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Concatenated convolutional 
neural network model for cuffless 
blood pressure estimation using 
fuzzy recurrence properties 
of photoplethysmogram signals
Ali Bahari Malayeri1 & Mohammad Bagher Khodabakhshi2*

Due to the importance of continuous monitoring of blood pressure (BP) in controlling hypertension, 
the topic of cuffless BP estimation has been widely studied in recent years. A most important 
approach is to explore the nonlinear mapping between the recorded peripheral signals and the BP 
values which is usually conducted by deep neural networks. Because of the sequence-based pseudo 
periodic nature of peripheral signals such as photoplethysmogram (PPG), a proper estimation 
model needed to be equipped with the 1-dimensional (1-D) and recurrent layers. This, in turn, 
limits the usage of 2-dimensional (2-D) layers adopted in convolutional neural networks (CNN) for 
embedding spatial information in the model. In this study, considering the advantage of chaotic 
approaches, the recurrence characterization of peripheral signals was taken into account by a visual 
2-D representation of PPG in phase space through fuzzy recurrence plot (FRP). FRP not only provides 
a beneficial framework for capturing the spatial properties of input signals but also creates a reliable 
approach for embedding the pseudo periodic properties to the neural models without using recurrent 
layers. Moreover, this study proposes a novel deep neural network architecture that combines the 
morphological features extracted simultaneously from two upgraded 1-D and 2-D CNNs capturing 
the temporal and spatial dependencies of PPGs in systolic and diastolic BP estimation. The model has 
been fed with the 1-D PPG sequences and the corresponding 2-D FRPs from two separate routes. The 
performance of the proposed framework was examined on the well-known public dataset, namely, 
multi-parameter intelligent in Intensive Care II. Our scheme is analyzed and compared with the 
literature in terms of the requirements of the standards set by the British Hypertension Society (BHS) 
and the Association for the Advancement of Medical Instrumentation (AAMI). The proposed model 
met the AAMI requirements, and it achieved a grade of A as stated by the BHS standard. In addition, 
its mean absolute errors and standard deviation for both systolic and diastolic blood pressure 
estimations were considerably low, 3.05 ± 5.26 mmHg and 1.58 ± 2.6 mmHg, in turn.

The notion of chaos theory as a nonlinear framework in dynamical system analysis has attracted much inter-
est. Chaotic approaches are mainly applied to emerge the complexity and nonlinear structure of the systems. 
Because of the nonlinear nature of biological signals, the application of chaotic framework has been found in 
many biological research areas, including the analysis of electroencephalograms (EEG)1, emotion  recognition2,3, 
lung abnormality  diagnosis4,5, and medical image  processing6.

Cardiovascular diseases (CVD) are the leading cause of death worldwide, and hypertension is the most sig-
nificant risk  factor7. Therefore, the topic of continuous blood pressure (BP) estimation has grown increasingly 
in recent years. Human BPs are traditionally measured by auscultation and the oscillometric technique called 
the cuff-based method. In the cuff-based method, it is necessary to take significant time intervals between two 
successive measurements. Since the continuous measurement of BPs is vital in preventing hypertension, it cannot 
be applied for long-term monitoring and controlling the related  CVDs8–10.
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In long-term monitoring, the instantaneous BPs are also measured invasively through catheterization in 
medical centers, which restricts its appropriate usage as an ambulatory technique. Therefore, as a noninvasive and 
comfortable scheme, a cuffless BP estimation method based on electrocardiogram (ECG) and photoplethysmo-
gram (PPG) has been conducted. In particular, pulse transient time (PTT) is a valuable feature for BP estimation 
calculated from two channels of physiological signals, such as ECG and PPG. Huynh et al.11 demonstrated the 
relationship between impedance plethysmography (IPG) and PTT to estimate BPs. A new indicator, namely, 
photoplethysmogram intensity ratio (PIR), is introduced by Ding et al.12, which can trace the low-frequency 
variations of BP. The results showed that the accuracy of BP estimation was improved using both PTT and 
PIR. Moreover, Lin et al.13 proposed a PTT-based approach by applying new indicators such as ascending and 
descending slopes, peak intensity ratio, and end valley intensity to construct BP estimation regressors. Indeed, a 
considerable amount of studies verified the indirect relationship between the PTT and the BP  values14.

The indirect relationship is carried out based on the machine learning algorithms such as neural networks 
(NN)15, random  forest16, and fuzzy systems in such PTT-based  approaches16,17. Although such approaches require 
two channels of signals, there have been a number of studies that exhibit superior performance with just one 
channel of the physiological source. Miao et al.7 introduced a novel approach inspired by the efficiency of one-
channel EEG signals for BP monitoring. Also, Soh et al.18 proposed an automated diagnostic tool for hyperten-
sion using just ECG sources. In contrast, due to the more accessible and less expensive measurement of the 
PPG signal, its properties have been used more  widely19–21. However, to improve the accuracy of BP estimation, 
physiological parameters of both signals were eventually taken into account to determine the optimal feature 
vector. In particular, Esmaeilpoor et al.22 applied different feature sets from the PPG segments alone and in con-
junction with the corresponding ECG segments. Their findings verified that the combination of both ECG and 
PPG waveforms contains discriminative information improving the model performance.

