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Adipose tissue secretes various peptides, including leptin. This hormone acts through the
leptin receptor (Ob-R), which is expressed ubiquitously on the surface of various cells,
including breast cancer cells and immune cells. Increasing evidence points to an
interaction between the tumor microenvironment, tumor cells, and the immune system.
Leptin plays an important role in breast cancer tumorigenesis and may be implicated in
activation of the immune system. While breast cancer cannot be considered an
immunogenic cancer, the triple-negative subtype is an exception. Specific immune cells
- tumor infiltrating lymphocytes - are involved in the immune response and act as
predictive and prognostic factors in certain breast cancer subtypes. The aim of this
article is to review the interaction between adipose tissue, through the expression of leptin
and its receptor, and the adaptive immune system in breast cancer.
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INTRODUCTION

Overweight and obesity are considered to be pandemic in 2021. According to the World Health
Organization, over 1.3 billion adults have a body mass index (BMI) ≥25 kg/m2; of these, 600 million
are obese (1). These dramatic figures increased steadily throughout the world during the COVID
lockdown (2, 3).

Overweight and obesity display a controversial relationship with breast cancer, which is highly
dependent on menopausal status (4). For many years, little attention has been paid to the
microenvironment of breast cancer, especially adipose tissue, which is considered an inert organ
whose function is limited to storing fat. Adipose tissue produces a series of hormones, including
adipokines. One of the most relevant adipokines is leptin, which is closely associated with breast
cancer. Leptin not only controls energy balance, but is also associated with the neurological,
hematopoietic, endocrine, reproductive, and immune systems (5). Together with cells from the
innate and adaptive immune systems and cytokines (e.g., tumor necrosis factor alpha [TNFa] and
interleukin [IL]-6), leptin can generate a pro-inflammatory stage in the tumor microenvironment.

Overall, breast cancer is considered a moderate immunogenic disease; however, the immune
landscape of breast cancer is very heterogeneous and highly dependent on breast cancer subtype (6).
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Tumoral immune cell infiltration is predictive and prognostic in
some breast cancer subtypes such as human epidermal growth
factor receptor 2 (HER2)+ and triple negative. The importance of
the characterization of the infiltrating immune cells (B-cell, T-
cell, natural killer [NK] cell, etc.) is still being determined;
however, breast tumors with higher tumor-infiltrating
lymphocytes (TILs) are more responsive to treatments (e.g.,
immunotherapy, chemotherapy, radiation) and have better
outcome than those with low TILs (7–9). However, the fact
that breast cancer is not a very immunogenic tumor raises the
question of what factors cause these TILs to be attracted around
the tumor. In this sense, as explained above, the leptin axis could
be one of the factors involved.

The present review analyzes the role of leptin with respect to
the immune system in breast cancer, mainly its relation to the
activation of TILs and puts forward a new hypothesis on the
association between the two.
LEPTIN AND THE LEPTIN RECEPTOR
(Ob-R) IN BREAST CANCER

Leptin is produced mainly by mature adipocytes. It is the protein
resulting from the ob gene, which was identified in 1994. Mice
with a mutation in the ob gene are obese, diabetic, and infertile
because they do not produce leptin, which regulates food intake
and body weight. Leptin is a non-glycosylated hormone
containing 146 amino acids (10). It is characterized by a
tertiary structure similar to that of members of the long-chain
helical cytokine family (which includes IL-6, IL-11, IL-12, LIF,
G-CSF, CNTF, and oncostatin M) (11).

Leptin acts mainly by maintaining energy homeostasis: in the
obesity stage, high levels of circulating leptin generate negative
feedback into a specific nucleus of the hypothalamus, the
regulatory organ that increases sensitivity to the satiety signal.
However, leptin is also characterized by systemic effects,
including regulation of neuroendocrine, reproductive,
hematopoietic, and immune functions (12–14). Serum leptin
levels are directly related to adipose tissue mass and, hence, body
mass index (BMI): obese people have higher leptin levels than
lean people. Moreover, leptin levels are higher in women than in
men, possibly because testosterone reduces leptin secretion,
whereas estrogens increase its production (12, 15–17).

