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Abstract

Background: Hybrid zones formed by the secondary contact of divergent lineages represent natural laboratories
for studying the genetic basis of speciation. Here we tested for patterns of differential introgression among three
X-linked and 11 autosomal regions to identify candidate loci related to either reproductive isolation or adaptive
introgression across a hybrid zone between two Chinese mainland subspecies of the intermediate horseshoe bat
Rhinolophus affinis: R. a. himalayanus and R. a. macrurus.

Results: Our results support the previous suggestion that macrurus formed when a third subspecies (R. a. hainanus)
recolonized the mainland from Hainan Island, and that himalayanus is the ancestral taxon. However, this overall
evolutionary history was not reflected in all loci examined, with considerable locus-wise heterogeneity seen in gene
tree topologies, levels of polymorphism, genetic differentiation and rates of introgression. Coalescent simulations
suggested levels of lineage mixing seen at some nuclear loci might result from incomplete lineage sorting. Isolation
with migration models supported evidence of gene flow across the hybrid zone at one intronic marker of the
hearing gene Prestin.

Conclusions: We suggest that phylogenetic discordance with respect to the species tree seen here is likely to arise
via a combination of incomplete lineage sorting and a low incidence of introgression although we cannot rule out
other explanations such as selection and recombination. Two X-linked loci and one autosomal locus were identified
as candidate regions related to reproductive isolation across the hybrid zone. Our work highlights the importance
of including multiple genomic regions in characterizing patterns of divergence and gene flow across a hybrid zone.
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Background
Our understanding of the genetics of speciation has bene-
fited greatly from studies of hybridizing species, both in
the laboratory [1-3] and in the wild [4-6]. In the latter, hy-
brid zones - geographic regions where genetically distinct
populations meet, mate and produce hybrids [7] - have
been considered as 'natural laboratories for evolutionary
studies' [8]. For evolutionary biologists, hybrid zones offer
windows on evolutionary process [9], while they provide
the divergent populations themselves with a means to
interact with each other. Genes can exchange due to the
semi-permeable nature of the genome [10], and this in
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turn can result in variation in the level of introgression of
alleles among different genomic regions [11-14].
Many processes can contribute to patterns of differential

introgression, such as natural selection, genetic drift [15],
varying recombination rates [16], linkage [4,17], sampling
error, or a combination of these processes. Distinguishing
these processes from each other is extremely difficult but
may be possible with the aid of newly developed analytical
approaches (e.g. genomic clines, [18]), and with sampling
of increased numbers of loci across the genome that are
being surveyed in multiple individuals.
Based on patterns of introgression, several different clas-

ses of genomic region in the hybridized genome have been
identified. First, there are regions that resist introgression
or show reduced levels of introgression, which are often
considered to be, or be linked to, putative ‘speciation genes’
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[10,11,19]. A number of such genes have been reported
in model organisms; for example, in Drosophila [3,20]
and in the mouse (Mus) [2,21]. Second, there are re-
gions that occur in the genomic backgrounds of both
hybridizing species, which appear to be selectively neu-
tral and able to flow freely across species boundaries.
Finally, there are regions that introgress faster than
neutral genes, and these are often considered to be ad-
vantageous or beneficial genes. Cases of such adaptive
introgression may be promoted by positive selection
[22], and have been documented in both plants [23,24]
and animals [25-27]. Recent genome scans conducted
in mice have revealed that genes involved in olfaction
and pheromone responses have undergone adaptive
introgression across a hybrid zone, a result that was at-
tributed to the importance of such genes in the sur-
vival and reproduction of these organisms [5].
By studying patterns of introgression in hybrid zones,

candidate genomic regions that are either speciation
genes, or linked to speciation genes, can be identified
on the basis of reduced levels of introgression, whereas
candidate genomic regions that are either beneficial
genes, or linked to beneficial genes, can be detected
from increased levels of introgression [4-6,11,15,28].
One advantage of this differential introgression ap-
proach is that it can help to identify candidate genomic
regions that are likely to be related to reproductive iso-
lation and/or adaptive introgression between hybridiz-
ing species even in the absence of any information
about the phenotypes that such regions control. This is
particularly useful for studies of wild populations from
non-model organisms.
A hybrid zone between two subspecies of the inter-

mediate horseshoe bat (Rhinolophus affinis) provides
an opportunity to gain insights into the genomic regions
likely to be responsible for reproductive isolation and/or
adaptive introgression in these taxa. R. a. himalayanus
and R. a. macrurus both occur on the Chinese main-
land (see Figure 1a). Previous phylogeographic studies
suggest that the mainland R. a himalayanus first colo-
nized Hainan Island to form R. a. hainanus, which
then underwent a post-glacial recolonization of the
mainland to form R. a. macrurus [29,30]. The two
mainland subspecies, himalayanus and macrurus, now
form a hybrid zone in southeastern China. Earlier ana-
lyses of the mitochondrial control region, three nuclear
genes and 14 microsatellites loci [30] suggested the
occurrence of mitochondrial introgression but no nu-
clear introgression across the hybrid zone, although
the absence of detected nuclear introgression may have
reflected a lack of data.
To test for differential introgression across the hybrid