In recent years, deep neural networks have been widely employed in blood pressure estimation. Deep net-
works are inherently able to discover discriminative characteristics from input attributes without any handcrafted 
features. Various experiments have proved that deep networks are powerful tools in 1-dimensional (1-D) and 
2-dimnesional (2-D) medical image and time-series classification problems. In this essence, convolutional neural 
networks (CNN) were applied to improve the accuracy of estimation. Baek et al.23 proposed a CNN architecture 
that can use raw signals for training without handcrafted feature extraction. In addition, the pure CNN archi-
tectures can be found in another group of studies for BP prediction, including Arterial blood pressure network 
(ABP-Net)24, CNN-based Siamese  network25, visual geometry group style (VGG-style) convolutional  model26, 
and spectro-temporal deep  network27.

Due to the recurrence properties of the biological sources, the advantage of recurrent neural network (RNN) 
structures is also utilized in the prediction of BPs. For example, a novel multi-input multi-output dense neural 
network model combined with a long-short term memory (LSTM) architecture is proposed as an RNN  model28. 
In the same way, stacking ANN-LSTM29, stacking multiple LSTM layer deep recurrent neural network (Deep-
RNN)30, and multi-stage CNN-LSTM  model22,31 are the most recent BP estimators.

The chaotic approaches are also capable of modeling the recurrence characterization of the biological time 
series. In chaotic methods, the given time-series usually can be formulated in phase (state) space that leads to 
the introduction of nonlinear characteristics, such as Lyapunov exponents, fractal pattern feature  generation2, 
and recurrence-based  indices32. The recurrence-based algorithms provide a graphical representation of the phase 
space trajectory. In particular, the recurrence plot (RP) visualizes the return of the trajectory of the vicinity of 
its previous states in a 2-D  plane33–35. Although RP can easily be constructed, it is sensitive to the appropriate 
selection of the similarity  threshold34–36. To overcome this issue, by applying a fuzzy relation, T. D. Pham has 
introduced the fuzzy recurrence plot (FRP)37–39. In FRP, the similarity of two phase-space states is measured on 
the basis of fuzzy membership grades ranging between zero and one. Making use of the introduced fuzzy relation 
in FRP can diminish the problem of threshold selection. In addition, it was exhibited that more texture details 
can be visualized in FRP than that of the traditional  RP37.

As seen, in almost all the models reviewed in the literature, the 1-D PPG and ECG sequences were applied 
as the network input. Therefore, 1-D convolutional layers were the more credible choice for feature generation 
in the network structure. In other words, these types of networks were not able to handle the 2-D convolutional 
layers corresponding to the 2-D input patterns. Moreover, the recursive properties and the periodicity of the 
input physiological signals are masked when the pure CNN models process them.

In this study, taking into account the potential ability of FRP in generating a 2-D representation of physiologi-
cal signals, we updated the structure of CNNs to utilize 2-D convolutional layers. Since FRP is a recurrence-based 
chaotic approach, it will embed the pseudo-periodic properties of PPG signals in the prediction model, which 
alleviates the LSTM layers. Therefore, the 1-D PPG sequences and their corresponding 2-D FRPs are fed into 
the model from two separate routes, which leads to our proposed scheme, concatenated convolutional neural 
network (Concat_CNN). To evaluate the performance of the Concat_CNN model, we have compared it with a 
1-D CNN and a 2-D CNN, which are in accordance with the PPG sequences and their FRPs, respectively. The 
main contributions of this paper are as follows:

• Different from the state-of-the-art studies that predict BPs through 1-D physiological signals, we examine the 
2-D FRP plot as a nonlinear chaotic approach, one advantage of which is the inclusion of 2-D convolutional 
layers for capturing the nonlinear properties of PPG signals.

• Since FRP is constructed based on the adjacent states in phase-space, this, in turn, can include the periodicity 
and repetition properties of PPG in blood pressure prediction.

• Taking advantage of both sequence-based properties and recurrence-based characterization of the input PPG 
in the proposed Concat_CNN provides promising results.
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The rest of the paper is organized as follows. In section “Fuzzy recurrence plot”, the preliminaries of the FRP 
are described. The proposed methodology, including the architecture of the novel deep structure, is provided 
in “Materials and methods”. After presenting the results, further interpretations are discussed in “Discussion” 
section. Finally, the paper is concluded in the last section.

Fuzzy recurence plots. Given a time series as an output of a complex system, an RP is easily con-
structed by embedding the time-series into the phase space and calculation of adjacent state distances. Let 
X = {x1, x2, . . . , xm} be an m-dimensional time-series data in which xi is i’th value of X . If the system trajectory 
is represented by r

(
p
)
, p = 1, 2, . . . ,N consisting of N states, the distance between the adjacent states p1 and p2 

are calculated  as40:

where R is N × N  recurrence matrix known as RP and θ is the Heaviside (step) function. When the distance 
between two adjacent states pi and pj in an RP are less than a predefined similarity threshold ( ε) , the correspond-
ing element in the recurrence matrix becomes one. The recurrence matrix can be visualized as a symmetric 
matrix by assigning black and white dots to Rpi ,pj = 1 and Rpi ,pj = 0 , respectively. The main challenge in the visual 
representation of RPs is the appropriate selection of ε . In other words, in a dynamical system, the visualization 
of recurrence patterns in RP is significantly varied when different values of similarity threshold are  considered37.

