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ABSTRACT Insect-associated fungi play an important role in wild and agricultural com-
munities. We present a draft genome sequence of an entomopathogenic strain from the
fungal genus Aspergillus, isolated from a honey bee pupa.

Fungi are a leading cause of insect disease (1) and negatively impact the productivity
of an economically and ecologically important pollinator, the honey bee (2–4). The

risk of fungal disease is greatest for honey bee brood (larvae and pupae). Several spe-
cies of Aspergillus are opportunistic brood pathogens (5). Aspergillus species also infect
plants (6) and humans (7).

We isolated a fungal strain (DMIN) from an infected pupa in Bloomington, IN, in June
2018. Inoculation of in vitro-reared bee brood with 103 fungal spores confirmed the path-
ogenic potential of the strain (8). Spores were collected with a sterile swab and struck to
isolation on potato dextrose agar (PDA) at 34°C, ambient humidity, in incubation cham-
bers under conditions favorable for microaerophile growth. Total DNA was extracted
with the DNeasy blood and tissue kit (Qiagen, Hilden, Germany). The isolate ITS region
was amplified using ITS4/ITS5 (9) and compared to the NCBI nonredundant/nucleotide
(nr/nt) database using BLASTN (10); the region was most similar (.90%) to multiple
Aspergillus species, with 100% query coverage.

Libraries were prepared using the TruSeq DNA PCR-free kit (Illumina, Inc.), and genomic
DNA (gDNA) was sequenced at the Vanderbilt Technologies for Advanced Genomics facility
on the Illumina NovaSeq 6000 platform, resulting in 150-bp paired-end reads. The reads
were filtered for quality and adaptors removed using Trimmomatic v0.39 (11). The trimmed
reads were assembled using SPAdes v3.15.3 (12). The mitochondrial genome was
assembled using GetOrganelle v1.6.4 (13) and annotated using GeSeq v2.03 (14, 15). The
nuclear genome was annotated using Liftoff v1.2.0 (16) with Aspergillus flavus NRRL 3357 as
the reference genome (GenBank accession number GCA_000006275.3) (17). We evaluated
the genome completeness using the BUSCO v4.0.4 Eurotiales database (18). The reads were
mapped to assemblies using Bowtie2 v2.3.4.1 (19). The average nucleotide identity (ANI)
was calculated using FastANI v0.1.3 (20). ANI comparisons were made between DMIN and
four Flavi species: Aspergillus arachidicola CBS 117612 (GCA_009193545.1), Aspergillus flavus
NRRL 3357 (CP044616 to CP044623), Aspergillus parasiticus SU-1 (GCA_000956085.1), and
Aspergillus minisclerotigenes CBS 117635 (GCA_009176455.1). For all analyses, default param-
eters were used except where otherwise noted.

Sequencing resulted in 53,363,706 paired reads (42,289,484 after trimming). The as-
sembly revealed a coculture, with both bacterial and fungal scaffolds. The fungal scaf-
folds were longer, had higher coverage (over 200�), and had a lower GC content
(48%) than the bacterial scaffolds (coverage, 40�; GC content, 60%). Scaffolds under
500 bp were removed from the assembly, and scaffolds 500 bp and longer were com-
pared to the NCBI BLASTN nonredundant/nucleotide (nr/nt) database. Scaffolds with
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high similarity ($90%) to Aspergillus species and with $80% query coverage were
retained to ensure that the assembly represented only fungal scaffolds. Of the 6,156
scaffolds removed, 5,281 were under 1,000 bp; the mean length of the removed scaf-
folds was 1,111.78 bp, and the median length was 641 bp.

ANI comparisons with Aspergillus section Flavi species showed that DMIN was most
closely related to Aspergillus parasiticus (98% similarity). DMIN shared 96.5%, 94.2%,
and 94% identity with A. arachidicola, A. minisclerotigenes, and A. flavus, respectively.
The Aspergillus sp. strain DMIN nuclear genome contained 244 scaffolds; the mitochon-
drial genome was a single, circular chromosome (Table 1). Predicted proteins encom-
passed 93% of the BUSCO single-copy orthologs (3,911), with 5% (223) missing.

Reads that did not map to the fungal assembly were assembled independently to
capture the genome of the bacterial contaminant and annotated using PGAP v6.0 (21).
BLASTN comparisons of the bacterial scaffolds indicated high similarity (99%) to
Bombella sp. strain ESL0368, which is related to bacteria that can provide protection
against fungal infection in honey bee brood (8). The Bombella DMIN-2 assembly con-
tained 21 scaffolds (Table 1).

Understanding Aspergillus pathogenicity is crucial to protecting insect health. The
Aspergillus sp. DMIN genome provides valuable information about the genetic content
of an entomopathogenic strain belonging to a widespread fungus genus.

Data availability. The metadata and complete assemblies are available at GenBank
under BioProject accession number PRJNA815363. The raw sequence reads have been
deposited in the Sequence Read Archive (SRA) under accession number SRR18306612.
The Aspergillus sp. DMIN whole-genome shotgun sequencing project has been depos-
ited at DDBJ/ENA/GenBank under the accession number JALMFT000000000. The ver-
sion described in this paper is version JALMFT010000000. The Bombella sp. DMIN-2
whole-genome shotgun sequencing project has been deposited at DDBJ/ENA/GenBank
under the accession number JAMWFD000000000. The version described in this paper is
version JAMWFD000000000.
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