Leptin binds to the leptin receptor (Ob-R). Mice with a
mutation in the db gene have a genetic deficiency in Ob-R
resulting in the absence of expression of the long-form of Ob-
R in all cell types (18–20). These mice are obese, diabetic, and
infertile. Ob-R is a transmembrane receptor with a helical
structure that is related to class I cytokine receptors (21). It is
present in tissues in the pancreas, placenta, adrenal glands,
stomach, hematopoietic cells, liver, heart, and lung, as well as
in breast cells (22). Moreover, Ob-R is expressed ubiquitously on
the surface of both peripheral and bone marrow–derived
immune cells (23, 24). Ob-R has 6 isoforms resulting from
alternative splicing of the gene: 4 have short cytoplasmic
domains (Ob-Ra, Ob-Rc, Ob-Rd, and Ob-Rf), one is a long
Frontiers in Immunology | www.frontiersin.org 2
form (Ob-Rb), and the sixth is a soluble form, Ob-Re, whose
main function is to control serum leptin levels. These 6 isoforms
share an extracellular domain with common leptin-binding
capacity, although their intracellular domains are different. The
main effects of leptin on energy homeostasis and other metabolic
functions are induced by the long isoform Ob-Rb (25).

In breast cancer, leptin expression is significantly correlated
with that of Ob-R (13, 26). Of note, leptin and Ob-R are
overexpressed in breast cancer epithelial cells compared with
non-cancer mammary epithelial cells (13, 26). In fact, in
approximately 92% of breast cancer cases, most of the
carcinoma cells showed overexpression of leptin, as seen in the
intensity of staining, which was as marked as for adipocytes. Ob-R
was also expressed in 83% of the carcinoma cells.

The fact that Ob-R expression differs between healthy and
cancerous tissue is of major importance since this difference
could be used as a prognostic and/or predictive biomarker.
Moreover, both factors (ligand and receptor) at the protein
level might be prognostic factors in breast cancer (26).
Recently, we showed Ob-R to be a predictive factor of
pathological complete response in 100 early breast tumors
managed with preoperative chemotherapy regardless of the
molecular subtype (27). In our study, Ob-R was significantly
expressed in HER2 and triple-negative breast cancer, younger
patients, and patients with BMI ≥25 kg/m2 (27). As for
expression of Ob-R in breast cancer subtypes, our results differ
from those reported elsewhere (28–30), probably because of
differences in the score and methodology used to evaluate Ob-
R expression: one study used a score of 5% for positivity while in
our study the score was 50% and, on the other hand, some
studies analyzed Ob-R in cell lines while our study assessed
breast tumors directly.

No data have been reported to date on the simultaneous
expression of leptin and Ob-R in breast cancer or on the
correlation with blood leptin levels. However, indirect data suggest
a correlation between these 3 factors in breast cancer (31, 32).

Stimulation of the long receptor isoform by leptin leads to
phosphorylation of Janus kinase 2 (JAK2), followed by
phosphorylation of tyrosine residues 985 and 1138, which activate
a series of pathways, namely, phosphatidylinositol 3–kinase–protein
kinase B (PI3K/AKT), mitogen-activated protein kinase (MAPK),
and signal transducer and activator of transcription 3 (STAT3) (33).
Because of the activation of these signaling pathways, the leptin–Ob-
R axis increases the proliferation, migration, and invasion of cancer
cells (34–37) and to contribute to the release of vascular endothelial
growth factor (38) (Figure 1).