In the fuzzy version of RPs which are called FRP, Pham introduced a conversion of the time-series into the 
textural images based on a fuzzy relation measuring the similarity between two states in the reconstructed phase 
 space37,38. Such fuzzy relation alleviates the challenge of threshold selection and also provides an enhancement in 
the visualization of the image’s textures in comparison with the conventional RPs. An FRP is also a N × N matrix 
whose elements are arranged to represent the distance between the states by µǫ{0, 1} . Let V = {v1, v2, . . . , vc} 
be the set of fuzzy clusters of the  states37. The fuzzy membership function ( µ ) characterizes a fuzzy relation R 
from X to V  as a fuzzy set of X × V  . The fuzzy membership function with the following properties indicates the 
strength of the relationship of each pair of (xi,vk ) in R:

Reflexivity. 

Symmetry. 

Transitivity. 

where c is the number of fuzzy clusters. Herein, the fuzzy clusters of the state space are obtained by fuzzy c-means 
(FCM) algorithm determining the closeness between the states and the cluster centers. Subsequently, the simi-
larity between the pairs of states is inferred using the max–min composition of a fuzzy relation. By minimizing 
the following objective function, the FCM algorithm categorizes the state space into c overlapping  clusters37,41.

where ω is the fuzzy weighting exponent ( ω = 2 in this study), Z = {z1, z2, . . . , zc} , zk , and d(xi , zk) are the vec-
tor of the cluster centers, the center of the k th cluster, and inner-product-induced norm metric, respectively. 
In addition, the matrix of fuzzy c-partition is denoted by U = µi,k . To minimize the fuzzy objective function of 
Eq. (5) an iterative updating process based on Eqs. (6) and (7) is applied until a stopping criterion is reached.

The stopping criterion is U(t)− U(t + 1) ≤∝ , where t  is the t ’th time step and ∝ is a small positive number 
indicating the level of accuracy. Compared with the conventional RPs, an FRP produce gray-scale images that are 
more advantageous than the black-white  RPs41. Figure 1 represents the FRPs associated with the various states 
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)
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pj
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)
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(2)µ(xi , xi) = 1; i = 1, 2, . . . ,N

(3)µ(xi , vk) = µ(vk , xi); i = 1, 2, . . . ,N; k = 1, 2, . . . , c

(4)µ
(
xi , xj

)
= max �min �µ(xi , vk)�� = µ(vk , xi); i = j = 1, 2, . . . ,N; k = 1, 2, . . . , c

(5)

J(U ,Z) =

N∑

i=1

c∑

k=1

(
µi,k

)ω
(d(xi , zk))

2

s.t :

c∑

k=1

µi,k; i = j = 1, 2, . . . ,N; k = 1, 2, . . . , c

(6)
µi,k =

1

∑c
j=1

(
d(xi ,zk)
d(xi ,zj)

) 2
ω−1

(7)zj =

∑N
i=1

(
µi,j

)ω
xi∑N

i=1

(
µi,j

)ω



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6633  | https://doi.org/10.1038/s41598-022-10244-6

www.nature.com/scientificreports/

of the systolic and diastolic BPs. As seen, the recurrent and periodical nature of PPG signals are well represented 
in the corresponding FRPs.

Materials and methods
In our method, the PPG signal is the primary input of our model. Each signal is a vector converted to a 2-D 
FRP, and the former signal and the later plot simultaneously are given to the model as input because our model 
consists of two 1D_CNN and 2D_CNN and needs two inputs, as it is depicted in Fig. 2. The 1D_CNN extracts 
some valuable features based on the PPG time sequences, and the 2D_CNN also does the same but is based on 

Figure 1.  (a–c) are PPG signals and (d–f) are their respective FRPs with descending SBP and DBP at (162, 93) 
mmHg, (148, 74) mmHg, and (119, 52) mmHg, respectively. The recurrence properties of the PPG signals are 
depicted as a cluster texture features in the corresponding FRPs.

Figure 2.  The complete preprocessing, feature extraction, concatenation and predicting stages of our proposed 
model.
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a 2-D FRP. After this step, both models produce a set of features that are concatenated to employ for the final 
decision making of the model.

Dataset. The PPG, ECG, and invasive blood pressure of 200 patients are selected from the publically avail-
able dataset, namely, Multi-Parameter Intelligent in Intensive Care II (MIMIC-II). Data were performed in 
accordance with Health Insurance Portability and Accountability Act standards and the electronic records were 
integrated with relational database  software42. The Institutional Review Boards of Beth Israel Deaconess Medical 
Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA) approved the establish-
ment of MIMIC-II42–44. In addition, the research had no therapeutic implication and all data were de-identified 
to approve patient’s confidentiality. The mean and standard deviation of ages of people who were monitored in 
this database were 61.6 ± 14.6 years. This database’s physiological waveform records include multiple channels of 
simultaneously recorded signals (ECG, PPG, and arterial blood pressure), as well as time series of vital signals 
such as heart rate, systolic blood pressure (SBP), and diastolic blood pressure (DBP) digitized at 125 Hz. The 
labels (targets) for each case are SBPs and DBPs, which are acquired by an invasive blood pressure monitoring 
device. Since the dynamics of the input signal (PPG) and its relationship to blood pressure are changing at dif-
ferent times, separate processes have been used to estimate SBP and DBP.