zone in R. affinis, here we expand our sampling of the
genome to include loci that might be subject to adaptive
introgression. Unlike mice in which olfaction is the
dominant sensory modality, horseshoe bats are auditory
specialists that use a system of narrowband constant fre-
quency echolocation in which the inner ear is finely
tuned to the incoming echoes of the emitted call. These
calls have evolved specifically for the detection of flying
insects, with the call frequency influencing the prey size
and habitat use. For this reason, putative echolocation
(or hearing) genes [31] might be subject to adaptive
introgression. To test this hypothesis in our study sys-
tem, we analyzed polymorphism and genetic differenti-
ation in regions from three echolocation genes (i.e.
FoxP2, Kcnq4 and Prestin). The first of these is impli-
cated in orofacial coordination and vocalisation - both of
which are important in call production - and was shown
to have undergone divergent selection in echolocating
bats [32]. The latter two genes encode proteins involved
in hair cell function, and both show extensive sequence
convergence between echolocating bats and dolphins
[33,34]. In comparison, we included three X-linked and
five other autosomal regions that are not expected to
have any roles in hearing or vocalisation. The inclusion
of X-linked markers in our dataset allowed us to also
test the hypothesis that the X chromosome contributes
disproportionately to reproductive isolation compared to
autosomes [35].

Methods
Sampling and echolocation calls recording
Individuals of all three subspecies (R. a. himalayanus,
R. a. macrurus and R. a. hainanus) sequenced in this
study were sampled previously [29,30] from across the
range (Figure 1a). A wing membrane biopsy was taken
from each individual following standard non-lethal
sampling procedure that was approved by the National
Animal Research Authority, East China Normal Uni-
versity (approval ID 20080209). One congeneric spe-
cies (R. pearsoni) was included as an outgroup in the
phylogenetic analyses. All DNA samples analyzed were
isolated from 3-mm wing membrane biopsies using
DNeasy kits (Qiagen).
Echolocation call frequency and body size are useful

characters for distinguishing among closely related bat
species [36]. To test for divergence in body size and call
frequency among the three focal taxa, for a subset of
bats we measured the forearm (mm) using dial calipers,
and recorded the echolocation call resting frequency
(kHz) using the Avisoft UltraSoundGate 116Hnb kit
(Avisoft, Berlin, Germany). Prior to taxonomic compari-
sons, we also tested for sex differences among call fre-
quencies, which have been reported in several horseshoe
bat species. Spectrograms were analyzed using Avisoft-
SASLab Pro software (Avisoft) and the constant frequency
of the second harmonic was extracted.



Figure 1 Sampling, morphological data and species tree. (a) Map showing the sampling localities of Rhinolophus affinis used in this study
(modified from Mao et al. 2013 [30]). Populations are presented as circles in which individuals are coloured based on the subspecies membership
(R. a. himalayanus: blue; R. a. macrurus: orange; R. a. hainanus: green); (b) Plot showing echolocation call frequency (kHz) and forearm (mm) data
for a subset of bats from the three subspecies (R. a. himalayanus, n = 43; R. a. macrurus, n = 39; R. a. hainanus, n = 32). Downward and upward
triangles correspond to male and female bats, respectively. Full details are provided in Additional file 3: Table S3; (c) Species tree based on all
nuclear markers using BEST.
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Gene selection and sequencing
Sequence data of Chd1, Sws1 and Usp9x from individ-
uals of himalayanus and macrurus were taken from
our previous study [30]. To complement these data,
here we also sequenced these genes in the hainanus is-
land subspecies, and, for all three taxa, we obtained
new sequence data from nine additional genes. First,
we amplified the complete cytochrome b (Cytb) gene
using the primers and PCR conditions described in
[37]. In addition, for each mtDNA clade (see Results),
we also amplified introns of two X-chromosomal genes
(Pola1 and Cx22) and six autosomal genes (Tg, Thy,
H2a, Kcnq4, FoxP2 and Prestin). For FoxP2 and Pres-
tin, we amplified the second and third introns of the
former (hereafter called FoxP2-2 and −3) and four in-
trons of the latter (hereafter called Prestin-4, −8, −17
and −18). Details of all markers examined here are pro-
vided in Table 1.
Polymerase chain reactions (PCRs) were performed in
50 μl reaction mixtures containing 10–50 ng DNA,
0.25 mM of each primer and 25 μl Premix Taq polymer-
ase (TaKaRa). The thermocycling profiles for Tg, Thy
and Usp9x have been described previously [38-40]. For
H2a, Pola1, Cx22, Prestin-4, −8, −17 and −18, FoxP2-2
and −3, and Kcnq4, we used: 95°C for 5 min; 34 cycles of
94°C for 30 s, 54–61°C for 40 s, 72°C for 90 s; 72°C for
10 min. Details of primer information and actual anneal
temperatures for each marker have been provided in
Additional file 1: Table S1. PCRs were carried out on a
PTC-220 thermal cycler (Bio-Rad). DNA sequencing was
undertaken with both primers on an ABI PRISM 3700
automated sequencer (Applied Biosystems). For nuclear
sequences, when multiple heterozygous sites were present
(i.e. more than one double peak was observed in the se-
quence chromatograms), haplotypes were resolved pro-
babilistically using PHASE 2.1 [41] in the package DnaSP



Table 2 Substitution models determined by MODELTEST
for each locus

Locus Substitution models

Cytb HKY + I + G [I = 0.7084, G = 1.1615]

Cx22 HKY

Usp9x HKY

Pola1 HKY + I + G [I = 0.8750, G = 0.6921]

Chd1 HKY

H2a K81uf + I + G [I = 0.7127, G = 0.7697]

