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Fixation probabilities in network 
structured meta‑populations
Sedigheh Yagoobi* & Arne Traulsen

The effect of population structure on evolutionary dynamics is a long-lasting research topic in 
evolutionary ecology and population genetics. Evolutionary graph theory is a popular approach to 
this problem, where individuals are located on the nodes of a network and can replace each other via 
the links. We study the effect of complex network structure on the fixation probability, but instead 
of networks of individuals, we model a network of sub-populations with a probability of migration 
between them. We ask how the structure of such a meta-population and the rate of migration affect 
the fixation probability. Many of the known results for networks of individuals carry over to meta-
populations, in particular for regular networks or low symmetric migration probabilities. However, 
when patch sizes differ we find interesting deviations between structured meta-populations and 
networks of individuals. For example, a two patch structure with unequal population size suppresses 
selection for low migration probabilities.

Evolutionary graph theory1 analyses the evolutionary dynamics in network-structured populations, where 
individuals are located on the nodes of a graph and can replace each other via the links. This approach can be 
motivated by several biological systems, from the spread of cancerous mutations through colonic crypts to the 
invasion of ecosystems structured by rivers. One of the major goals of evolutionary graph theory1 is to assess 
the effect of underlying population structure on the fixation probability (the probability of ultimate fixation of 
a mutant)2–6 and the fixation time7–10. An important aim is to find an optimized structure to speed up or slow 
down the spread of a newly arising mutant11–13 .

However, to apply such models, a change in perspective is often necessary: In many biological applications, 
the nodes correspond to small populations and not to single individuals14–16. Replacement of individuals via the 
links is then exchanged with migration where the immigrant displaces one from the resident individuals. This 
leads to network-structured meta-populations, where a network is formed by individual populations connected 
via migration. An important question that arises in the application of evolutionary graph theory is thus whether 
the results derived for networks of individuals carry over to networks of small populations.

Traditionally, such meta-populations have been analyzed extensively in ecology, where they correspond to 
fragmented habitats17–19. The dynamics of the meta-population is driven by the exchange of individuals between 
subpopulations. Nevertheless, the focus of these studies is usually quite different, as they aim to address complex 
questions arising in ecology by asking for the impact of such population structure. Also in population genetics, 
the fixation probability in subdivided populations (meta-populations) has been investigated extensively, see e.g. 
the study by Maruyama in 197020, who has shown that the fixation probability is not altered by the subdivision 
of a population into partially isolated patches under certain assumptions. Later, other types of structured popu-
lations and alternative modes of selection and evolutionary dynamics have been discussed in this context21–25. 
However, the focus in the context of population genetics is not on the network structure of the meta-population 
structure. Typically, in these systems individuals from every patch have the freedom to migrate to all the other 
patches, whereas in our system individuals migrate to a small subset of adjacent patches.

Also, evolutionary game dynamics and the evolution of cooperation have been studied in subdivided 
populations2,26–32. Yet, with few exceptions, see e.g.33, these studies assume a well-mixed population of patches.

Here, we extend the typical models of evolutionary graph theory to network-structured meta-populations. 
In contrast to previous work that heads into this direction, our focus is on very basic models of populations of 
fixed size and a small number of patches. We discuss limiting cases and show how they can be addressed with 
the available analytical tools. We show that the isothermal theorem holds for any meta-populations with the 
regular structure. Since an exact solution for the fixation probability is not feasible when the network structure 
is complicated, an approximation for small migration probability is used to compute the fixation probability. 
Finally, we discuss the two-patch meta-population and meta-star, where several leaf patches are connected only 
to one central patch, when the migration probability is high.
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Model
We consider a finite population of size N distributed in a network of M patches (Fig. 1). The local population 
size of patch j is constant and given by Nj . Each individual can reproduce either within its own patch or place 
its offspring into an adjacent patch.

We consider two types of individuals, mutant and wild-type. We start with a wild-type population of size 
∑M

j=1 Nj . In the first step, a random wild-type individual turns into a mutant. We work with a standard 
Birth–death process with global selection for birth and random local death1,34: In each time step, one individual 
is selected from the whole population at random, but proportional to its fitness, to produce identical offspring. 
Afterwards, the newborn replaces one of the individuals within its patch, including its mother, with probability 
1− � , or it replaces one of the individuals in a random adjacent patch with probability � . To be more precise, 
suppose that patch i is connected to a set of other patches V. If α is an individual in patch i and β is an individual 
in patch j  = i , then the probability that an offspring of α replaces β is equal to �

∑

k∈V Nk
 , where Nk is the popula-

tion size in patch k. If α and β are individuals in the same patch, i, the same probability is 1−�

Ni
.