The proposed neural network model. CNNs are one of the first choices for researchers trying to solve 
complex image processing-related problems because of their outstanding results for feature learning and estima-
tion problems. They could find the relationship between what is given to them as an input and the desired out-
put by adjusting their layers’ weights. CNNs are formed by various layers computing convolutional transforms 
feeding following nonlinear and pooling operators. Researches have shown that results could be improved when 
fused images are used from multiple  sources45. Also, instead of image fusion, a combination of two or even more 
models can result in performance enhancement.

In this study, we have proposed three different CNN networks, namely, 1D_CNN, 2D_CNN, and Con-
cat_CNN models. 1D_CNN gets a PPG signal and predicts the BP based on the input signal, and 2D_CNN has 
the same operation, but its input is the 2-D plot produced by the FRP function. The third one (Concat_CNN) is 
a combination of two other networks. The reason we do so is that the feature maps computed in final layers for 
both 1D_CNN and 2D_CNN models are useful for determining blood pressure, but each of them evaluated their 
input from different prospects. Thus, the combination of those features before determining the output creates a 
type of information fusion resulting in the performance enhancement. CONCAT_CNN is a novel two-stream 
CNN network receiving feature maps extracted from two different 1-D and 2-D data sources as inputs. In the 
following sections, we first introduce the preliminaries of 1-D and 2-D CNN models utilized in this study. Then, 
the structure of the proposed concatenated model is presented.

1D_CNN. The human visual cortex was the main motivation for the invention of CNNs because they were 
regarded as simple computational models. They are immensely used in computer vision problems such as differ-
ent sorts of detection, recognition, and augmentation. An adjusted version of 2-D CNNs, so-called 1-D CNNs, 
can have revolutionized the way we process 1-D biomedical signals. They remarkably eased the complexity of 
convolutional calculations because of the dramatically fewer number of parameters and input dimensions.

As a general finding, the majority of the researchers have used less hidden CNN layers for their 1-D CNNs 
architecture in comparison with 2-D CNNs. Therefore, it facilitated the process of training and implementing 
because of less number of unknown parameters, even fewer than 1 out of 10 times. Apart from the difference 
between the number of their parameters, while specific and powerful graphic processing units (GPUs) should 
be used to train 2-D images otherwise, it takes ages, 1-D CNNs could be trained by a normal central processing 
units (CPUs). Also, because of the number of parameters, 2-D CNNs require an abundance of samples to be 
well-trained, but even a limited labeled dataset is enough for training a 1-D CNN in most cases.

Over the forward propagation, the computation output map of a layer is the input of the following layer then 
this input will be convolved with the particular kernels, as bellow:

where sl−1
i  and wl−1

ik  stands for the output and kernel of the ith neuron at layer l − 1 , respectively, blk is the bias 
of the kth neuron at layer l  , and xlk is the input of layer l  . Each neuron of a middle layer has an output ylk which 
is computed output of the input xlk by the activation function.

where slk is the output of the kth neuron of the layer l  , and ↓ ss is the down-sampling operation of the ss meaning 
scalar factor.

The architecture of our adopted 1D_CNN is depicted in Fig. 3, receiving PPG signal samples as inputs. The 
number of filters is mentioned in the architecture, and the kernel size of all convolutional layers is 25. Following 
those layers, which extracted useful features from the input signal, there are fully connected layers. Extracted fea-
ture maps are given to them to estimate desired output by passing inputs through their fully connected neurons. 
This model consists of 30 consecutive layers, including convolutional, batch normalization, rectified linear unit 
(ReLU), average pooling dropout, flatten, input, and output layers. Selecting the number of layers, the dimensions 
of the filters, and how they are arranged next to each other can greatly affect the performance of the network. 

(8)xlk = blk +

Nl−1∑

i=1

conv1D(wl−1
ik .sl−1

i )

(9)ylk = f
(
xlk

)
andslk = ylk ↓ ss
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Therefore, it is necessary to obtain a suitable model of early architecture from the models used in valid studies. 
To select the CNN architecture used in this study, articles that have already been done on the same database in 
estimating blood pressure have been considered. Specifically,  in31, a multi-stage structure consisting of convo-
lutional layers along with LSTM layers has been used. In the present paper, its CNN structure was considered as 
the initial model. However, due to the fact that this model alone does not produce a favorable result in estimating 
blood pressure, the modified structure is introduced in Fig. 3. This structure has been obtained by trial and error 
on a set of validation data. As seen, the proposed architecture consists of 1-D convolutional layer (Conv1D), batch 
normalization layer, ReLU activation function, average pooling, dropout, and fully connected layers.

2D_CNN. The second model which is proposed in our study is represented in Fig. 4. Herein, 2-D FRP images 
sized 89 × 89 feeding this CNN model. The processes and functions are almost similar to the previous model, but 
the convolution operations are 2-D instead of 1-D. As seen, there are 7 convolutional layers followed by batch 
normalization and ReLU layers. Next to all ReLU layers except the last two, an average pooling layer is provided 
to decrease the dimensionality of feature maps. There are fully connected layers to produce output which are 
given scalar values by those feature extractor layers. The backpropagation algorithm is used to train networks 
modifying layers’ weights by calculating the gradient of all parameters.