Leptin appears to be a key driver in breast cancer tumorigenesis.
The development and progression of a breast tumor is a long
process of continuous interaction between the tumor cell and its
surroundingmicroenvironment (39). The breast microenvironment
is composed of mesenchymal cells (such as fibroblasts, adipocytes,
blood cells, and leukocytes) and components of the extracellular
matrix (including laminin, fibronectin, collagen, and
proteoglycans). These elements play a role in mammary epithelial
cell growth and differentiation. An increasing body of evidence
shows that leptin enhances cell growth in both normal and
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malignant breast epithelial cells by activating various signaling
pathways, such as those involving MAPK, JAK2–STAT3, and
PI3K–AKT (22, 40). Furthermore, leptin has a growth-stimulating
effect on both estrogen receptor–positive breast cancer (MCF7,
T47D, MDAMB361) and estrogen receptor–negative breast
cancer (MDAMB231, SKBR3) cell lines (41). Studies in animal
models usingmice with genetically obese leptin-deficient Lep ob/ob or
leptin receptor–deficient Ob-R db/db did not detect mammary
tumors in either case, indicating that an intact leptin axis is
essential for these tumors to develop (42, 43).
IMMUNOLOGICAL LANDSCAPE IN
CANCER AND IN BREAST CANCER

The immune system can both inhibit and promote tumor
expansion through a process known as “cancer immunoediting”,
Frontiers in Immunology | www.frontiersin.org 3
which comprises 3 phases, namely, tumor elimination,
equilibrium (dormancy), and escape from immune surveillance
(44, 45). To a large extent, the process depends on the plethora of
immune cells presented at a specific point. In the elimination
phase, transformed cells are identified and destroyed by
infiltration of effector cells in the innate and adaptive immune
system, as well as through production of tumor-inhibiting
cytokines. The escape phase is sustained by chronic tumor-
promoting inflammation, which primari ly involves
immunosuppressive cells and soluble factors (46). The escape
phase is now considered a complementary hallmark of
cancer (47).

In healthy tissue, effective immune surveillance is based on a
series of cells that collaborate to maintain a healthy status with an
anti-inflammatory effect. These cells are M2 macrophages,
regulatory T cells (Treg), T helper 2 cells (Th2), eosinophils, and
B cells. IL-4 and IL-10 are the main cytokines secreted from these
cells (48). By contrast, a pro-inflammatory stage elicits the presence
of multiple pro-inflammatory immune cell types, such as M1
macrophages, T helper 1 cells (Th1), CD8+ T cells, neutrophils,
mast cells, and B cells (49). TNFa and interferon g (IFNg) secreted
from these immune cells activate M1 macrophages, leading to
further secretion of inflammatory cytokines, such as interleukin-1
beta (IL1b), TNFa, IL-6, and monocyte chemoattractant protein 1
(MCP1). In 1863, Virchow first postulated that cancer originates at
sites of chronic inflammation (50). Chronic inflammation can
result from infection, obesity, alcohol consumption or tobacco. In
breast cancer, obesity is possibly one of the conditions that has been
most often linked to the development of chronic inflammation and,
therefore, to the development of breast cancer. Obesity causes
adipocytes to become hypertrophic and die, and this is a key event
in the change to an obese adipose tissue microenvironment which
is pro-inflammatory. Adipocyte death triggers innate immune
responses which shift the immune milieu towards a pro-
inflammatory state which is associated with the infiltration of
leukocytes, including macrophages, as well as mast cells and
CD8-positive T lymphocyte (51). The rupture of the cell
membrane of adipocytes also promotes the release of diverse
cellular content (lipids and cytokines as well as fatty acids, ATP,
reactive oxygen species, cholesterol and nucleic acids) into the
microenvironment (52). Free fatty acids (FFAs) stimulate multiple
inflammatory signaling pathways, and activation of transcription
factor NF-kB, a key mediator in the immune response and adipose
inflammation (53). These signals enhance the recruitment and
accumulation of macrophages in the tumor microenvironment.
Most of the macrophages in the obese adipose tissue
microenvironment participate in the development of adipocyte
hypertrophy by encircling the dying adipocyte forming crown-like
structures (CLS), a hallmark of inflammation in adipose tissue (54).
Macrophages are the main source of type 1 cytokines (e.g. TNF-a,
IFN-g, IL-1b and IL-6) as well as pro-inflammatory immune cells
(granulocytes, group 1 innate lymphoid cells, B cells and CD8+ T
cells), which act by preserving a state of chronic inflammation.