Our goal is to examine how likely this new mutant takes over the whole population and how this probability 
changes with the migration probability and the network structure.

For our model, the comparison with the fixation probability within a single patch of a well-mixed population 
is important. Therefore, we first recall how to calculate this quantity. Suppose the population of size N consists of 
wild-types with fitness 1 only. If a new beneficial or deleterious mutant with fitness r appears in the population, 
the evolution of the population will lead to the fixation or extinction of the mutant. As we adopt a Birth–death 
process the fixation probability, φN

i  , starting with i mutants is determined by Refs.35–37

where Ti+ = ri
N−i+ri

N−i
N  is the probability that the number of mutants increases from i to i + 1 and 

Ti− = N−i
N−i+ri

i
N  is the probability that the number of mutants decreases from i to i − 1 . With this recursive 

relation and the boundary conditions φN
0 = 0 and φN

N = 1 , the fixation probability of a single mutant equals

This classical result will be an important reference point for our further considerations, we will denote it by 
φN
wm(r) in the remainder (where “wm” stands for well-mixed).

Results
Regular structures and isothermal theorem.  For networks where each node represents a single indi-
vidual, the isothermal theorem of evolutionary graph theory shows that the fixation probability is the same as the 
fixation probability of a well-mixed population if the temperature distribution is homogeneous across the whole 
population1. The temperature of a node defined as the sum over all the weights leads to that node. This theorem 
extends to structured meta-populations for any migration probability � : If the underlying structure of the meta-
population that connects the patches is a regular network and the local population size is identical in each patch, 
the temperature of all individuals is identical, regardless of the value of the migration probability. Therefore, the 
fixation probability in a population with such a structure is the same as the fixation probability in a well-mixed 
population of the same total population size N =

∑M
j=1 Nj , given by φN

wm(r).

Small migration regime.  If the migration probability is small enough such that the time between two 
subsequent migration events ( ∼ 1

�
 ) is much longer than the absorption time within any patch, then at the time 

of each migration event we may suppose that the meta-population is in a homogeneous configuration22,28. In 
other words, the low migration regime is an approximation in which we neglect the probability that the meta-
population is not in a homogeneous configuration at the time of migration events. We define a homogeneous 

(1)φN
i = Ti+φN

i+1 + Ti−φN
i−1 + (1− Ti+ − Ti−)φN

i ,

(2)φN
1 (r) =

1
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�N−1
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=




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Figure 1.   Network of populations; the population consists of well-mixed subpopulations coupled through 
migration (a) two-patch meta-population with local patch size N1 = N2 = 5 , (b) meta-star with M = 4 patches 
and local population size N/M = 5.
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configuration of the meta-population as a configuration in which in all patches either all individuals are mutants, 
or all are wild-types.

Therefore, instead of having 2N states, where N is the population size, the system has only 2M states, where M 
is the number of patches. Thus, we can calculate the fixation probability exactly as in the case of a standard evolu-
tionary graph model where each node represents a single individual but with a modified transition probabilities.

In a network with homogeneous patches, in order to increase the number of homogeneous mutant-patches 
one individual mutant needs to migrate to one of its neighbouring homogeneous wild-type-patches and reaches 
fixation there. For example if node j is occupied by mutants and one of its neighbouring patches, node k, is 
occupied by wild-types, the probability that one mutant individual from patch j migrates to patch k and reaches 
fixation there is �

deg(j) φ
Nk
wm(r) , where deg(j) is the degree of node j to take into account that the mutant can move 

to different patches. This is analogous to the probability that one mutant in node j replaces one wild-type in node 
k , Tj→k , in the network of individuals.

Similarly, if node j is occupied by wild-types and one of its neighbouring patches, node j, is occupied by 
mutants the probability that one wild-type individual from patch j migrates to patch k and reaches fixation there 
equals to �

deg(j) φ
Nk
wm(1/r) where deg(j) . Overall, we can move from network of individuals to the network of homo-

geneous patches by replacing the transition probabilities with the product of migration and fixation probabilities.

