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Abstract

Background: The FHIT gene is lost early in the development of many tumors. Fhit possesses
intrinsic ApppA hydrolase activity though ApppA cleavage is not required for tumor suppression.
Because a mutant form of Fhit that is functional in tumor suppression and defective in catalysis binds
ApppA well, it was hypothesized that Fhit-substrate complexes are the active, signaling form of Fhit.
Which substrates are most important for Fhit signaling remain unknown.

Results: Here we demonstrate that dinucleoside polyphosphate levels increase 500-fold to
hundreds of micromolar in strains devoid of the Saccharomyces cerevisiae homolog of Fhit, Hnt2.
Accumulation of dinucleoside polyphosphates is reversed by re-expression of Hnt2 and is active
site-dependent. Dinucleoside polyphosphate levels depend on an intact adenine biosynthetic
pathway and time in liquid culture, and are induced by heat shock to greater than 0. millimolar
even in Hnt2+ cells.

Conclusions: The data indicate that Hnt2 hydrolyzes both ApppN and AppppN in vivo and that,
in heat-shocked, adenine prototrophic yeast strains, dinucleoside polyphosphates accumulate to
levels in which they may saturate Hnt2.

Background

The human FHIT gene, located at the chromosome 3 frag-
ile site FRA3B, is inactivated early in the development of
many tumors [1]. Murine Fhit is also located at a fragile
site [2,3] and mice heterozygous for disruption of Fhit,
given low intragastric doses of the mutagen N-nitro-
somethylbenzylamine, develop stomach and sebaceous
tumors [4] that can be prevented by viral Fhit expression

[5]. Fhit, a dimer of 147 amino acid subunits, is a member
of the histidine triad (HIT) superfamily of nucleotide hy-
drolases and transferases [6,7]. Members of the Hint
branch of the HIT superfamily are found in all forms of
life [8]. The S. cerevisiae Hint homolog, Hnt1, and rabbit
Hint possess adenosine monophosphoramidase activity
that functions in yeast to positively regulate function of
Kin28, Ccl1 and Tfb3, which constitute the kinase compo-
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nent of general transcription factor TFITH [9]. A new Hint
related protein, Aprataxin, is mutated in individuals with
ataxia with oculomotor apraxia [10,11] and has a yeast
homolog termed Hnt3 [9]. Members of the Fhit branch of
the HIT superfamily have been found in fungi [12,13], an-
imals [2,14,15] and plants [7] and hydrolyze diadenosine
tetraphosphate, diadenosine triphosphate and other 5'-
5"'-dinucleoside polyphosphates. The middle histidine of
the histidine triad (His96 in human Fhit), which is critical
for hydrolysis of ApppA by Fhit [14,16], is not necessary
for tumor suppression [17,18]. Nonetheless, wild-type
and His96Asn forms of Fhit are saturated by ApppA in the
low micromolar range and form stable complexes with
non-hydrolyzable ApppA in which two ApppA analogs
are bound per Fhit dimer and all phosphates cluster on
one surface of the protein [16]. These observations sug-
gested that Fhit-substrate complexes may be the active,
signaling form of Fhit and that the function of the catalyt-
ically essential histidine may be to terminate the lifetime
of signaling complexes [16].

Given that neither transcriptional nor post-transcriptional
regulation has been reported for Fhit protein, the level of
biological activity of Fhit may be controlled by levels of
Fhit substrates, inhibitors, and proteins that interact with
Fhit-nucleotide complexes. Fhit proteins from humans
[19] and worms [15] bind ApppA and AppppA with K,
values of 2 to 3 uM. Human Fhit [14] and the S. cerevisiae
Fhit homolog [13], which was called Aph1 but is here
termed Hnt2 under nomenclature aproved by the Saccha-
romyces Genome Database, cleave ApppA more readily
while Aph1, the S. pombe homolog, cleaves AppppA more
readily [20]. Consistent with the ApppA hydrolase activity
of purified Fhit protein, most cancer cell lines that are Fhit
negative at the protein level have higher levels of ApppA
than cell lines that are Fhit positive [21]. Nonetheless, the
actual concentrations of dinucleoside polyphosphates
were submicromolar in every cell culture sample [21] and
thus, under the reported culture conditions, the measured
dinucleoside polyphosphates would not be expected to
occupy the Fhit active site substantially [19]. Dinucleoside
polyphosphate levels were measured in adenine-requiring
S. cerevisiae strains before or after disruption of the Fhit-
homologous HNT2 gene [13] and in adenine-requiring S.
pombe strains as a function of disruption and overexpres-
sion of the Fhit-homologous aphl gene [22]. Recently, it
was observed that diadenosine polyphosphates undergo a
divalent cation-dependent conformational change that
might mediate their biosynthesis, catabolism or signaling
properties [23].