Breast cancer frequently arises as a result of genetic and
epigenetic changes in genes that regulate the function of the
mammary epithelial cells (55). Development of breast cancer can
FIGURE 1 | The binding of leptin to its receptor leads to the activation of
different signaling pathways. Leptin binds to its receptor on the tumor cell,
promoting the activation of different signaling pathways that, in turn, lead to
the proliferation and invasion of tumor cells. The leptin receptor can also be
located on different cells of the adaptive system leading to activation of these
cells (34–37). CCND1, cyclin D1; IL-6, interleukin 6; JAK2; Janus kinase 2;
MAPK, mitogen-activated protein kinase; MYC, myelocytomatosis oncogene;
Ob-R, leptin receptor; PI3K/AKT, phosphatidylinositol 3 kinase/protein kinase
B; STAT3, signal transducer and activator of transcription 3; TFs, transcription
factors; TNFa, tumor necrosis factor alpha; VEGF, vascular endothelial
growth factor. Garcıá-Estévez L ©.
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be prevented via induction of senescence or apoptosis of
neoplastic cells by intrinsic tumor suppressive mechanisms
(56). Similarly, the immune system is considered an extrinsic
tumor suppressor capable of eliminating epithelial cells that have
become breast cancer cells and limiting their growth when they
have escaped intrinsic tumor-suppressive mechanisms (46, 57).

There are 2 types of immune system: the innate immune
system and the adaptive immune system. These immune systems
can be considered to be universal in all tumors, including breast
cancer. The innate immune system is the first line of attack or, in
other words, the recognition of tumor cells and their elimination.
This innate system comprises myeloid-derived suppressor cells
(MDSCs), mast cells, dendritic cells (DCs) and natural killer
(NK) cells (58). MDSCs are a heterogeneous population
comprising precursors of the myeloid-cell lineage. MDSCs may
be broadly classified as monocytic and polymorphonuclear
granulocytic subtypes (M-MDSCs and PMN-MDSCs,
respectively) based on differences in the expression of their cell
surface markers. Tumor-produced growth factors increase the
generation of M-MDSCs and PMN-MDSCs, recruit these cells
from bone marrow to solid tumors, and sustain their levels in
blood. However, once in the tumor microenvironment, most M-
MDSCs differentiate into immune-suppressive tumor-associated
macrophages (59, 60). It has yet to be resolved whether PMN-
MDSCs are a type of neutrophil or a distinct granulocyte
population (58, 61). In the cancer microenvironment, tissue-
resident macrophages and mast cells locally release soluble
factors such as cytokines (IL-12 and IL-15 and type 1
interferon), bioactive mediators, chemokines and matrix-
remodeling proteins that recruit additional leukocytes from the
blood into damaged tissue (62–65). Recruited innate immune
cells can directly act as the first line of attack in situ. At the same
time, DCs transport foreign antigens (including tumor antigens)
and migrate to lymphoid organs, where they present their
antigens to adaptive immune cells. At this moment, cells, such
as T lymphocytes or B lymphocytes, undergo clonal expansion in
order to produce an `adaptive’ response targeted against the
foreign agent (66, 67).

In breast cancer, the cellular network comprising the innate
immune system plays a vital role in antitumor immunity through
direct tumor killing as well as initiating, supporting and eliciting
the adaptive immune response through secreted cytokines (68).

On the other hand, the adaptive immune system comprises 2
main mechanisms of action: humoral and cellular immunity. B
cells are intimately involved in antibody-mediated humoral
immune responses. By contrast, CD8+ CTLs (cytotoxic T
lymphocytes) and NK cells are the primary effector immune
cells that eliminate cancer cells. The intensity and composition of
these elements differs across various types of cancer. For
example, immune infiltrates are more extensive in melanoma,
renal cell, lung, and colorectal cancer than other types of cancers,
such as breast or prostate carcinoma (69).