Concat_CNN. The main model we proposed in this paper is a mixed model from 1 and 2D_CNN intro-
duced before. The reason why we do this is that the combined model will be equipped with the recurrence 
information of the input patterns without applying the formal recurrent models. Therefore, if we use that com-
plementary information, it improves the result. In other words, the third model named Concat_CNN fuses the 
extracted features from the previous models, and it results in better information processing. Figure 5 represents 
our Concat_CNN architecture comprising parallel 1-D and 2-D CNNs followed by the concatenating layer. 
Indeed, convolutional streams in 1D_CNN and 2D_CNN models produce feature maps then their fusion pro-
vides the input of the fully connected layers. In the training procedure, both 1D_CNN and 2D_CNN coefficients 
are tuned simultaneously as a compact single network model. As seen, the proposed 2-stream network will be 
trained just like a single model in each epoch, a PPG segment and its corresponding 2-D FRP image fed to the 
Concat_CNN to modify the unknown weights with regards to their target.

There are 4 different architectures for fusing the two-stream network each of them and their formu-
las are investigated below. Fusion function inputs are xat ∈ RH×W×N and xbt ∈ RH ′×W ′×N ′ and its output is 
yt ∈ RH ′′×W ′′×N ′′ . H , W  and N  represent the height, weight, and number of channels of the feature maps, in 
 turn45.

Sum fusion. ysum = f sum
(
xa, yb

)
 add the two feature maps at same location i, j , and feature channels n . The 

computed value at point 
(
i, j, n

)
:

where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ n ≤ N and Xa,Xb, y ∈ RH×W×N.

Max fusion. ymax = f max
(
xa, yb

)
 gives the maximum of the two input feature maps as the output:

(10)ysumi.j.n = Xa
i.j.n + Xa

i.j.n

Figure 3.  The proposed 1-D CNN network.

Figure 4.  The proposed 2-D CNN network.
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where 1 ≤ i ≤ H , 1 ≤ j ≤ W , 1 ≤ n ≤ N and Xa,Xb, y ∈ RH×W×N.

Concatenation fusion. ycat = f cat
(
xa, yb

)
 concatenate the two input feature maps at same location:

where y ∈ RH×W×2N.

Conv fusion. yconv = f conv
(
xa, yb

)
 initially stack two input feature maps at the same location i, j across the 

feature channels n as equations presented in the previous paragraph afterward convolves the stacked data with a 
bank of filters f ∈ R1×1×2N×N and biases b ∈ RD:

where the number of output is N . There are a large number of parameters in deep networks, which make them 
complex to be trained, and it is even worse when the architecture consists of two streams. However, adding 
fusion layers can remarkably decrease the number of parameters in a deep network. In this paper, we employed 
the third method (concatenation fusion) because compared with others in this way, the number of parameters 
does not reduce very much. Although in some cases, reducing the number of parameters is an advantage, in our 
model, those features which are fused are critical for computing the output, so losing them should be avoided.

Results
The whole steps of this experiment were carried out on Colab, which provides GPU with 12 GB of random access 
memory (RAM) and around 30 GB free space for loading dataset. In addition, we have used Matplotlib library in 
Python for drawing the figures related to the results. The dataset was 200 records chosen from MIMIC-II. They 
split into three training, validation, and testing parts, 70%, 10%, and 20% of each record’s length, respectively. 
PPG doesn’t linearly relate to blood pressure in the same way for all people because the cardiovascular dynamics 
of different people are varying.

Figure 6 depicts the model training error showing that the network reached maximum accuracy from 200 
to 300 epochs during the training step. After that, it has started to become over fitted. All models trained with a 
batch size of 100 and Adam optimizer with 0.001 learning rate.

All three models were evaluated in terms of different measures, namely mean absolute error (MAE), mean 
squared error (MSE), and mean error (ME), for evaluation of the difference between the target and the output of 
each model. Moreover, the coefficient of determination  (R2), Pearson’s correlation coefficient ( R ), and standard 
deviation (STD) have been calculated to determine the estimation accuracy. All formulas of the measures are 
presented below:

(11)ymax
i.j.n = max

(
Xa
i.j.n,X

a
i.j.n

)

(12)ysumi.j.1:n = Xa
i.j.n, ysumi.j.n+1:2n = Xb

i.j.n

(13)yconv = ycat∗f + b

Figure 5.  The proposed Concat_CNN network.
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Yi is observed one which is provided in the dataset, Ŷi represents the predicted one by the model and Y  is the 
mean of the Yi for i = 1, . . . , n . Also, the dataset was split into three subsets which are equal to 35,956, 10,574, 
and 5354 segments for training, validation, and testing, respectively.

Table 1 shows that the Concat_CNN model achieved 1.58 ± 2.60 mmHg and 3.05 ± 5.26 mmHg for MAE and 
STD of systolic and diastolic BP, respectively. MAE for this model is by around 0.2 and 0.9 mmHg lower than 
the other models. Note that SBP error is higher because of the fact that their values are inherently bigger than 
DBP, so it causes greater error but an almost equal  R2 score.