Here we discover a requirement of adenine biosynthesis
for high-level dinucleoside polyphosphate accumulation
in the absence of the Fhit homolog in S. cerevisiae. By con-
structing active site mutants of Hnt2 that were expressed
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in yeast, we demonstrate that ApppN and, to a lesser de-
gree, AppppN levels are controlled by the Hnt2 active site.
An added benefit of these constructions is the availability
of yeast strains that possess high levels of dinucleoside
polyphosphates and at the same time express a mutant
Fhit-homologous protein, because these are conditions
which have been postulated to constitute the signaling
form of Fhit [16]. Finally, using controlled genotypes we
revisited conditions that lead to increased accumulation
of dinucleoside polyphosphates [24-33]. Recognizing
that hnt2 deletion is a pathological condition, we were
particular interested in identifying conditions that lead to
accumulation of such compounds in cells that contain a
functional HNT2 gene, rather than simply identifying
conditions that produce diadenosine polyphosphate ac-
cumulation in the absence of Hnt2. While cells without a
functional HNT2 gene accumulate dinucleoside
polyphosphates in excess of 10 UM in a variety of non-
stressed and stressed conditions, 46°C heat shock was the
only condition that produced dinucleoside polyphos-
phate accumulation in excess of 10 pM in cells containing
a functional HNT2 gene. These conditions did not render
the cells conditionally null for Hnt2 because cells express-
ing HNT2 continued to limit dinucleoside polyphosphate
accumulation during hours of heat shock, though at levels
of ~0.1 mM.

Recently, discovery that the Hint-homologous HNT1 gene
is required for high temperature growth on galactose and
observations that alleles of cak1, kin28, ccl1 and tfb3are hy-
persensitive to loss of Hnt1 enzyme activity provided evi-
dence that Hntl enzyme activity positively regulates
Kin28 function, particularly on galactose media [9].
Though phenotypic consequences of hnt2 mutations have
yet to be discovered, our observations suggest that syn-
thetic lethal interactions with hnt2 mutations are likely to
be found in adenine prototrophic strains undergoing heat
shock.