CTLs can be induced to target specific antigens expressed on
breast cancer cells (70–75). In The Cancer Genome Atlas,
however, the correlation between increasing tumor mutational
burden and expression of T-cell effector function varied
Frontiers in Immunology | www.frontiersin.org 4
substantially, and was found to be weakly positive in breast
cancer (76). Studies in melanoma reveal few mutations to be
immunogenic and, hence, capable of activating T-cell clones (51,
77). Nevertheless, the exact mechanisms by which these
lymphocytes are mobilized around tumor cells remain unknown.
THE ROLE OF TUMOR-INFILTRATING
LYMPHOCYTES (TILS) IN BREAST
CANCER

Of all the cells that are part of the immune landscape of breast
cancer, lymphocytes, or more specifically, tumor-infiltrating
lymphocytes (TILs), are probably the most frequently studied
and most relevant. TILs in breast cancer mainly comprise
cytotoxic (CD8+) T cells, varying proportions of helper (CD4+)
T cells and CD19+ B cells and, more rarely, NK cells (78, 79).

Stromal TILs, defined as the percentage of the stromal area
infiltrated by TILs that are not in direct contact with carcinoma
cells, are recommended for prognostic or predictive analyses
(80). In fact, stromal TILs function as prognostic and predictive
factors in breast cancer (81, 82). However, stromal TILs are
more frequent in triple-negative breast cancer (TNBC) and
HER2–positive breast cancers than in estrogen receptor (ER)–
positive breast tumors (83, 84). The authors of a large, pooled
analysis found that higher levels of stromal TILs predict
pathological complete response (pCR) to neoadjuvant
chemotherapy in all molecular subtypes (TNBC, HER2-
positive and ER-positive/HER2-negative), although survival
has been reported to be greater only in TNBC and HER2-
positive breast cancer (84).

With respect to the role of stromal TILs as a predictive factor
for pCR, the recent study by Floris et al. (85) provides very
interesting insights into the possible interaction between adipose
tissue and the immune system. In this retrospective study, the
authors evaluated the role of BMI in modifying the effect of
stromal TILs to predict pCR in TNBC patients treated with
neoadjuvant chemotherapy and explored the prognostic value of
stromal TILs according to BMI. A total of 445 TNBC patients
were evaluated retrospectively. Regression analysis showed the
interaction between stromal TILs and BMI to be statistically
significant when both stromal TILs and BMI were considered as
categorical variables. Furthermore, by considering stromal TILs
and BMI as continuous variables, a statistically significant
interaction was observed (interaction term p=0.04). However,
when the authors analyzed the association between stromal TILs
and pCR according to BMI, they found that among patients with
a high frequency of stromal TIL tumors (≥30%), lean patients
had a significantly higher pCR rate, with 38/52 (73.1%, 95% CI =
61.0–85.1) patients having a pCR compared with only 21/47
(44.7%, 95% CI = 30.5–58.9) in heavier patients. These data are
very interesting in terms of the relationship between adipose
tissue and immune response, primarily with stromal TILs
resulting in reduced sensitivity to chemotherapy. The authors
did not provide explanations for this, although one possibility
November 2021 | Volume 12 | Article 784823
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might be that adipose tissue interacts with these stromal TILs to
make them less effective against the tumor. This hypothesis is
supported by Wang et al. (86), who found that T cells in the
tumor microenvironment of diet-induced obese (DIO) mice
demonstrated features of exhaustion. Specifically, flow cytometry
showed that DIO mice were characterized by substantially higher
counts of tumor-infiltrating CD8+ T cells (CD8+ TILs) expressing
PD-1, T-cell immunoglobulin mucin-domain containing 3
(Tim3), and lymphocyte activating gene 3 (Lag3), and lower
proliferation by Ki67 than control mice. Similarly, leptin levels
in DIO mice were elevated, corresponding to increased values for
of PD-1 on CD8+ T cells. The study reinforces the surprisingly
positive association between obesity and the efficacy of cancer
immunotherapy reported elsewhere (87); although the
relationship between immune checkpoint inhibitors and T cells
demonstrating features of exhaustion is not totally clear, this
situation of exhausted lymphocytes could be reversed by
checkpoint inhibitors that reactivate the immune system.