Two‑patch meta‑population.  The simplest non-trivial case is the fixation probability in a two-patch meta-popu-
lation with different local size for small migration probability � . If the migration probability � is very small, a new 
mutant first needs to take over its own patch and only then the first migrant arrives in the second patch. To be 
more precise, the time between two migration events has to be much higher than the typical time that it takes for 
the migrant to take over the patch or go extinct again38. In this case, we can divide the dynamics into two phases: 
A first phase in which a mutant invades one patch and a second phase in which a homogeneous patch of mutants 
invades the whole meta-population. Assume a new mutation arises in patch 1. Only if this mutant reaches fixa-
tion in patch 1, it also has a chance to reach fixation in patch 2. When patch 1 consists of only mutants and patch 
2 consists of only wild-types, there are two possibilities for the ultimate fate of the mutant: 

	 (i)	 Eventually, the offspring of one mutant selected from patch 1 for reproduction will migrate to patch 2 
and reach fixation there. The wild-type goes extinct. This happens with probability N1r

N1r+N2
φN2
wm(r).

	 (ii)	 Eventually, the offspring of one wild-type selected from patch 2 for reproduction will migrate to patch 
1 and the mutant goes extinct. This occurs with probability N2

N1r+N2
φN1
wm(

1
r ).

Therefore, the probability that a single mutant arising in patch 1 reaches fixation in the entire population is 

Similarly the probability that a mutant arising in patch 2 takes over the whole population equals

If we assume that the mutant arises in a patch with a probability proportional to the patch size, the aver-
age fixation probability φ•−• in a two patch population for small migration probability is the weighted sum of 
Eqs. (3a) and (3b),

In the case of neutrality, r = 1 , we recover φ•−• = 1
N1+N2

—the fixation probability in a population of the total 
size of the two patches. For identical patch sizes, N1 = N2 , Eq. (4) simplifies to

where the simplification to the fixation probability within a single population of size 2N1 reflects the validity of 
the isothermal theorem.

For N1  = N2 , we approximate Eq. (4) for weak and strong selection. Let us first consider highly advantageous 
mutants, r ≫ 1 . In this case, we have φN1

wm(r) ≫ φN1
wm(

1
r ) and thus we can neglect the possibility that a wild-type 

takes over a mutant patch if patch sizes are sufficiently large. The probability φ•−• then becomes a weighted aver-
age reflecting patch sizes. For identical patch size N1 = N2 = N/2 , it reduces to φ•−• ≈ φN1

wm(r) = φ
N/2
wm (r) . In 

other words, taking over the first patch is sufficient to make fixation in the entire population certain. For patches 
of very different size, N1 ≫ N2 , we have N ≈ N1 and find φ•−• ≈ φN

wm(r), which implies that fixation is driven 
by the fixation process in the larger patch, regardless of where the mutant arises. Note that there is a difference 
between the case of identical patch size and very different patch size . The case of highly disadvantageous mutants, 
r ≪ 1 , can be handled in a very similar way.
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Next, we consider weak selection, r ≈ 1 . We can approximate the fixation probability as 
φN
wm(r

±1) ≈ 1
N ± N−1

2N (r − 1) . With this, we find

For identical patch size N1 = N2 = N/2 , this reduces to

which is the known result for a single population of size N = N1 + N2 . When patches have very different size, 
N1 ≫ N2 such that N ≈ N1 , we recover the same result. Thus, the difference between the fixation probability 
of a two-patch meta-population with identical patch size and the fixation probability of a two-patch meta-
population with very different patch size that we found for highly advantageous mutants is no longer observed 
for weak selection.

When migration probabilities become larger, our approximation is no longer valid and we need to rely on 
numerical approaches. Figure 2 illustrates the difference between the fixation probability of a two-patch structure 
meta-population and the equivalent well-mixed population of size N1 + N2 when migration is low using Eq. (4) 
and comparing with the numerical approach in Ref.39.