Results and discussion

Disruption of HNT2 and tetrad analysis of dinucleoside
polyphosphate levels

An earlier report demonstrated that disruption of HNT2
was tolerated by haploid yeast strains without an effect on
growth and that ApppN and AppppN accumulate 30 and
3-fold, respectively on account of the hnt2 deletion [13].
Because those data were obtained by random spore anal-
ysis, we considered it important to test whether elevated
dinucleoside polyphosphate levels co-segregate with hnt2
disruption in all tetrads examined and whether any other
commonly used genetic markers affect dinucleoside
polyphosphate levels. Diploid strain BY71 (Table 1), cre-
ated to be heterozygous for MAT, ADE2, HIS3, LEU2,
LYS2, MET15, TRP1, URA3 and HNT2, was allowed to
sporulate and was then dissected. As shown in Figure 1,
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Table I: S. cerevisiae strains in this study
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Name Genotype Background and source
SEY6210  MATa his34200 leu2-3,112 lys 2-81 suc2-49 trp1-A901 ura3-52 $288C, [48]
BY4717 MATa ade2A:hisG $288C, [47]
BY4727 MAT a his34200 leu240 lys240 met! 540 trp 1 463 ura340 $288C, [47]
BYIl6 MAT a his34200 leu2A40 lys240 metl 540 trp 1 463 ura340 hnt2A:kanMX2 BY4727, this work
BY71 MATa/MATa ADE2/ade2A:hisG HIS3/his3A4200 LEU2/leu240 LYS2/lys240 MET/met! 540 TRPI/trp 1463 BY4717 x BY 16, this work
URA3/ura340 HNT2/hnt2 A:kanMX2
BY7I-la  MATa his34200 leu240 lys240 hnt2A:kanMX2 BY71 segregant, this work
BY7I-1b  MATa ade2A:hisG his34200 lys240 met|5A40 trp 1 463 ura340 hnt2 A:kanMX2 BY71 segregant, this work
BY7I-lc MATa ade2A:hisG leu240 met| 540 ura340 BY71 segregant, this work
BY71-1d MATa trp1 463 BY71 segregant, this work
BY71-2a  MATa ade2A:hisG leu240 metl 540 hnt2 A:kanMX2 BY71 segregant, this work
BY71-2b  MATa his34200 leu240 lys240 met! 5D0 ura340 hnt2A:kanMX2 BY71 segregant, this work
BY71-2¢c MATa ade2A:hisG his34200 lys240 trp | A63 ura340 BY71 segregant, this work
BY71-2d  MATa trpl 463 BY71 segregant, this work
BY71-4a  MATa lys240 ura340 hnt2A:kanMX2 BY71 segregant, this work
BY71-4b  MATa his34200 met!540 ura340 BY71 segregant, this work
BY71-4c MATa ade2A:hisG his34200 leu240 met! 540 trp 1 463 BY71 segregant, this work
BY71-4d  MATa ade2A:hisG leu240 lys240 trp 1 463 hnt2 A:kanMX2 BY71 segregant, this work
BY71-6c MATa his34200 leu240 metl 540 hnt2A:kanMX2 BY71 segregant, this work
BY71-16d MATa his34200 leu240 met!540 BY71 segregant, this work

tetrads produced four viable colonies, two of which were
large and white, and two of which were smaller and pink
on YPD medium, which scored as ade- on SDC -ade me-
dium. Markers segregated 2:2 in nearly all cases and pos-
session of a 1976 bp PCR fragment using primers 4726
and 4722 always correlated with geneticin-resistance
while possession of a 1200 bp product correlated with ge-
neticin-sensitivity, as expected for segregants containing a
nondisrupted HNT?2 gene.

Haploid segregants from three complete tetrads were cul-
tured for 24, 48 and 72 hours in SDC medium, lysed, and
levels of ApppN and AppppN were determined. As shown
in Table 2, strains containing an intact HNT2 gene were
never observed to have calculated intracellular ApppN lev-
els above 3 UM and typically were found to have ApppN
levels below 1 pM. Strains disrupted for hnt2 had ApppN
levels of approximately 6 to 43 uM after one day of cul-
ture, rising to approximately 30 to 300 UM and 50 to 350
UM after two and three days of culture, respectively. The
ade2 mutation was partially epistatic to the effect of hnt2
disruption on ApppN accumulation. hnt24 strains con-
taining ade2 mutations were several fold lower in ApppN
accumulation than hnt2AADE? isolates. Thus, deletion of
hnt2 afforded a 48-fold increase in ApppN in ade2 mu-
tants, consistent with an earlier report of a 31-fold effect
[13], but a 211-fold increase in ADE2 strains.

Earlier, hnt2 deletion was reported to increase AppppN
levels only 2.5-fold but the study was performed in ade2
mutants [13]. Consistent with that report, the three hnt2
ade2 strains showed only a 2-fold higher AppppN level
than the three HNT2 ade? strains, when nucleotide levels
were averaged across the three time points. In contrast,
hnt2AADE?2 strains achieved a 3.7-fold higher level of
AppppN than HNT2 ADE2 strains. Larger increases in
AppppN concentrations have been seen with disruption
of Apal and Apa2, the diadenosine tetraphosphate phos-
phorylases in S. cerevisiae[34,35], indicating that they
have a more significant role in controlling AppppN levels
than does Hnt2. In the case of disruption of the Fhit and
Hnt2-homologous aphl gene in S. pombe, which encodes
an enzyme relatively specific for a AppppA [20], a 290-
fold increase in AppppA concentration was observed [22].
Our data indicate that Hnt2 hydrolyzes ApppN and
AppppN in vivo in budding yeast and that an intact ade-
nine biosynthetic pathway is required for high-level syn-
thesis and accumulation of adenylylated dinucleoside
polyphosphates.