Sws1 HKY + G [G = 0.0061]

Thy K81uf + I + G [I = 0.8111, G = 0.8005]

Tg K80 + G [G = 0.0012]

Prestin-4 HKY + I + G [I = 0.8206, G = 0.6954]

Prestin-8 HKY + I + G [I = 0.8333, G = 0.8597]

Prestin-17 HKY + I + G [I = 0.8838, G = 0.7198]

Prestin-18 HKY + G [G = 0.0099]

FoxP2 K81uf + I + G [I = 0.7737, G = 0.8948]

Kcnq4 HKY

Table 1 Annotated function and chromosome information for molecular markers used in this study

ID Description Chromosome Annotated function

Cytb Cytochrome b Mitochondrial Oxidative phosphorylation

Chd1 Chromodomain helicase DNA binding protein 1 Autosome Chromatin binding

Sws1 The short-wavelength-sensitive opsin gene Autosome Cognition

H2a H2A histone family, member Y Autosome Chromatin binding

Thy Thyrotropin Autosome Hormone activity

Tg Thyroglobulin Autosome Hormone activity

Prestin Solute carrier family 26, member 5 Autosome Hearing

FoxP2 Forkhead box P2 Autosome Cognition

Kcnq4 The voltage-gated potassium channel subfamily KQT member 4 Autosome Hearing

Usp9x Ubiquitin specific protease 9 X X chromosome Alternative splicing

Pola1 Polymerase (DNA directed) alpha 1 X chromosome Chromatin binding

Cx22 X-chromosomal open reading frame 22 X chromosome Alternative splicing
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v5 [42]. Sequences were aligned using CLUSTAL_X 1.83
[43] and edited manually. All sequences generated in this
study have been deposited in GenBank and accession
numbers are given in Additional file 2: Table S2.

Gene genealogies and species tree
Phylogenetic relationships among the three subspecies
were reconstructed based on the Cytb sequences using
Bayesian inference (BI) implemented in MrBayes 3.1.2
[44]. To test for genealogical discordance across loci, we
also performed a BI tree reconstruction for each nuclear
region. For FoxP2, most individuals were sequenced at
both FoxP2-2 and −3, and thus these two segments were
concatenated as a single marker (hereafter called FoxP2).
For Prestin, the DNA of some individuals was either too
depleted or degraded for use in all segments of Prestin;
thus each segment was analyzed separately. The best-fit
substitution models for each region were determined in
MODELTEST 3.0 [45] and are given in Table 2. We per-
formed two simultaneous runs of Metropolis-coupled
Markov chain Monte Carlo (MCMC) analysis with the
substitution model parameters, each comprising four
chains and 10 million generations. Trees and parameters
were sampled every 100 generations, and the first 25% of
the sampled trees were discarded as burn-in. Because
gene genealogies at the population level are often diffi-
cult to represent by traditional phylogenetic trees [46],
we also examined the relationship among haplotypes by
constructing statistical parsimony networks in the pack-
age TCS version 1.21 [47].
Knowledge of the correct species tree is essential for

understanding patterns of introgression. However, due
to random lineage sorting, individual gene trees often
differ from each other and from the species tree [48]. A
Bayesian hierarchical model has been proposed to recon-
struct the species tree by incorporating information from
multiple gene trees [49,50]. We performed a Bayesian
hierarchical model using the software BEST 2.0, which
implements a MCMC algorithm to estimate the poster-
ior distribution of species trees. For this analysis, all nu-
clear markers were included and model parameters for
each marker were estimated using MODELTEST (Table 2).
In total we included 14 individuals for which full sequence
datasets were available: six himalayanus, four macrurus,
three hainanus and one R. pearsoni as an outgroup. We
performed two runs of Metropolis-coupled MCMC,
each comprising four chains and 10 million generations.
Trees and parameters were sampled every 100 genera-
tions, and the first 25% of the sampled trees were dis-
carded as a burn-in.
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Analyses of polymorphism, genetic differentiation
and neutrality
For each nuclear locus and each subspecies, we calculated
the nucleotide diversity (π) using DnaSP, which was also
used to count the number of polymorphic sites, fixed and
shared mutations between pairs of subspecies. To assess
whether genetic differentiation was lower among the two
mainland subspecies, as would be expected from introgres-
sion in the hybrid zone, we calculated FST [51] at each locus
between each pair of taxa in the software ARLEQUIN 3.5
[52]. Significance was assessed based on 1000 permutations.
Deviations from the neutral model for each locus were

assessed by estimating Tajima’s D [53] in ARLEQUIN with
significance assessed by 1000 permutations. Multilocus
neutrality tests were conducted based on the Hudson–
Kreitman–Aguade (HKA) method [54] in DnaSP.