Figure 7 shows regression plots for all three models, which is significantly more convergence to the targets. 
Figure 8 represents the box and whisker plots of the delta between the output of each model and its desired tar-
get. Both these figures illustrate the fact that the proposed two-stream concatenated model could overcome the 

(14)MAE =
1

n

n∑

i=1

∣∣∣Yi − Ŷi

∣∣∣

(15)MSE =
1

n

n∑

i=1

(Yi − Ŷi)
2
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)

√
∑n

i=1

(
Yi − Y

)2 ∑n
i=1

(
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Figure 6.  The loss graph of Concat_CNN model during training process.
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performance of the other models. Figure 9 also demonstrates the Bland Altman diagram of systolic and diastolic 
blood pressure outputs of the two-stream CNN model.

Our Concat_CNN model was assessed using the British Hypertension Society (BHS) and the Association for 
the Advancement of Medical Instrumentation (AAMI) standard, which is presented in the next two paragraphs 
in detail.

Model evaluation based on British Hypertension Society (BHS) standard. Based on the assess-
ment criteria of the British hypertension society  standard46, Table 2 shows the performance of the suggested 
method. The BHS has established standards for determining the accuracy of blood pressure monitors. Various 
degrees of dependability are ascribed to techniques and equipment for measuring blood pressure based on these 
criteria, which are determined by establishing different thresholds of error and calculating the cumulative error 
percentage for all estimated samples. Table 2 shows the grading system, which includes grades A, B, and C. As 
can be observed, if the cumulative frequency of error is less than 5 mmHg for 60% of the samples while also 
being greater than 85% and 95% for 10 mmHg and 15 mmHg levels, respectively, the monitoring technique is 
classified as grade A. Grades B and C will be given if the performance is less than the specified state (see Table 1). 
The approach presented in this article obtained an A grade based on the results of the measurements.

Model evaluation based on AAMI standard. Output results were evaluated using AAMI standard, 
which is illustrated in Table 3. These results met all criteria because ME was fewer than 5 mmHg, STD was lower 

Table 1.  Comparison of proposed approach results presented in estimating SBP and DBP.

Diastolic blood pressure Systolic blood pressure

R2 R MSE (mmHg) MAE (mmHg) STD (mmHg) ME (mmHg) R2 R MSE (mmHg) MAE (mmHg) STD (mmHg) ME (mmHg)

1D_CNN 0.87 0.93 9.34 2.10 2.84 − 0.26 0.87 0.93 40.53 3.92 6.35 − 0.48

2D_CNN 0.77 0.88 16.09 2.70 4.00 − 1.912 0.74 0.86 84.69 5.99 9.14 − 1.09

Concat_CNN 0.91 0.96 6.86 1.58 2.60 − 0.29 0.92 0.96 27.68 3.05 5.26 − 0.15

Figure 7.  Regression plots for all 3 different models: (a) 1D_CNN, (b) 2D_CNN, (c) Concat_CNN. Plots in 
the upper row are related to systolic blood pressure and those in lower row are related to the diastolic blood 
pressure.
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than 8 mmHg, and the total number of subjects was more than 85, in both diastolic BP and systolic BP. It shows 
the fact that this method is entirely reliable.

Discussion
In general, the results verify the superiority of deep architectures in BP estimation. It improves the importance 
of applying nonlinear mapping between peripheral signals and blood pressure values. Previously, PPG signals 
or their combination with ECGs showed a strong correlation with  BP7,9,31. However, in this study, we have just 

Figure 8.  The box-and-whisker plot of estimation error for (a) SBP and (b) DBP.

Table 2.  Evaluation of the Concat_CNN approach based on BHS standard.

Cumulative frequency of error < 5 mmHg < 10 mmHg < 15 mmHg

BHS grades

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%

Our Model
SBP 93.42% 97.96% 99.7%

DBP 97.74% 99.4% 99.76

Table 3.  Evaluation of the Concat_CNN approach based on AAMI standard.

Criteria of acceptance ME of ± 5 mmHg STD of ± 8 mmHg Subjects > 85

Systolic blood pressure − 0.15 5.26 200

Diastolic blood pressure − 0.29 2.60 200

Figure 9.  The Bland–Altman plot for DBP and SBP estimation by Concat_CNN.
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applied one source of peripheral signals in the estimation process. The PPG segments were time-series sequences 
made it necessary to use 1-D convolutional layers.

In addition, other studies approved the improvement of the performance of 1-D architectures when LSTM 
layers were  adopted29–31,47. The results of Table 1 indicate the 1D_CNN, in turn, has yielded relatively good out-
comes. In particular, in terms of R, it resulted in 0.93 for both SBP and DBP estimation. As seen, compared with 
the other studies, LSTM layers that model the recursive properties of the time series are of great importance for 
improving the results.

As a novel approach, we sought to evaluate the recursive characteristics of the PPG segments without enlarg-
ing the network structure. Therefore, instead of using LSTM layers, which create large multi-stage structures, 
we used a specific type of 2-D input FRP, which has the ability to model the pseudo-periodic behavior of PPG 
segments. Table 1 did not appear noticeable results for 2D_CNN by itself. However, the combination of 1D_CNN 
and the FRP could outperform the other two approaches. Specifically, in our proposed Concat_CNN model, MSE 
was decreased from 9.34 to 6.86 mmHg for DBP estimation and from 40.53 to 27.98 mmHg for SBP estimation. 
Moreover,  R2 was increased from 0.87 to 0.91 for DBP estimation and from 0.87 to 0.92 for SBP estimation. As 
a result, by taking away the LSTM layers, FRP provided a 2-D image for revealing spatial and recurrence-based 
properties of PPG segments in BP estimation.