While the fixation probability of the two-patch meta-population is very close to the fixation probability of 
the well-mixed population40, a close inspection reveals an interesting property: For low migration probabilities 
and N1  = N2 , the two patch structure is a suppressor of selection in the original sense of Lieberman et al.1: For 
advantageous mutations, r > 1 , it decreases the fixation probability, whereas for disadvantageous mutations, 
r < 1 , it increases the fixation probability compared to the well mixed case. For weak selection, we show this 
analytically: For r ≈ 1 , we can write

While the difference to the well mixed case vanishes for N1 = N2 in first order in r − 1 , the fixation prob-
ability of the two patch structure is larger for r < 1 and smaller for r > 1 . Thus, under weak selection the two 
patch structure with N1  = N2 is a suppressor of selection.

(6)φ•−• ≈
1

N1 + N2
+

1

2

(

1−
1

N1 + N2
−

(N1 − N2)
2

(N2
1 + N2

2 )
2
N1N2

)

(r − 1).

(7)φ•−• ≈
1
N + N−1

2N (r − 1),

(8)φN1+N2
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1

N1 + N2
+

N1 + N2 − 1
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Figure 2.   The difference between the fixation probability of a two-patch meta-population and a well-mixed 
population of the same size, N = 10 . The two patch sizes are N1 = 3 and N2 = 7 . Lines show analytical results 
for low migration probabilities (Eq. 4) and migration probability � = 1 (Eq. 19) as a function of fitness. Symbols 
show numerical results based on a transition matrix approach39. The numerical result and analytical result for 
low migration probability and high migration match perfectly. In the low migration regime the two-patch meta-
population is a suppressor of selection, indicated by the fact that the symbols are never in the area with a white 
background. However, in the high migration regime ( � = 1 ), where simulations and analytical results again 
match, the two-patch meta-population is an amplifier of selection. The fixation probability for � = 1 is obtained 
analytically using the Martingale approach discussed by Monk41.
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While the structure remains a suppressor of selection for most values of the migration probability � , Fig. 2 
reveals that for very large � it becomes an amplifier of selection.

The meta‑star.  Here, we approximate the fixation probability φ⋆ of a meta-star with M − 1 leaves for low 
migration probability. For simplicity, we assume that all patches are of the same size N1 =

N
M and omit the nota-

tion for patch size. As long as the migration probability is sufficiently low, such that before the next migration 
the immigrant gets fixed or lost, patches tend to be homogeneous. We denote the number of homogeneous 
mutant patches among the leaves by j and use a lower index to represent the state of the central patch, which is 
either occupied by wild-types ( ◦ ) or by mutants ( • ). The number of homogeneous mutant patches increases in 
two ways: 

	 (i)	 the center is occupied by mutants and is selected for birth and its offspring migrates to one of the periph-
eral homogeneous wild-type patches and reaches fixation in that patch, 

 where φN1
wm(r) determines the fixation probability of a mutant in a local population,

	 (ii)	 the center is occupied by wild-types and one of the homogeneous mutant leaves is selected for birth and 
its offspring migrates to the center and gets fixed there, 

Note that the number of homogeneous mutant leave nodes cannot increase if the center is occupied by wild-
type individuals, i.e. Tj+

◦→◦ = 0 . Similarly, the number of homogeneous mutant leave nodes cannot decrease if the 
center is occupied by mutants, i.e. Tj−

•→• = 0 . Thus, the number of homogeneous mutant patches can decrease 
in two ways, 

	 (i)	 the center is occupied by wild-types and is selected for birth and its offspring migrates to one of the 
homogeneous mutant leaves and gets fixed there, 

 where φN1
wm(

1
r ) is the fixation probability of a wild-type in a local mutant population, or

	 (ii)	 the center is occupied by mutants and one of the leaves is selected for birth and its offspring migrates to 
the center and gets fixed there, 

For the star graph, depending on where the mutant emerges, two different fixation probabilities are defined: 
The fixation probability when a single mutant emerges in the center φ0

• and the fixation probability when a single 
mutant emerges in one of the leaves, φ1

◦ . Following the same arguments as in Ref.42, we find 

 where the probability to leave the state with a wild-type patch in the center and j mutant patch leaves is

and the probability to leave the state with a mutant patch in the center and j mutant patch leaves is

Note that the two probabilities Tj
◦ and Tj

• are independent of j in our particular case. Thus, also their ratio 
Ŵ = T

j
◦/T

j
• is independent of j, which makes our calculation of φ0

• easier.
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Evaluating Eq. (14), we find the average fixation probability in the entire patch structured meta-population 
starting from a single homogeneous mutant patch,