Hnt2 active site-dependence of dinucleoside polyphos-
phate accumulation

Catalytic activity of the Fhit ApppA hydrolase depends on
His96 [14,16]. To test whether the active site of Hnt2 is
necessary to control dinucleoside polyphosphate accumu-
lation in vivo, wild-type and mutant alleles of HNT2 that
differ at His109, corresponding to human Fhit His96,
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Figure |

Disruption of hnt2. Strain BY16 was crossed with strain
BY4717 to generate diploid strain BY71, which was dissected
to generate haploid progeny. Markers were scored for mat-
ing type, auxotrophic requirements and G4|8-resistance.
The two small segregants per tetrad are ade24 mutants.
Here, four segregants that had been scored for G418-resist-
ance were scored for size of the HNT2 locus by PCR using
diagnostic primers 4722 and 4726. G418-sensitive progeny,
BY71-3a and BY71-3c produced a product of 1200 bp while
G418-resistant progeny BY71-3b and BY71-3d produced a
product of 1976 bp, demonstrating physical linkage of
kanMX2 to hnt2 disruption.

-
S

were expressed from the HNT2 promoter on plasmids (Ta-
ble 3) in hnt2AADE?2 strain BY71-6¢. As shown in Table 4,
reintroduction of wild-type HNT2 produced a 40 to 125-
fold reduction in intracellular concentrations of ApppN
and a two to seven-fold reduction in levels of AppppN.
This reduction was active-site dependent: adding back
multicopy HNT2 with the nucleophilic histidine replaced
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by alanine or aspartate reduced dinucleoside polyphos-
phate levels less than two-fold.

Dinucleoside polyphosphate levels may not be limited by
the levels of lysyl tRNA synthetase

AppppA is induced by heat shock in bacteria [36] and the
induction of AppppA was thought to be a function of the
heat-shock inducible LysU lysyl tRNA synthetase. Howev-
er, deletion of lysU had no effect on heat-shock inducible
AppppA accumulation [37]. The KRS1 gene [38] encoding
cytosolic lysyl tRNA synthetase was cloned into multicopy
plasmid pRS423 [39] to generate plasmid pM1. Strains
BY71-16d (ADE2 HNT2) and BY71-6¢ (ADE2 hnt2) were
transformed with pM1 and the pRS423 control plasmid,
and cultures were harvested at 24, 48 and 72 hours. Deter-
mination of ApppN and AppppN concentrations revealed
that ApppN levels are substantially higher in hnt2 mutants
than in isogenic wild-types at all time points and that
plasmids conferring multiple copies of KRS1 did not in-
crease ApppN or AppppN levels at any culture time point
(Table 5). To address whether plasmid pM1 indeed in-
creased lysyl tRNA synthetase activity, lysates from
pRS423 and pM1-transformed BY71-6¢ were assayed for
incorporation of 3H lysine into yeast tRNA. As shown in
Figure 2, tRNA-dependent lysine incorporation was in-
creased 2.1-fold by expression of KRS1 from a multicopy
plasmid.

Heat shock is the most effective stress for elevation of di-
nucleoside polyphosphates

In the wild and in the laboratory, yeast are exposed to
stresses such as hypo-osmotic or hyperosmotic condi-
tions, toxic cations, heat shock and cell-cycle disruptive re-
agents. To test whether such conditions induce
dinucleoside polyphosphates in hnt2- or Hnt2+ cells, we
incubated ADE2 hnt2 and ADE2 HNT2 cells in water, 1 M
sorbitol, 2 mM CdCl,, 46 °C heat shock, 10 mM caffeine,
or in rich media for two hours and determined dinucleo-
side polyphosphate levels. Additionally, to test whether
moderate overexpression of the lysyl tRNA synthetase
gene affected accumulation, we compared control trans-
formants to multicopy KRS1 transformants of the two
strains. As shown in Table 6, the hnt2 samples had sub-
stantially higher ApppN levels than HNT2 samples under
all conditions. Among the hnt2 samples, only heat
shocked samples showed evidence of ApppN levels higher
than the levels in nonstressed hnt2 cells. Similarly, among
the HNT2 samples, the heat shocked samples showed in-
creased ApppN levels compared with control-treated cells
while CdCl, and other treated samples showed no signif-
icant changes. KRS1 on a multicopy plasmid showed no
significant alteration of ApppN levels in any sample. As
with other experiments, AppppN levels were lower than
ApppN levels in all cases. Heat shock was the best inducer
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Table 2: Intracellular concentration (LM) of dinucleoside polyphosphates in segregants from three complete BY71 tetrads