Figure 9 is devoted to the Bland–Altman plots for SBP and DBP. The X-axis shows the average of BPs, 
which are the mean of the estimations and the actual BP values. The difference between the estimated SBP and 
DBP and their actual values are also depicted in Y-axis. The mean of errors (bias) and the limits of agreement 
( bias± 1.96× standard deviation (SD) ) are exhibited in dotted lines verifying more than 95% of the points 
placed within the limits of agreements. This finding is consistent with the results reported in Table 3, satisfying 
the BHS standard may not lead to the extraction of discriminative features. Table 4 compares the results of our 
proposed framework with the previous studies, including traditional methods and deep architectures. The tradi-
tional methods compared here are Adaboost, random forest, and dynamical modeling. This table demonstrates 
that deep learning models could overcome the traditional methods in terms of R and STD. Overall, deep networks 
are reliable models for BP estimation because of their ability to recognize discriminative features with a huge 
number of parameters. Our comparative analysis also showed that the introduced framework outperformed the 
methods applied on the MIMIC-II dataset. The finding implies that the proposed combined model more effec-
tively distinguishes between different conditions of BPs. In particular, the correlation coefficient (R) was 0.16, 
0.08, and 0.01 greater than LSTM, Res-LSTM, and Multistage Deep Neural Network (NN), respectively, which 
applied LSTM layers in their structure. Therefore, the lack of LSTM employment in our proposed Concat_CNN 
did not cause any disruption in adding time-related information to the model. In the 2D_CNN, the size of the 
input FRP image may influence the approximation ability of the model. The larger the input image size, the longer 
the network learning time. Also, the small size of the input image may not lead to the extraction of discriminative 
features.This will directly affect the performance of the final Concat_CNN model. Therefore, we have applied 
input FRP images with different sizes of 60 × 60, 88 × 88, and 100 × 100 to the Concat_CNN, and the results are 
presented in Table 5. As seen, although the results are not very sensitive to image size, the lowest error values 
and the highest  R2 were achieved when the FRP image size was set to 88 × 88 verifying the optimal performance.

Table 4.  Comparison with the previous studies.

Method Input source

DBP SBP

R STD(mmHg) R STD(mmHg)

PPT-Regression12 PPG & ECG 0.91 5.21 0.89 4.13

Dynamical  approach17 PPG & ECG (MIMIC-II) 0.95 9.1 0.93 5.21

Random  Forest7 ECG (MIMIC-III) 0.71 14.48 0.67 8.26

Adaboost48 PPG & ECG 0.59 10.09 0.48 6.14

Res-LSTM7 ECG (MIMIC-III) 0.88 9.99 0.71 6.29

LSTM7 ECG (MIMIC-III) 0.80 13.10 0.67 8.07

Multistage deep  NN31 PPG (MIMIC-II) 0.95 5.55 0.95 2.84

ResNet7 ECG (MIMIC-III) 0.82 11.87 0.71 6.84

Concat_CNN PPG & FRP (MIMIC-II) 0.96 5.26 0.96 2.60

Table 5.  Accuracy evaluation of the different sizes of 2-D FRP images in the Concat_CNN model in terms of 
all metrics for DBP and SBP estimation.

Size of FRP 
image

DBP SBP

R2 R MSE (mmHg) MAE (mmHg) STD (mmHg) ME (mmHg) R2 R MSE (mmHg) MAE (mmHg) STD (mmHg) ME (mmHg)

100 × 100 0.89 0.94 8.77 1.85 2.87 − 0.73 0.91 0.95 30.64 3.31 5.53 + 0.27

60 × 60 0.89 0.95 8.79 1.84 2.97 + 0.40 0.88 0.94 38.43 3.63 6.16 − 0.73

88 × 88 0.91 0.96 6.86 1.58 2.60 − 0.29 0.92 0.96 27.68 3.05 5.26 − 0.15
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Although the combination of chaotic nonlinear approaches and CNN architectures demonstrated feasible 
outcomes, there are some doubts while the suggested method proved its usefulness. First, the dataset was a part 
of the MIMIC-II database, and the results could not be fairly compared with the studies carried out on the other 
versions of the BP monitoring data sources. Second, we figured out that the 2D_CNN could not lonely outper-
form the traditional methods. Therefore, despite the use of neural networks with different architectures, employ-
ing various handcrafted features can help improve the results. Third, many varied factors like suffering from an 
illness, taking medicines, and so on can change the BP variations, rendering our method’s results uncertain. But 
in the method we used, the effects of these factors were not accessible, and they had their impact on the input, 
and we used the same influenced data to train our model. As a potential solution, we can consider this issue as 
a static variable and sensitize our model to the type of participant.