Coalescent simulations of incomplete lineage sorting
Phylogenetic reconstructions of several nuclear loci re-
vealed a paraphyletic relationship between himalayanus
and [macrurus + hainanus] (see Results). Because such
mixing could theoretically arise from either introgres-
sion or incomplete lineage sorting, we undertook co-
alescent simulations to test for a possible contribution
of incomplete sorting to the patterns observed. We
followed the method outlined in [55], with modifications
described in [56]. For nuclear genes (i.e. Pola1, Sws1, Thy,
Tg, H2a, Kcnq4, Prestin-4, −8 and −18) that showed mix-
ing between the himalayanus and [macrurus + hainanus]
clades, we used Mesquite v2.5 [57] to calculate Slatkin &
Maddison's s statistic [58], a measure of the degree of
lineage sorting assuming no gene flow after splitting.
Given two defined lineages, a s value of 1 is expected for
a locus showing complete reciprocal monophyly, while a
value of >1 indicates mixing. Thus for each locus sho-
wing an observed s value of >1, we used Mesquite to
simulate 1,000 coalescent trees under the incomplete
lineage sorting model with no migration within the
population tree. Then, sequence data were simulated
from the coalescent trees using a model of substitution
estimated from the empirical data using MODELTEST
excluding the outgroup (see Additional file 3: Table S3).
The scale factor for each locus was determined by testing
several values until mean sequence divergence values
within lineages were similar between simulated and em-
pirical data (see Additional file 3: Table S3). Finally,
PAUP* [59] was used to reconstruct majority-rule con-
sensus trees from sequence matrices using heuristic par-
simony searches. For each locus, we generated a null
distribution of s values, against which the empirical
value was compared and considered as significant if it
fell outside of the 95% confidence intervals.
For all coalescent simulations, the divergence time

between himalayanus and [macrurus + hainanus] was
determined as 550000 years ago (i.e. 275000 genera-
tions based on a generation time of two years for horse-
shoe bats) using a sequence divergence of 0.011
(introgressed haplotypes were excluded in this analysis)
and the divergence rate of 0.02/Mya for cytochrome b;
effective population size (Ne) was estimated from Θ-
values using MIGRATE-N version 3.3.2 [60]. Each
search contained 20 short chains with 5000 sampled
genealogies and 2 long chains with 50,000 sampled ge-
nealogies. Genealogies were 200 steps apart and the
first 10,000 were discarded as burn-in. Two runs were
performed to ensure convergence of parameter esti-
mates. The Θ-values were converted to Ne using the
formula Θ = 4Neu (u is mutation rate). The mutation
rates of each nuclear locus were determined by calcu-
lating the ratio of the average distance between hima-
layanus and [macrurus + hainanus] for each locus and
that for cytb (1 × 10−8 per site per year). Simulations
were conducted using an Ne based on the maximum
likelihood estimates of Θ, as well as the 95% upper and
lower percentiles.

Estimates of gene flow
To further test for introgression, we estimated levels of
gene flow between himalayanus and macrurus by imple-
menting isolation-with-migration (IM) models [61] in
the program IMa2 [62,63]. We repeated the IM analysis
for each of the nine loci (Pola1, Sws1, Thy, Tg, H2a,
Kcnq4, Prestin-4, −8 and −18) showing evidence of mix-
ing between himalayanus and its daughter taxa. The IM
model assumes that each locus is free from recombin-
ation and selectively neutral. We tested for recombin-
ation using the four-gamete test [64] in DnaSP and only
the segments without recombination were used. Neutrality
tests have been conducted above. Several preliminary runs
were performed to establish upper bounds on prior dis-
tributions. A final run was conducted with 200 000 ge-
nealogies at every 100 steps after a burn-in of 106 steps
including twenty Metropolis-coupled chains with a geo-
metric heating scheme: −hfg -hn20 -ha0.96 -hb0.9. A total
of 200 000 genealogies were used to perform likelihood ra-
tio tests of the nested models for migration rates [62].

Results
Echolocation call frequency and species tree
Rhinolophus affinis showed no sex differences in echo-
location call frequency, however, significant divergence was
observed among the taxa (see Figure 1b and Additional
file 4: Table S4). Specifically, the call frequencies of
himalayanus (87.12 ± SD 2.04 kHz) were significantly
higher than those of both macrurus (macrurus: 73.68 ±
0.74 kHz; t = 39.020, df = 83, P < 0.001) and hainanus
(70.85 ± 0.94 kHz; t = 42.102, df = 76, P < 0.001). Call fre-
quencies differences between macrurus and hainanus
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were slight but also significant (t = 14.189, df = 69, P <
0.001). The sister relationship between macrurus and
hainanus, and the ancestral status of himalayanus, were
further supported by the species tree estimated by BEST
based on all nuclear regions (Figure 1c).

MtDNA tree and network
The final alignment (1023 bp) of 73 Cytb sequences
identified 35 haplotypes among the three taxa. No pre-
mature stop codons were observed at this gene, suggest-
ing that it is functional. A Bayesian tree and network
based on all Cytb haplotypes gave a similar pattern to an
earlier tree based on the Control Region (CR) [29]. Spe-
cifically, haplotypes of macrurus were nested within a
predominantly hainanus clade (Figure 2) supporting the
previous suggestion that macrurus originated from the
recolonisation of hainanus onto the mainland. In this
tree, most himalayanus haplotypes appeared to be ances-
tral with respect to these other taxa, and formed two clus-
ters with one corresponding to a specific geographical
region (see [30]). However, several individuals’ Cytb haplo-
types - hap1, hap10 and hap11 - were classified with the
[macrurus + hainanus] clade, supporting mtDNA intro-
gression between the two mainland subspecies (see also
[29,30]).