Culture Time 24 hr 48 hr 72 hr
Nucleotide ApppN AppppN ApppN AppppN ApppN AppppN
Segregant Relevant Genotype

la 5.96 0.27 112 0.26 251 0.19 hnt2A ADE2
Ib 14.2 0.11 42.7 0.12 101 0.16 hnt2A ade2
lc 1.44 0.16 2.86 0.09 2.50 0.09 HNT2 ade2
Id 0.26 0.04 1.07 0.38 0.60 0.16 HNT2 ADE2
2a 42.6 0.23 86.6 0.19 102 0.18 hnt2A ade2
2b 39.1 0.37 294 1.51 346 0.26 hnt2A ADE2
2c 0.29 0.06 0.40 0.05 0.36 0.05 HNT2 ade2
2d 2.59 0.17 0.86 0.21 0.57 0.07 HNT2 ADE2
4a 21.6 0.52 160 0.37 200 0.42 hnt2A ADE2
4b 0.51 0.09 0.24 0.002 0.09 0.001 HNT2 ADE2
4c 0.34 0.07 0.95 0.03 0.80 0.06 HNT2 ade2
4d 8.2l 0.10 26.7 0.07 52.1 0.19 hnt2A ade2

Table 3: Plasmids used in this study

Name Features Background and
source

pRS423 YEp HIS3 [39]

pBO05 YEp HIS3 HNT2 pRS423, this work

pB32 YEp HIS3 HNT2-His | 09Ala pBO5, this work

pB86 YEp HIS3 HNT2-His| 09Asp pBO5, this work

pMI YEp HIS3 KRS pRS423, this work

of AppppN. Hypotonic, hypertonic and caffeine treated
media produced no increase in AppppN (not shown).

To further investigate the kinetics of heat shock and cad-
mium-induction of ApppN and AppppN levels, we trans-
formed hnt2AADE2 strain BY71-6¢ with multicopy
plasmids containing no HNT2 gene, the wild-type HNT2
gene, or the HNT2-His109Ala or HNT2-His109Asp alleles
of HNT?2. Cultures were exposed to either 2 mM CdCl, or
46°C heat shock and intracellular concentrations of
ApppN and AppppN were determined at 30-minute time-
points.

As shown in Figure 3, ApppN and AppppN levels are high-
er in hnt2 strains than in cells with a functional HNT2
gene, and were not significantly elevated by 2 mM CdCl,.
However, when cells were heat shocked, as shown in Fig-
ure 4, ApppN and AppppN levels increased substantially

in cultures with every HNT2 genotype (absence, presence
or active site mutation). Increases in dinucleoside
polyphosphates in Hnt2+ cultures cannot be attributed to
thermal inactivation of Hnt2 because the presence of
HNT?2 plasmids continues to reduce incremental increases
in dinucleoside polyphosphates even in the fourth hour
of the heat shock. Furthermore, the active-site mutant al-
leles of HNT2, HNT2-His109Ala and HNT2-His109Asp,
provided on plasmids pB32 and pB86, demonstrated in-
termediate abilities to control dinucleoside polyphos-
phate levels, suggesting that elevated temperature reduces
the catalytic defects of these mutant enzymes. The high
levels of ApppN (~100 pM) and AppppN (~10 pM) and
the fact that Hnt2-containing samples continue to reduce
the rate of increase in dinucleoside polyphosphates with-
out reducing their concentrations demonstrate that heat
shock induces dinucleoside polyphosphate synthesis and
that Hnt2 is saturated under such conditions. In Xenopus
oocytes, however, some work has suggested that heat
shock-dependent accumulation of AppppN is largely due
to inactivation of degradative enzymes [30].