The Connection Between Leptin and the
Immune Adaptive System
Leptin is a critical regulator of the immune system and probably
a key link between nutritional status and optimization of the
immune response. There has long been evidence that leptin
deficiency (ob/ob) and leptin-receptor deficiency (db/db) in both
mice and humans result in immune defects (88) characterized by
decreased total T-cell count, decreased CD4+ T-cell count, and a
shift from a Th1 phenotype toward a Th2 phenotype (anti-
inflammatory stage). This, in turn, generates protection against
certain forms of autoimmunity and increased susceptibility to
intracellular infections (89). Furthermore, leptin receptor–
deficient (db/db) mice experience thymic atrophy, suggesting a
relevant role for leptin in the regulation of immune cells.

One of the first in vitro studies to evaluate the role of leptin in
activating T cells was that by Lord et al. (90), who demonstrated
that leptin improves CD4+ T-cell responses mainly by binding to
its receptor on T cells, rather than as the result of a direct effect on
the stimulator cell. However, based on T-cell culture, the authors
suggested that T cells first need to be stimulated by major
histocompatibility complex (MHC) stimulator cells in order to
respond to leptin effects. Furthermore, incubation of CD4+ T cells
with leptin in the absence of allogeneic stimulator cells did not
increase proliferation; consequently, cognate recognition by the
Frontiers in Immunology | www.frontiersin.org 5
T-cell antigen receptor (TCR) seemed to be necessary before
leptin could exert its effect. In vitro studies from Martıń-Romero
et al. (91) confirmed this hypothesis: leptin alone cannot activate
T lymphocytes cells despite overexpression of Ob-R in these cells
(CD4+ and CD8+). According to Martıń-Romero et al., T cells
need to be co-stimulated by a non-specific stimulus such as lectin
phytohemagglutinin (PHA) L in order to be activated by leptin.
On the other hand, leptin induced the production of IL-2 by
CD4+ T cells, thus modulating T-helper activation toward the
Th1 phenotype (pro-inflammatory) through stimulation of INF-g
synthesis (90).

Although much remains to be discovered about the
relationship between the leptin axis and the immune system, a
recent study by Rivadeneira et al. (92) sheds some light on this
issue. The authors used oncolytic vaccinia virus to promote T-
cell tumor infiltration in melanoma models; however, the virus
produces the recruitment of new but metabolically dysfunctional
CD8+ T cells. The problem was overcome by adding leptin in the
microenvironment, thus leading to potent T-cell activation. Also
noteworthy in the study by Rivadeneira et al. is higher expression
of Ob-R in activated and exhausted T cells with high PD-1 and
Tim-3 expression. In this way, leptin induces metabolic
reprogramming in T cells, and tumor-infiltrating T cells bear
its receptor. Hence, leptin could prove useful in terms of therapy
as a metabolic modulator of the immune response.

Leptin can affect the responsiveness and function of Treg
cells, which play a key role in controlling peripheral immune
tolerance and are abundant in adipose tissue (93). The fact that
leptin negatively affects the proliferation of Treg cells could
explain why Treg numbers are reduced and their function is
impaired in obese patients (92). The above mentioned alterations
could increase counts of adaptive immune cells, such as CD8+ T
cells and CD4+ T helper type 1 cells, which produce
proinflammatory cytokines (94). However, the association
between leptin and Treg cells in breast carcinoma remains
unexplored (Table 1).

Most studies evaluating the role of leptin in the immune
system are preclinical, with only limited clinical data available.
Our group analyzed the association between Ob-R, TILs, and
pCR in a group of 87 patients with breast cancer (luminal, triple-
negative, and HER2 subtypes by immunohistochemistry) treated
with neoadjuvant chemotherapy. We hypothesized that the
leptin–Ob-R axis in breast cancer is involved in activating T
TABLE 1 | Potential effects of leptin in adaptive immune cells.