Discordance in genealogical topologies among nuclear loci
To test for phylogenetic discordance among genomic re-
gions, phylogenetic trees and networks were recon-
structed for all nuclear regions examined (Figure 3). Five
regions (i.e. Cx22, Usp9x, Chd1, Prestin-17, and Foxp2)
recovered phylogenetic relationships among the three
taxa that were similar to those seen in the mtDNA and
species trees, with macrurus and hainanus haplotypes
mixed and highly divergent from himalayanus haplo-
types. However, eight regions (i.e. Pola1, Sws1, Thy, Tg,
H2a, Prestin-4, Prestin-8, and Prestin-18) produced ge-
nealogies in which some haplotypes of himalayanus
were classified with [macrurus + hainanus]. In particular,
in Pola1 and Sws1, all himalayanus haplotypes clustered
with some of the macrurus haplotypes with high posterior
probabilities (Figure 3), indicating possible gene flow be-
tween these two mainland subspecies. One gene (Kcnq4)
showed mixed haplotypes among all three subspecies
(Figure 3), possibly due to its low mutation rate.

Polymorphisms and genetic differentiation, and neutral test
The proposed recent origin of macrurus by the reco-
lonization of hainanus onto the mainland would be ex-
pected to lead to lower levels of nucleotide diversity in
macrurus than in either hainanus or himalayanus.
However, locus-wise nucleotide diversity was not seen
to differ significantly between macrurus and hainanus
(t = −1.4055, df = 13, P = 0.1833, paired t-test) with 50%
of markers (Pola1, H2a, Tg, Prestin-4, Prestin-18,
FoxP2 and Kcnq4; see Table 3) showing higher pairwise
nucleotide diversity values in the former taxon.
Under a scenario of lineage sorting with no gene flow

during the divergence of the three taxa, the most recently
diverged hainanus and macrurus should share more
ancestral polymorphisms. Consistent with this expect-
ation, no loci showed fixed differences between haina-
nus and macrurus compared with nine loci between
himalayanus and macrurus, and ten loci between
himalayanus and hainanus (Table 4). Likewise, levels
of genetic differentiation were significantly lower between
hainanus and macrurus (average FST = 0.23) than between
himalayanus and macrurus (average FST = 0.62, t = −5.063,
df = 28, P < 0.0001), and between himalayanus and
hainanus (average FST = 0.66, t = −5.561, df = 28, P <
0.0001). On the other hand, six loci - Pola1, Sws1, Thy,
Foxp2, Prestin-4, and Prestin-8 - showed lower differenti-
ation between himalayanus and macrurus than between
himalayanus and hainanus (t = −3.531, df = 10, P < 0.05),
again suggesting possible introgression between himalaya-
nus and macrurus. The multilocus HKA test suggested no
departure from neutrality for any loci, although the stand-
ard neutrality test based on Tajima's D was significant for
Chd1 in himalayanus (Table 3).

Coalescent simulations of incomplete lineage sorting
Four (Sws1, Pola1, H2a and Prestin-8) of the nine loci that
showed mixing between the himalayanus and [macrurus +
hainanus] clades were characterized by s-statistic values of
1, indicating complete reciprocal monophyly at these loci.
The remaining five loci were characterized by s-statistic
values of >1 (the s value for Prestin-4, Thy, Tg and Kcnq4
was 2 and for Prestin-18 was 3), indicating a lack of reci-
procal monophyly between himalayanus and [macrurus +
hainanus]. The scenario of incomplete lineage sorting with
no migration could not be rejected in four of loci (Prestin-4,
Thy, Kcnq4 and Prestin-18) with the values of s falling within
the 95% confidence intervals generated from simulation
tests (Figure 4). In contrast, the s-value for Tg was sig-
nificantly small, falling in the lower 5% tail of values,
suggesting that it probably did not reflect incomplete
lineage sorting.

Estimates of gene flow
We compared the fit of nested models with zero gene
flow for each of the nine loci using IMa2. The likelihood
ratio test rejected the model with zero gene flow only at
Prestin-4 from macrurus to himalayanus (P = 0.043) (see
details in Additional file 5: Table S5).

Discussion
In this study the species tree estimated using 14 loci
under a Bayesian hierarchical model and the phylogeny



Figure 2 Bayesian inference (BI) tree and statistical parsimony network based on sequences from Cytochrome b (Cytb). In trees, node
support is indicated with Bayesian posterior probabilities and only posterior probabilities over 0.5 are shown. Shared haplotypes between pairs of
subspecies are shown in black. In networks, each circle represents a single haplotype and the area of circle size is scaled by haplotype frequency.
The filled black circles represent missing or unsampled haplotypes.
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constructed from mitochondrial DNA, together with call
frequency variation, supports our earlier proposal that
himalayanus colonized Hainan Island to form hainanus,
which later recolonized the mainland forming macrurus
[29,30]. The recent origin of macrurus from hainanus
was also supported by its comparatively lower average
genetic differentiation (Table 3) and almost no fixed dif-
ferences seen in nuclear markers here (Table 4).
Despite these patterns, the same evolutionary history

was not suggested by all 14 nuclear loci. Indeed, nine
loci showed evidence of mixing between himalayanus and
its daughter taxa based on their genealogical topologies.
However, four of those loci (Sws1, H2a, Pola1 and Prestin-
8) gave the s-statistic value of 1, indicating complete recip-
rocal monophyly in these loci. This was confirmed by the
IMa2 analysis that indicated that the model of zero gene
flow could not be rejected in these loci. In the remaining
five loci (Prestin-4, Thy, Tg, Kcnq4 and Prestin-18) with the
s-statistic values > 1, the absence of reciprocal monophyly
might have plausibly arisen from incomplete lineage sorting
although low levels of introgression might also contribute
to this pattern, e.g. at Prestin-4. Additionally, differences in
locus-specific recombination rates can also lead to variation
in levels of genetic differentiation and gene flow [16,65,66].