Conclusions

It had been reported that Hnt2 controls ApppN levels in
vivo, with a minor effect on AppppN [13]. Here we show
that the ade2 mutation present in earlier experiments pre-
vents accumulation of ApppN and AppppN and reduced
the magnitude of the Hnt2 effect. In ADE2 strains exam-
ined herein, deletion of HNT2 increased levels of ApppN
and AppppN by factors of approximately 200 and 4, re-
spectively. Mutagenesis [14], X-ray crystallography
[16,40], and stereochemical analysis [41] indicate that
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Table 4: Intracellular concentration (LM) of dinucleoside polyphosphates controlled by the Hnt2 active site

Culture time 24 hr 48 hr

Nucleotide ApppN AppppN ApppN AppppN

Plasmid in strain BY71-6c¢ Genotype

None 20.70 0.16 129.00 2.16 hnt24

pRS423 23.80 0.21 140.00 I.11 hnt24

pBO05 0.51 0.07 I.11 0.32 HNT2

pB32 18.70 0.17 201.00 1.69 HNT2-His109Ala
pB86 13.40 0.16 80.40 1.00 HNT2-His | 09Asp

Table 5: Intracellular concentration ({M) of dinucleoside polyphosphates as a function of culture time, HNT2 genotype, and presence

of multicopy lysyl-tRNA synthetase gene

Nucleotide ApppN AppppN
Culture Time 24 hr 48 hr 72 hr 24 hr 48 hr 72 hr
Relevant Genotype
HNT2 0.52 1.60 0.22 0.29 0.19 0.02
HNT2 YEpKRS ! 1.28 1.29 0.20 0.34 0.22 0.01
hnt24 6.25 14.10 3.54 0.35 0.26 0.02
hnt2A YEpKRS | 5.83 15.50 4.20 0.40 0.30 0.01

His96 is the nucleophile that attacks the a-phosphate of
Fhit substrates. Our analysis shows that the corresponding
residue, His109 of Hnt2, is required for hydrolysis of
ApppN and AppppN substrates in vivo.

Other than effects on the concentrations of intracellular
nucleotides, neither deletion of HNT2 nor mutation of
His109 of HNT2 had phenotypic consequences. In the
case of the Hint-homologous HNT1 gene of S. cerevisiae,
the phenotype of the single mutant was mild and the bio-
logical pathway, positive regulation of Kin28, the yeast
homolog of Cdk7, was revealed by synthetic lethal inter-
actions between hntl and hypomorphic alleles of cakl,
kin28, ccll and tfb3[9]. Because backup systems to limit
problems with hnt2 mutant cells apparently exist, synthet-
ic lethal interactions may be critical to identify the Hnt2
biological pathway. Thus, if the major function of HNT2
is simply control of dinucleoside polyphosphates lest
their accumulation inhibit other enzymes (i.e., McLen-
nan's "foe" hypothesis [42]), then synthetic lethal pheno-
types ought to be sought with hnt2mutant strains that are

wild-type for the adenine biosynthetic pathway, poten-
tially under heat shock conditions. On the other hand, if
the major function of Hnt2 depends on formation of an
enzyme-substrate complex [16], then synthetic lethal in-
teractions ought to be sought in heat shocked ADE2
HNT2-His109Ala strains. In fact, because ADE2 HNT2-
His109Ala strains have high levels of dinucleoside
polyphosphates and an Hnt2 polypeptide, such a strain
may be sensitized to secondary mutations, whether dinu-
cleoside polyphosphates are friend or foe [42].

Materials and methods

General molecular biology

Yeast media and procedures were as described [43,44]. S.
cerevisiae transformations were carried out by the lithium
acetate method [45]. E. coli strain XL-1 Blue was used for
bacterial cloning and plasmid amplification. Bacterial me-
dia and molecular biology techniques were as described
[44].
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Table 6: Intracellular concentration (M) of ApppN as a function of stress treatments, HNT2 genotype, and moderate overexpression