Therefore, the fixation probability of the whole population equals

Figure 3 illustrates the fixation probability of a meta-star as a function of fitness. Numerical solutions for 
low migration agree very well with the low migration approximation. According to this plot, the meta-star is 
an amplifier of selection in the low migration regime—similar to the star network of individuals1. A numerical 
investigation of Eq. (18) reveals that this result carries over to larger N1 as well. For any value of M and N1 between 
1 and 100, we find that the star network of patches amplifies selection. However, as expected from earlier work40, 
the extent of amplification becomes smaller with growing population size.

Using the same approach as we used for the two patch meta-population, we find that the meta-star is an 
amplifier for small and high migration probability, but not in between. For intermediate migration probability, 
it is only a piecewise amplifier43,44 and does not fall into one of the originally defined categories, see Fig. 3.

The meta-star in low migration is equivalent to the “star of islands” discussed by Allen et al.45. In their study 
for death–Birth updating they found that the comparison of the size of the hub to the size of the leaves makes 
a determinative difference. When the leaves are larger, the structure amplifies under weak selection; when the 
hub is larger, it suppresses under weak selection. When the hub and leaves are the same size, the structure acts 
as a “reducer”, meaning that it lessens the fixation probability for all r not equal to 1 (termed “suppressor of fixa-
tion” elsewhere34). Doing the same comparison in the whole range of selection, we find that the meta-star under 
Birth–death is an amplifier when the hub has greater or equal size to the leaves, and a transient amplifier when 
the leaves are larger than the hub.

High migration probability.  For moderate migration probabilities, it is challenging to calculate the fixa-
tion probability. However, in the case of the maximum possible migration probability, � = 1 , the two-patch 
meta-population and meta-star transform to complete bipartite graphs: In the two-patch meta-population, 
every offspring will be immediately moved to the other patch. In the meta-star, the offspring of individuals in 
the center node will be placed in a random leaf, whereas the offspring of the individuals in the leaf nodes will be 
placed in the center. Thus, the meta-star can be thought of as a bipartite graph in which one part is made out of 
all leaf nodes and the other part out of the center.

(17)φpatch = M−1
M φ1

◦ +
1
M φ0

• .

(18)φ⋆ = φN1
wm(r)φpatch.

Figure 3.   The difference between the fixation probability of a meta-star and the equivalent well-mixed 
population of size with M = 4 patches and identical local size in each patch N1 = N/M = 5 for different 
fitness values. Lines show analytical results for low migration probabilities (Eq. 18) and migration probability 
� = 1 (Eq. 19) symbols show numerical results based on a transition matrix approach39 for � = 10

−6 , � = 0.01 , 
� = 0.1 , and � = 0.5 . For migration probability � = 10

−6 , we observe an almost perfect agreement, the low 
migration result serves as a good approximation. The fixation probability in � = 1 is obtained analytically using 
the Martingale approach. For extremely high and low migration probability the meta-star acts as an amplifier 
of selection (such that the lines only pass through the white shaded area of the plot) while in the intermediate 
migration regime shows a very different behavior where it could be an amplifier or a suppressor of selection 
depending on the fitness value.
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The fixation probability of complete bipartite graphs has been calculated analytically previously41,44,46 using 
the specific features of Martingales. The probability to reach fixation if the initial mutant arises either in patch 
1, φ1

bp or patch 2, φ2
bp are

where h1 =
N2
N1

+ 1
r

N2
N1

+r
 and h2 =

N1
N2

+ 1
r

N1
N2

+r
 . The average fixation probability is

In the case where one of the patch size is much larger than the other, N2 ≫ N1 , the fixation probability converges 
to the fixation probability of a star graph 1−1/r2

1−1/r2N2
.

As discussed above, a star-structured meta-population in � = 1 can be reduced to a complete bipartite graph. 
As a result the fixation probability of a star meta-population with M − 1 leaves and population size N such that 
the population distributing homogeneously in all the patches is obtained by replacing N1 with (M−1)N

M  and N2 
with NM in Eqs. (19) and (20).