Figure 3 Bayesian inference (BI) trees and statistical parsimony networks based on sequences from each nuclear region. In trees, node
support is indicated with Bayesian posterior probabilities and only posterior probabilities over 0.5 are shown. Shared haplotypes between pairs of
subspecies are shown in black. In networks, each circle represents a single haplotype and the area of circle size is scaled by haplotype frequency.
The filled black circles represent missing or unsampled haplotypes.
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Our findings add to several recent studies of closely related
taxa that have also shown that genealogical patterns and/or
levels of genetic differentiation and gene flow can vary con-
siderably across different genomic regions [67-69].
Of the three X-linked markers studied, two (Cx22 and

Usp9x) showed extremely low levels of nucleotide di-
versity (π < 0.12%) within all three subspecies, along-
side high genetic differentiation (FST > 0.94) between
himalayanus and the other taxa, in accordance with a
reciprocal monophyly for himalayanus and [macrurus +
hainanus]. Such signatures could arise from selective
sweeps operating to reduce genetic diversity within
each taxon while fixing divergent alleles in different
taxa [70]. These patterns are consistent with the idea
that the X-chromosome plays a greater role than auto-
somes in reproductive isolation [4,5,71]. In contrast,
however, the third X-linked locus (Pola1) showed high-
est nucleotide diversity in macrurus (the youngest
taxon) than any of the other markers. Moreover, this
locus also showed both a closer phylogenetic relation-
ship and low estimated genetic differentiation between
himalayanus and macrurus than between macrurus
and hainanus, both of which likely resulted from either
incomplete lineage sorting or introgression between
himalayanus and macrurus. However, both of these
two scenarios were not supported by the estimated s-
value of 1, or by the nested migration models performed
in IMa2. Thus, other processes such as recombination
might also contribute to the patterns observed in Pola1
(see also [68]).
The IMa2 analysis indicated that the model with zero

gene flow could be rejected for Prestin-4, supporting our
original hypothesis that candidate echolocation genes
may be subject to adaptive introgression (see Background).
On the other hand, the other two candidate echoloca-
tion genes (FoxP2 and Kcnq4) examined showed no evi-
dence of introgression across the hybrid zone and,
therefore, we cannot confidently associate the introgres-
sion of Prestin with its role in echolocation. Additional
candidate hearing and/or echolocation genes must be
studied for a more thorough assessment of whether
there are differences in levels of introgression between



Table 3 Estimates of polymorphism (nucleotide diversity (π) and Tajima's D) within each subspecies and genetic
differentiation (FST) between pairs of subspecies for each nuclear region

N π Tajima's D FST

Locus him mac hai him mac hai him mac hai him-mac hai-mac him-hai

Cx22 28 13 12 0.017 0 0 −1.156 0 0 0.95 0 0.95

Usp9x 42 12 9 0 0.079 0.116 0 1.381 0.196 0.94 −0.06 0.94

Pola1 20 11 8 0.287 1.187 0.404 −0.509 0.823 1.293 0.67 0.34 0.81

Chd1 42 15 17 0.067 0.036 0.089 −1.726* −1.503 0.103 0.91 0.61 0.86

H2a 25 15 10 1.019 0.289 0.097 1.064 −0.931 0.426 0.54 0.09 0.54

Sws1 48 12 7 0.353 0.267 0.416 0.944 −1.288 −1.576* 0.54 0.62 0.77

Thy 17 11 17 0.759 0.041 0.073 0.658 −1.129 0.292 0.47 0.08 0.53

Tg 20 10 10 0.213 0.895 0.802 −1.156 0.170 −0.108 0.56 0.14 0.50

Prestin-4 23 12 9 0.518 0.579 0.284 −0.133 −1.062 −1.446 0.62 0.64 0.73

Prestin-8 14 9 8 0.193 0.544 0.547 −1.246 1.179 0.637 0.59 0.23 0.71

Prestin-17 14 9 10 0.646 0.439 0.567 0.136 0.087 1.876 0.36 0.26 0.38

Prestin-18 13 11 9 0.784 0.435 0.330 1.103 0.185 1.456 0.43 0.06 0.46

FoxP2 23 12 9 0.315 0.204 0.054 0.486 0.327 −1.385 0.65 0.17 0.73

Kcnq4 16 11 8 0.164 0.081 0.064 1.999 −0.532 −1.401 0.31 0.06 0.28

N is the number of individuals analyzed for each nuclear region within each subspecies. him represents himalayanus; mac represents macrurus; hai represents
hainanus. *P < 0.05.
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hearing genes and other genes in these bats. Indeed,
tests for selection for this region of Prestin were not sig-
nificant, suggesting that the possible occurrence of
introgression in Prestin-4 may in fact be due to neutral
gene flow although we cannot reject the alternative pos-
sibility of linkage to beneficial genes [27,72,73]. It was
noteworthy that the scenario of incomplete lineage sort-
ing could not be ruled out completely, and it is possible
that the parapyhly pattern at this locus might have been
Table 4 Polymorphism and fixed difference between pairs of