of lysyl aminoacyl-tRNA synthetase

Relevant Genotype -his | M sorbitol 10 mM caffeine 2 mM CdCl, 46°C H,O YPD
HNT2 0.58 £ 0.36 .19 £0.37 1.15%0.12 1.12 £0.29 2.16 £0.10 0.54 £0.12 0.44 £ 0.09
HNT2 YEpKRS| 0.60+0.51 0.84 +0.21 274+ 1.37 1.14 £0.17 211 £0.25 0.49 £ 0.05 041 £0.13
hnt24 10.7 £ 7.51 6.65 + 0.82 12.5 +3.91 4.92 +2.67 442 + 751 592 + |.66 597 +1.38
hnt2A YEpKRS | 19.0 + 8.21 636210 3.84 + 1.05 11.6 £4.36 40.6 + 5.62 8.82 +3.57 1.40 + 0.52
1200 BY71. Strain BY71 was allowed to sporulate and subjected
to tetrad dissection to generate haploid strains BY71-1a
1000 ] through BY71-16d. Genotypes of all yeast strains are pro-
&0 || vided in Table 1.
£
£ =0 ] Plasmid constructions
400 — The HNT2 gene was amplified from genomic DNA of
- L yeast strain SEY6210 [48] with primers PB1 (5'GCAGCG-
T GATCCTTGGGAT) that spanned a BamHI site upstream of
0 - ' ' the promoter and PB2 (5'GAGTCTCCTCGAGGAAAG)
PREAZ3 RNA pRS4Z3 HRNA - ph1-tRNA — pMT HRNA that spanned a Xhol site downstream of the terminator.

Figure 2

Moderate overexpression of lysyl tRNA synthetase
activity via multicopy plasmid pMI Lysates from strain
BY71-6c transformants with control plasmid pRS423 and
multicopy KRS/ plasmid pM| were assayed for incorporation
of 3H lysine in the absence and presence of added yeast
tRNA.

Disruption of hnt2

A 1570 bp DNA fragment containing an hnt24::kanMX2
disruption cassette was generated as described [46]. Prim-
ers 4716
(5'GAAGCTCCATTGATCTATCTTGGGCTCAGAATGATCT
TAAGCAAAACAAAGCITCGTACGCTGCAG) and 4717
(5'CGTAAGTATGAATCTATTATTTATTGAACTATAGTGT-
TAAACCAGGGCCACTAGTGGATCTGA) were used to
amplify the yeast expressible geneticin-resistance gene
from pFA6a-kanMX2[46] with 50 bp DNA ends corre-
sponding to sequences upstream and downstream of
HNT?2. The resulting fragment was transformed into hap-
loid S. cerevisiae strain BY4727, and transformants were
selected on YPD with 400 pg/ml geneticin. To ensure that
geneticin-resistance was linked to hnt2 disruption, ge-
nomic DNA from several geneticin-resistant colonies was
analyzed by diagnostic PCR primers 4726 (5TCGCT-
GATITGGTAGTCTC) and 4722 (5'GAGTCTCCTCGAG-
GAAAG). A transformant shown to contain the 1976 bp
hnt2 4::kanMX2 product in place of the wild-type 1200 bp
HNT2 product was named strain BY16. Strain BY16 was
crossed with strain BY4717 [47] to generate diploid strain

The 1316 bp BamHI-Xhol fragment containing HNT2 was
ligated to BamHI and Xhol-cleaved plasmid pRS423 [39]
to generate plasmid pB05. Plasmids pB32 and pB86, car-
rying HI09A and H109D alleles of HNT2, were construct-
ed by site-directed mutagenesis [49] of plasmid pBO05
using primers PB3 (5'ATAATGTGTGTAGCCAAGT-
GGGGT) and PB4 (5'TAATGTGTGTATCCAAGTGGGG-
TAC). The S. cerevisiaze gene encoding lysyl tRNA
synthetase (KRS1) was amplified as a 2.9 kbp genomic
fragment from strain SEY6210 using primers MR20
(5'CGAGCTCGGTTGGA TGACTITAAAATGACTAAGTTT-
GTAGTATCCTCTITGC ATACTC) and MR21
(5'TCCCCCGGGGGAGCTCCITTAGGGCTACCGAACAT-
AAACAAATTTAGGTAA TGAGTITTC). This product,
cloned into the Smal restriction site of plasmid pRS423,
generated plasmid pM1 in which KRS1 is oriented anti to
HIS3. Plasmids are summarized in Table 3.

