic biosensors

Acoustic biosensors are based on the ability of the target
molecule to bind and vibrate at the frequency of the

piezoelectric crystals used in the sensors. The physical
attributes of the acoustic waves thus generated are analyzed,

and inferences about the analyte and its concentration
are drawn.

[168]
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Table 3. Cont.

Classification
System Biosensor Key Features Reference

Technology-Based

Nano biosensors

Nanomaterials offer great electrochemical, optical, mechanical,
magnetic, and conductive properties. Examples include

nanowires, quantum dots, and nanotubes that amplify the
initial signal and lower detection limits.

[169]

SRP biosensors
Stimuli-responsive polymers (SRPs) respond to the changes in
the food environment or external stimuli such as pH, enzymes,
etc., and aid in detecting spoilage in food packaging systems.

[170]

Chip based
biosensors

These act as promising point of care (POC) devices, enabling
target detection. Liquid crystal technology is used for the

development of chip-based biosensors in food.
[171]

Electrometers

These come in handy when monitoring the real-time quality or
estimating the perishability of food material. The dielectric

properties of biopolymers aid in analysis based upon electrical
conductivity and electrets state, and the peaks thus obtained

are studied.

[172]

Detection system based

Optical biosensors

They ensure food safety owing to their application in POC
devices. These sensors are quick, competent, and dependable. [173]

Electrical biosensors
Electronic biosensors
Thermal biosensors
Magnetic biosensors

Mechanical
biosensors

Recent advances include nanomaterials and nanopolymer-based biosensors that have
shown tremendous potential in food safety. Gold nanoparticles provide an excellent
platform for developing fast, low-cost, portable, and on-site food safety biosensors. Hy-
drogen bonding, nucleic acid hybridization, aptamer-target binding, antigen-antibody
recognition, enzyme inhibition, and enzyme mimicking activity are all mechanisms used
in gold nanoparticle-based biosensors. Foodborne diseases, heavy metals, mycotoxins,
pesticides, herbicides, veterinary medications, and illicit additions can be detected using
gold nanoparticle-based biosensors [174].

Bio-based materials, such as chitosan hydrogels, have also piqued the curiosity of
food technologists worldwide. The advantages of chitosan-based hydrogels include their
biocompatibility, stimuli responsiveness, embedding ability, swelling, biodegradability,
non-toxicity, low cost, and high bioactivity. Biosensors for food packaging can be made
using these properties. CH-based hydrogels have been employed as biosensors in various
fields, because they can respond to external stimuli and turn environmental inputs into
observable signal outputs by swelling or embedding bioactive chemicals that interact with
an input element. Because of their antibacterial, antioxidant, and biodegradability qualities,
CH-based hydrogels have a lot of potential in intelligent food packaging systems [175].

Food freshness, food integrity, fruit maturity, food containment, and food monitoring
and tracing are all possibilities for applying biosensors in food packaging [165]. It can be
rightly said that biosensors are innovative concepts that have only recently been introduced
in intelligent packaging. More research is needed to overcome the commercialization
obstacles such as their high cost and high technical skill requirements [176].

5. Challenges and Future Perspective

Biogenic polymers have progressed as an important topic among the scientific frater-
nity and industrialists as a green, biodegradable, environment-friendly, novel approach
to mitigating the environmental hazards contributed by petro-based packaging. Despite
a large number of advantages, biogenic polymers face several hurdles for fabricating vi-
able packaging applications. However, their commercialization is hindered, especially
regarding unsatisfactory gas and water permeation, mechanical strength, hydrophilic na-
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ture, and thermal attributes. Furthermore, the high cost of production also adds to the
disadvantages of biogenic polymers [177]. Slow-growing market demand and acceptance
by consumers can also lead to higher production costs. Technical hurdles relating to the
functional and production specificities of bio-based materials, which differ significantly
from petrochemical plastics, are the principal impediment to commercial adoption.

Customers opting for biogenic polymer-based packaging misunderstand the ‘bio’
designation (i.e., biogenic, bio-based, bioplastic, biodegradable, etc.). They may perceive
the word ‘biodegradable’ as a material which can be composted at home. However, the bulk
of biogenic polymers-based plastics, for instance, PLA, can only be biodegraded in special
composting installations constantly under high temperature and humidity, rendering them
unfit for home composting. They take a considerable time to decompose when peppered,
thereby causing negative repercussions to the environment [177,178]. Blending, multi-
layering, co-extrusion, coating, and nanotechnology have arisen due to these shortcomings.
Moreover, extensive research on the array of biogenic polymers must be conducted, to
determine an appropriate strategy contributing to the production of superior quality
packaging at a justifiable cost. In the world of food packaging, a broad consortium of
biopolymers supplemented with a range of bioactive compounds from plant and animal
sources could be a viable substitute [179].

Another important aspect to consider while manufacturing bio-based packaging is
toxicity. When processing bio-based plastics, various additives such as chain promoters,
antioxidants, cross-linking agents, certain catalysts may be added to obtain the desired
attributes. Some compounds may not be properly bonded to the polymer matrix, which
may migrate to the human food chain through chemical migration [180]. According to
Ernstoff et al., 2019, biogenic plastic-based toxicity is usually increased during the pro-
duction or at the time of degradation [181]. Nonetheless, the majority of biodegradable
polymers and biogenic plastics have found employment in the food industry, due to
changes in manufacturing methodologies, with risk detection and characterization before
large-scale commercial use.

6. Conclusions

Biogenic smart packaging has emerged as a solution to the world’s urgent need to
lower carbon footprints and ensure food safety. New packaging materials and technologies
can be created by developing active and smart bio-based films developed in novel ways.
Biogenic films are low-cost, environmentally friendly, biodegradable, and useful. They can
be made from a variety of natural sources. Despite advancements in nanotechnology and
its subsequent use in developing smart/intelligent biogenic food packaging, commercial
manufacturing is constrained by cost, production economics, useful life, biodegradation
concerns, toxicity, and appropriate agricultural waste availability. This emphasizes the
importance of focusing more on chemical safety when developing truly ‘better’ plastic
alternatives. Besides this, the advancement in smart biogenic packaging is influenced by
food laws, policies, and legislative reforms, and the global demand for food and energy
resources. Hence, more research is needed to refine approaches or develop new methods
for boosting the performance of biogenic packaging materials and expanding their use in
diverse industries.
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