Cell Type Ob-R Expression Cytokine Effect Stage

CD4+ Yes IL-2, IFN-g -Activation*
-Proliferation
-Survival
-Promotion a bias toward T helper 1-cell

Pro-inflammatory

CD8+ Yes IL-2, IFN-g -Activation*
-Proliferation
-Survival

Pro-inflammatory

Tregs Yes IL-2 -Inhibition of proliferation Pro-inflammatory
November 2021 | Volume 12
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cells. In fact, we found that Ob-R overexpression was generally
associated with high TILs, although this finding was only
significant in the HER2+ subtype (mean percentage of TILs in
Ob-R–positive HER2+ tumors, 21.5% vs. 9% in Ob-R negative
tumors; p=0.015). Furthermore, in patients with overexpressed
Ob-R (>50% of positive cells with weak or strong staining), the
mean percentage of TILs was significantly higher in tumors with
pCR (responders) compared to tumors with residual disease
(26.6% vs. 12.5%; p=0.005). Surprisingly, this difference was not
observed in tumors with Ob-R that was not overexpressed, where
the mean percentage of TILs did not differ between responders
and non-responders (95). The next step would be to investigate
the hypothesis that TIL populations might differ between tumors
where Ob-R is overexpressed and those where it is not. It would
also be interesting to find features of exhaustion that could be
reversed by checkpoint inhibitors (Figure 2).

In our retrospective analysis, BMI was not correlated with
TILs, in contrast with the study by Floris et al. (85). We observed
a potential association between TILs and Ob-R in tumors with
pCR. However, there are differences between the 2 studies;
namely, the study by Floris et al. was conducted exclusively on
TN tumors using BMI as an indicator of increased adipose tissue.
In our study, the positive correlation between TILs and the leptin
axis was found mainly in the HER2+ population and in tumors
that achieve pCR. However, since our sample was small, our
hypothesis must be confirmed with a larger sample. In any case,
both studies highlight an interaction between adipocytes and T
cells in breast cancer.
CONCLUSIONS

Breast cancer is a complex disease in which both altered genes
and the interaction between the tumor microenvironment
Frontiers in Immunology | www.frontiersin.org 6
and tumor cells are important events. The microenvironment
comprises a plethora of cell types, including adipocytes. Long
regarded as fat storage sites, adipocytes are now known to be
very active and responsible for the release of a variety of
adipokines. The high percentage of adipose tissue in
mammary glands constitutes a microenvironment that
enables the immune system to sustain immune responses
(96, 97).

Expression of Ob-R by T and B cells is particularly interesting,
since it points to the potential involvement of leptin in immune-
cell activation and signal transduction. Analysis of this process
could reveal new effects of leptin on as yet unexplored immune
cell functions.

Preclinical and clinical breast cancer data already point to an
interaction between adipose tissue (measured as BMI or via the
leptin axis), the immune system, and the tumor. Given the
presence of adipose tissue in the mammary gland, it is not
unreasonable to hypothesize that there is an interaction
between adipocytes and the substances they release and the
immune response to the tumor. TILs are considered the
most relevant part of the immune response currently evaluated
in breast cancer; therefore, every attempt should be made to
take advantage of their relationship with adipose tissue
and, hence, leptin. Despite our lack of knowledge on the
precise mechanisms of interaction involved in the disease,
breast cancer remains a fascinating field of translational research.
AUTHOR CONTRIBUTIONS

LG-E and GM-B designed and wrote the manuscript. All
authors provided editorial support and read the manuscript.
All authors contributed to the article and approved the
submitted version.
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A, González-Yanes C, et al. Role of Leptin in the Activation of Immune Cells.
Mediators Inflammation (2010) 2010:568343. doi: 10.1155/2010/568343

24. Procaccini C, Jirillo E, Matarese G. Leptin as an Immunomodulator. Mol
Aspects Med (2012) 33(1):35–45. doi: 10.1016/j.mam.2011.10.012

25. Wauman J, Zabeau L, Tavernier J. The Leptin Receptor Complex: Heavier
Than Expected? Front Endocrinol (Lausanne) (2017) 8:30. doi: 10.3389/
fendo.2017.00030

26. Ishikawa M, Kitayama J, Nagawa H. Enhanced Expression of Leptin and
Leptin Receptor (OB-R) in Human Breast Cancer. Clin Cancer Res (2004) 10
(13):4325–31. doi: 10.1158/1078-0432.CCR-03-0749
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