Measurement of dinucleoside polyphosphate levels

Twelve haploid segregants, pregrown in liquid SDC medi-
um, were inoculated into 250 ml of SDC at starting densi-
ty of 104 cells per ml. At 24, 48 and 72 hours of growth,
50 ml of cells were harvested, cells counted microscopical-
ly, lysed, and levels of AppppN and ApppN were deter-
mined as described [13]. Intracellular concentrations of
ApppN and AppppN were calculated using 7 x 10-14 1 as
the volume of a haploid cell [50]. Cultures of BY71-6¢
were transformed with plasmids pRS423, pB05, pB32 and
pB86 and transformants were selected on SDC-his media.
Intracellular concentrations of ApppN and AppppN were
determined for transformants from cultures in SDC-his
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Figure 3

Cadmium is a poor inducer of dinucleoside polyphosphates Calculated intracellular concentrations of ApppN and
AppppN of transformants of strain BY71-6c as a function of time in 2 mM CdCl,.

media as above. To determine whether a multicopy lysyl
tRNA synthetase plasmid affected accumulation of dinucl-
eoside polyphosphates, we transformed HNT2 ADE2
strain BY71-16d and hnt2 AADE2 strain BY7 1-6¢ with con-
trol plasmid pRS423 and with plasmid pM1. Transform-
ants were grown for 24, 48 and 72 hours in SDC-his
media and intracellular dinucleoside polyphosphate con-
centrations were determined as above. To survey dinucle-
oside polyphosphate induction as a function of potential

stress conditions, strain BY71-6¢ was transformed with ei-
ther pRS423 or pM1 (effectively hnt24 and hnt24
YEpKRS1, respectively) and strain BY71-16d was trans-
formed with the same plasmids (effectively HNT2A4 and
HNT2AYEpKRS1, respectively). After 48 hours of culture,
cells were pelleted and resuspended in either YPD media,
water, SDC-his media, or the same media supplemented
with 2 mM CdCl,, 10 mM caffeine or 1 M sorbitol. The
SDC-his sample was incubated for 2 hours at 46°C while
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Heat shock induces dinucleoside polyphosphates Calculated intracellular concentrations of ApppN and AppppN of

transformants of strain BY71-6c as a function of time at 46°C.

other samples were incubated for 2 hours at room temper-
ature prior to extraction for determination of dinucleoside
polyphosphate concentrations. To determine the time
course of ApppN and AppppN levels as a function of
stresses, we used strains BY71-16d and BY71-6¢ trans-
formed with pRS423, pB05, pB32, or pB86. Transform-
ants were cultured for 48 hours, treated with 2 mM CdCl,
or 46°C heat shock, and then harvested for nucleotide
quantitation at 30 minute intervals. Experiments present-

ed in Tables 2, 4, 5 and 6 were performed two, three, five
and three times, respectively. Experiments presented in
Figures 3 and 4 were performed four times each. Because
diadenosine polyphosphate levels vary with time in cul-
ture, generating a higher or lower range of values in inde-
pendently conducted experiments, we did not average
values obtained in separate experiments. For the data pre-
sented in Table 6, triplicate cultures were prepared and the
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ApppN levels for identically treated samples are provided
as averages + standard deviations.

Lysyl tRNA synthetase activity assay

Strain BY71-6¢ was transformed with plasmids pRS423
and pM1 (multicopy KRS1) and cultures were grown as
for measurement of dinucleoside polyphosphate levels.
Lysates were prepared by glass bead disruption in 50 mM
Tris Cl pH 7.5, 1 mM DTT, 40% glycerol. Incorporation of
tritiated lysine into tRNA was measured by modification
of the protocol of Hou [51]. Reactions contained 10 mi-
crograms of total protein in 20 mM KCl, 10 mM MgCl,, 4
mM dithiothreitol, 2 mM ATP, 50 mM Na HEPES pH 7.5,
20 UM lysine (10 pCi 3H lysine), and were performed with
or without 15 pg yeast tRNA (Sigma) in a total volume of
60 pl. At one, two, three, five and twelve minute time
points, 10 pl aliquots were spotted on filter paper and
placed in 5% wt/vol trichloroacetic acid, washed in 5%
trichloroacetic acid twice, washed twice in 95% ethanol,
rinsed in ether and scintillation-counted.
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