Cuff-based measurement is not a proper choice for long-term monitoring of blood pressure, because of the 
existence of significant times between its successive BP recordings. In addition, invasive BP measurement needs 
catheterization, and it is not widely used for ambulatory conditions. Therefore, recent studies concentrate on the 
estimation of BPs through powerful soft computing approaches such as deep neural structures based on PPG 
and ECG. Since pseudo-periodic characteristics of PPG is of high significance in BP estimation, the usage of 
recurrence-based architectures is beneficial in the estimation frameworks. In this study, the recurrence proper-
ties of PPG signals are included in the model by employing their nonlinear features in phase-space. In other 
words, fuzzy recurrence plots are properly adopted to explore the pseudo-periodic nature of PPGs. Moreover, 
FRP provided 2-dimensional recurrence images to include spatial characterization of inputs to the estimation 
model. On the other hand, a novel double route concatenated convolutional neural network model concatenat-
ing the morphological and recurrence properties of PPGs from two separate lines is presented in our study. Our 
results indicated promising outcomes when sequence-based and recurrent features of PPGs were adopted in the 
proposed model. Although the proposed framework could overcome the methods reviewed in the literature, 
some disruptive factors like the subject’s illness or their medication should be considered in future studies. Also, 
the proposed network model could be equipped with recurrent-link architectures like long-short term memory 
layers compared with the pure convolutional neural network models. Since our proposed methodology con-
centrates on applying deep neural networks in continuous BP estimation, the gradient-based training algorithm 
were adopted. However, as future work our approach can be verified by the most representative metaheuristic 
learning-based optimization algorithms (LIOA)49, such as monarch butterfly optimization (MBO)50, earthworm 
optimization algorithm (EWA)51, elephant herding optimization (EHO)52, moth search (MS)53 algorithm, and 
colony predation algorithm (CPA)54. compares the results of our proposed framework with the previous studies, 
including traditional methods and deep architectures. The traditional methods compared here are Adaboost, 
random forest, and dynamical modeling. This table demonstrates that deep learning models could overcome 
the traditional methods in terms of R and STD. Overall, deep networks are reliable models for BP estimation 
because of their ability to recognize discriminative features with a huge number of parameters. Our compara-
tive analysis also showed that the introduced framework outperformed the methods applied on the MIMIC-II 
dataset. The finding implies that the proposed combined model more effectively distinguishes between different 
conditions of BPs. In particular, the correlation coefficient (R) was 0.16, 0.08, and 0.01 greater than LSTM, Res-
LSTM, and Multistage Deep Neural Network (NN), respectively, which applied LSTM layers in their structure. 
Therefore, the lack of LSTM employment in our proposed Concat_CNN did not cause any disruption in adding 
time-related information to the model.

In the 2D_CNN, the size of the input FRP image may influence the approximation ability of the model. The 
larger the input image size, the longer the network learning time. Also, the small size of the input image may not 
lead to the extraction of discriminative features. This will directly affect the performance of the final Concat_CNN 
model. Therefore, we have applied input FRP images with different sizes of 60 × 60, 88 × 88, and 100 × 100 to the 
Concat_CNN, and the results are presented in Table 5. As seen, although the results are not very sensitive to 
image size, the lowest error values and the highest  R2 were achieved when the FRP image size was set to 88 × 88 
verifying the optimal performance.

Although the combination of chaotic nonlinear approaches and CNN architectures demonstrated feasible 
outcomes, there are some doubts while the suggested method proved its usefulness. First, the dataset was a part 
of the MIMIC-II database, and the results could not be fairly compared with the studies carried out on the other 
versions of the BP monitoring data sources. Second, we figured out that the 2D_CNN could not lonely outper-
form the traditional methods. Therefore, despite the use of neural networks with different architectures, employ-
ing various handcrafted features can help improve the results. Third, many varied factors like suffering from an 
illness, taking medicines, and so on can change the BP variations, rendering our method’s results uncertain. But 
in the method we used, the effects of these factors were not accessible, and they had their impact on the input, 
and we used the same influenced data to train our model. As a potential solution, we can consider this issue as 
a static variable and sensitize our model to the type of participant.

Cuff-based measurement is not a proper choice for long-term monitoring of blood pressure, because of the 
existence of significant times between its successive BP recordings. In addition, invasive BP measurement needs 
catheterization, and it is not widely used for ambulatory conditions. Therefore, recent studies concentrate on the 
estimation of BPs through powerful soft computing approaches such as deep neural structures based on PPG 
and ECG. Since pseudo-periodic characteristics of PPG is of high significance in BP estimation, the usage of 
recurrence-based architectures is beneficial in the estimation frameworks. In this study, the recurrence proper-
ties of PPG signals are included in the model by employing their nonlinear features in phase-space. In other 
words, fuzzy recurrence plots are properly adopted to explore the pseudo-periodic nature of PPGs. Moreover, 
FRP provided 2-dimensional recurrence images to include spatial characterization of inputs to the estimation 
model. On the other hand, a novel double route concatenated convolutional neural network model concatenat-
ing the morphological and recurrence properties of PPGs from two separate lines is presented in our study. Our 
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results indicated promising outcomes when sequence-based and recurrent features of PPGs were adopted in the 
proposed model. Although the proposed framework could overcome the methods reviewed in the literature, 
some disruptive factors like the subject’s illness or their medication should be considered in future studies. Also, 
the proposed network model could be equipped with recurrent-link architectures like long-short term memory 
layers compared with the pure convolutional neural network models. Since our proposed methodology con-
centrates on applying deep neural networks in continuous BP estimation, the gradient-based training algorithm 
were adopted. However, as future work our approach can be verified by the most representative metaheuristic 
learning-based optimization algorithms (LIOA)49, such as monarch butterfly optimization (MBO)50, earthworm 
optimization algorithm (EWA)51, elephant herding optimization (EHO)52, moth search (MS)53 algorithm, and 
colony predation algorithm (CPA)54.
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