As shown in Figs. 2 and  3 both the two-patch meta-population and meta-star are amplifiers of selection for 
� = 1 . It has been proven in Ref.47 that a complete bipartite amplifies selection for weak selection. This can also 
be seen from a Taylor expansion of the difference between Eq. (20) and the corresponding result for the well 
mixed population at r = 1 , which leads to

This quantity is positive for r > 1 and negative for r < 1 , such that the structure is an amplifier of selection for 
weak selection. Eq. (20) reveals this fact holds for the whole range of selection strength. If we have a fixed popu-
lation of size N on a complete bipartite graph, for fitness values r > 1 the minimum fixation probability occurs 
when the two patch sizes are identical, N1 = N2 = N/2 . Similarly, for fitness values r < 1 the maximum fixation 
probability occurs when the two patch sizes are identical, N1 = N2 = N/2.

Since a complete bipartite graph with identical patch size is an isothermal graph and its fixation probability 
is the same as the fixation probability of a well-mixed population, we conclude that any complete bipartite graph 
is the amplifier of selection when N1  = N2 . This result is implicitly contained in Refs.41,46, but deserves special 
attention: It implies that a graph can be turned into the amplifier if we enforce a very large degree of exchange 
of individuals between patches. Combined with the observation that many graphs of individuals are amplifiers 
of selection34, it suggests that it may be easier to construct amplifiers of selection than suppressors of selection 
in undirected networks5,48.

Discussion
Here, we have extended evolutionary graph theory from graphs of individuals to evolutionary graph theory 
of populations. We have investigated how the structure and migration probability influence the probability to 
fixation. For regular networks and patches of identical size, any evolutionary graph of populations has the same 
fixation probability as the well mixed population for any migration probability—a result that follows directly 
from the isothermal theorem1.

However, for non-regular networks or patches of different size, this is no longer the case and the dynamics 
depends on the migration probability. If the migration probability is small enough, such that the time to fixation 
in one patch is small compared to the time between two subsequent migration events, we can use time-scale 
separation to approximate the fixation probability. Using this approximation, we show that the two-patch meta-
population suppresses selection whenever the two patches have different size. Based on the same approxima-
tion, we have shown that the meta-star amplifies selection. In the high migration regime, the two-patch meta-
population and the meta-star can be viewed as complete bipartite graphs. Evolutionary dynamics in bipartite 
graphs has been studied in Refs.41,46. Both the two-patch meta-population and the meta-star are amplifiers of 
selection in this high migration regime.

Here, in order to be as close to the original ideas of evolutionary graph theory and the popular Birth–death 
updating as possible, we have focussed on meta-populations in which selection is global. Thus, individuals 
compete across the entire meta-population for reproduction. Another possible condition would be when the 
competition is local i.e. among the individuals belonging to the same patch. This would correspond to a pro-
cess where a site becomes available and there is local competition to fill it, similar to death–Birth dynamics in 
networks of individuals45,49. The choice of this dynamics can have massive consequences on the amplification 
or suppression properties of a graph34. In general, structured meta-populations allow many additional selection 
processes that are still to be analyzed.

Methods
Depending on the network and the range of migration we adopt three different approaches to calculate the 
fixation probability: 

(19)φ1
bp =

h1 − 1

(h1)N1(h2)N2 − 1
, φ2

bp =
h2 − 1

(h1)N1(h2)N2 − 1
,

(20)φbp =
N1φ

1
bp + N2φ

2
bp

N1 + N2
.

(21)φbp − φwm ≈
1

2
(N1−N2)

2

(N1+N2)2
N1(N1−1)+N2(N2−1)

N2
1+N2

2
(r − 1).
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	 (i)	 In the very low migration probability we implement an analytical approximation for the fixation prob-
ability using the time scale separation between migration and fixation in a single patch.

	 (ii)	 For intermediate migration probability we compute the fixation probability numerically using the tran-
sition matrix based on approach published in Ref.39. The entries of the transition matrix represent the 
transition probability between different possible states. The number of states depend upon the symmetry 
of the network.

	 (iii)	 For very high migration probability we calculate the fixation probability analytically using the Martin-
gales introduced in Refs.46,50.

We model the evolutionary dynamics using the Moran process. The code to reproduce our figures is available at 
https://​github.​com/s-​yagoo​bi/​fixat​ion-​proba​bility.
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