Polymorphic sites Fixed differe

Locus him-mac hai-mac him-hai him-mac

Cx22 2 0 2 1

Usp9x 2 2 3 1

Pola1 17 16 12 1

Chd1 12 4 11 4

H2a 20 7 16 1

Sws1 16 13 17 1

Thy 11 2 12 0

Tg 19 21 17 0

Prestin-4 22 17 18 0

Prestin-8 16 14 17 1

Prestin-17 27 14 25 0

Prestin-18 14 6 11 0

FoxP2 30 13 29 4

Kcnq4 4 4 4 0

him represents himalayanus; mac represents macrurus; hai represents hainanus.
shaped by a combination of both introgression and in-
complete lineage sorting. Finally, we were unable to as-
sess the effects of recombination rate on patterns of
introgression [16,68] due to lack of detailed knowledge
of the genomic locations of the genes examined, such as
whether they occur within rearranged or colinear re-
gions of the genome. Beside the possible occurrence of
gene flow across the hybrid zone, data from levels of
polymorphism, genetic differentiation and genealogical
subspecies

nces Shared mutations

hai-mac him-hai him-mac hai-mac him-hai

0 0 0 0 0

0 1 0 1 0

0 4 3 2 1

0 3 0 0 0

0 1 1 0 0

0 2 0 3 0

0 0 1 0 0

0 1 0 5 3

0 2 6 7 3

0 2 1 5 2

0 0 4 7 4

0 0 1 3 1

0 8 0 0 0

0 0 0 0 0
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Figure 4 Distributions of Slatkin & Maddison's s for 1,000 simulated trees within population trees from five nuclear loci at the lower,
upper and maximum likelihood estimates (MLE) of the effective population size estimated by MIGRATE-N. The arrow highlights the
s-value from the empirical data. The 95 % confidence intervals generated from simulations were shown with asterisks.
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topology suggested that locus Chd1 may represent a
candidate region associated with reproductive isolation,
either directly or via linkage to another locus.
Detected possible gene flow between himalayanus

and macrurus at Prestin conflicts with our earlier
findings for which no nuclear gene flow was inferred
on the basis of reciprocal monophyletic tree topologies
despite extensive mtDNA introgression [29,30]. Inter-
estingly three nuclear genes (Chd1, Sws1 and Usp9x)
did not show evidence of gene flow in this study. Given
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these differences among loci, our results highlight the
importance of including multiple genomic regions in
order to characterize patterns of introgression across a
hybrid zone. This differential introgression pattern
across loci observed here has been widely documented
in other taxa including both plants (e.g. sunflowers [24]
and trees [74]) and animals (e.g. tiger salamanders [25],
mice [26], butterflies [27], and crickets [75]. It is pertin-
ent that a recent study has shown that this heterogen-
eity among loci can affect the inference of the history of
speciation if it is not taken into account [76].

Conclusions
By comparing patterns of divergence and gene flow
among loci we identified several regions with putative
roles in either reproductive isolation (e.g. Cx22, Usp9x
and Chd1) or adaptive introgression (e.g. Prestin) in
the hybrid zone between himalayanus and macrurus.
However, incomplete lineage sorting, as an alternative
scenario for introgression, could not be ruled out com-
pletely in this study. Nonetheless a fuller understand-
ing of the factors driving the process of differential
introgression will benefit from the number of markers
used and knowledge of genomic locations or func-
tional/linkage relationships among those markers. Re-
gardless, our findings add to mounting evidence that
caution must be exercised when drawing conclusions
about the occurrence of nuclear introgression on the
basis of a small number of loci.

Additional files

Additional file 1: Table S1. Detailed information on the sequences of
the primers, anneal temperature in PCR and references for each marker.

Additional file 2: Table S2. List of the GenBank accession numbers for
all the sequences included in this study.

Additional file 3: Table S3. Detailed information of the forearm and
echolocation call frequency for each individual used in this study.

Additional file 4: Table S4. Parameters used for nuclear markers in
coalescent simulations.

Additional file 5: Table S5. Tests of nested models for migration rates
between himalayanus and macrurus based on the full data set.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XM, SZ, SR conceived the project. XM conducted the experiments and the
data analysis and wrote the draft. GZ and LZ collected samples. SR edited
the draft. SZ provided funding support. All authors read and approved the
final manuscript.

Acknowledgements
We thank Jeffrey Feder and three anonymous reviewers whose comments
improved the manuscript. This work was funded by a grant awarded to S.
Zhang under the Key Construction Program of the National "985" Project
and “211” Project. X. Mao was supported by a Marie Curie International
Incoming Fellowship and SJR by a Royal Society Research Fellowship (UK).
Author details
1Institute of Molecular Ecology and Evolution, East China Normal University,
Shanghai 200062, China. 2School of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, UK. 3Guangdong Entomological
Institute, 105 Xingang Xilu, Haizhu Guangzhou, Guangdong Province 510260,
China.

Received: 28 March 2014 Accepted: 4 July 2014
Published: 9 July 2014

References
1. Ting CT, Tsaur SC, Wu ML, Wu CI: A rapidly evolving homeobox at the site

of a hybrid sterility gene. Science 1998, 282(5393):1501–1504.
2. Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J: A mouse speciation

gene encodes a meiotic histone H3 methyltransferase. Science 2009,
323(5912):373–375.

3. Phadnis N, Orr AH: A single gene causes both male sterility and segregation
distortion in Drosophila hybrids. Science 2009, 323(5912):376–379.

4. Payseur BA, Krenz JG, Nachman MW: Differential patterns of introgression
across the X chromosome in a hybrid zone between two species of
house mice. Evolution 2004, 58(9):2064–2078.

5. Teeter KC, Payseur BA, Harris LW, Bakewell MA, Thibodeau LM, O'Brien JE,
Krenz JG, Sans-Fuentes MA, Nachman MW, Tucker PK: Genome-wide
patterns of gene flow across a house mouse hybrid zone. Genome Res
2008, 18:67–76.

6. Teeter KC, Thibodeau LM, Gompert Z, Buerkle CA, Nachman MW, Tucker PK:
The variable genomic architecture of isolation between hybridizing
species of house mice. Evolution 2010, 18(2):462–475.

7. Barton NH, Hewitt GM: Analysis of hybrid zones. Annu Rev Ecol Syst 1985,
16:113–148.

8. Hewitt GM: Hybrid zones-natural laboratories for evolutionary studies.
Trends Ecol Evol 1988, 3(7):158–167.

9. Harrison RG: Hybrid zones: windows on evolutionary processes. In Oxford
surveys in evolutionary biology vol 7. Edited by Futuyma D, Antonovics J.
Oxford: Oxford University Press; 1990.

10. Wu C-I: The genic view of the process of speciation. J Evol Biol 2001,
14(6):851–865.

11. Dopman EB, Pérez L, Bogdanowicz SM, Harrison RG: Consequences of
reproductive barriers for genealogical discordance in the European corn
borer. Proc Natl Acad Sci USA 2005, 102(41):14706–14711.

12. Kronforst MR, Young LG, Blume LM, Gilbert LE: Multilocus analyses of
admixture and introgression among hybridizing Heliconius butterflies.
Evolution 2006, 60(6):1254–1268.

13. Maroja LS, Andres JA, Harrison RG: Genealogical discordance and patterns
of introgression and selection across a cricket hybrid zone. Evolution
2009, 63(11):2999–3015.

14. Ohshima I, Yoshizawa K: Differential introgression causes genealogical
discordance in host races of Acrocercops transecta (Insecta: Lepidoptera).
Mol Ecol 2010, 19(10):2106–2119.

15. Payseur BA: Using differential introgression in hybrid zones to identify
genomic region involved in speciation. Mol Ecol Resour 2010, 10(5):806–820.

16. Nachman MW, Payseur BA: Recombination rate variation and speciation:
theoretical predictions ans emperical results from rabbits and mice. Proc
R Soc London B Biol Sci 2012, 367(1587):409–421.

17. Rieseberg LH, Whitton HJ, Gardner K: Hybriz ones and the genetic
architecture of a barrier to gene flow between two sunflower species.
Genetics 1999, 152(2):713–727.

18. Gompert Z, Buerkle CA: Bayesian estimation of genomic clines. Mol Ecol
2011, 20(10):2111–2127.

19. Noor M, Feder JL: Speciation genetics: evolving approaches. Nat Rev Genet
2006, 7:851–861.

20. Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA: Two
Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila.
Science 2006, 314(5803):1292–1295.

21. Payseur BA, Nachman M: The genomics of speciation: investigating the
molecular correlates of X chromosome introgression across the hybrid
zone between Mus domesticus and Mus musculus. Biol J Linn Soc 2005,
84(3):523–534.

22. Piálek J, Barton NH: The spread of an advantageous allele across a barrier:
the effects of random drift and selection against heterozygotes. Genetics
1997, 145(2):493–504.

http://www.biomedcentral.com/content/supplementary/1471-2148-14-154-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2148-14-154-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2148-14-154-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2148-14-154-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2148-14-154-S5.doc


Mao et al. BMC Evolutionary Biology 2014, 14:154 Page 12 of 13
http://www.biomedcentral.com/1471-2148/14/154
23. Kim M, Cui ML, Cubas P, Gillies A, Lee K, Chapman MA, Abbott RJ,
Coen E: Regulatory genes control a key morphological and
ecological trait transferred between species. Science 2008,
322(5904):1116–1119.

24. Whitney KD, Randell RA, Rieseberg LH: Adaptive introgression of abiotic
tolerance traits in the sunflower Helianthus annuus. New Phytol 2010,
187(1):230–239.

25. Fitzpatrick BM, Johnson JR, Kump DK, Shaffer HB, Smith JJ, Voss SR: Rapid
fixation of non-native alleles revealed by genome-wide SNP analysis of
hybrid Tiger Salamanders. BMC Evol Biol 2009, 9:176.

26. Song Y, Endeplos S, Klemann N, Richter D, Matuschka F, Shih C-H, Nachman
MW, Kohn MH: Adaptive introgression of anticoagulant rodent poison
resistance by hybridization between old world mice. Curr Biol 2011,
21(15):1296–1301.

27. Pardo-Dieaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M,
McMillan WO, Jiggins CD: Adaptive Introgression across Species
Boundaries in Heliconius Butterflies. PLoS Genet 2012, 8(6):e1002752.

28. Putnam AS, Scriber JM, Andolfatto P: Discordant divergence times among
Z-chromosome regions between two ecologically distinct swallowtail
butterfly species. Evolution 2007, 61(4):912–927.

29. Mao XG, Zhu GJ, Zhang SY, Rossiter SJ: Pleistocene climatic cycling drives
intra-specific diversification in the intermediate horseshoe bat
(Rhinolophus affinis) in Southern China. Mol Ecol 2010, 19(13):2754–2769.

30. Mao XG, He GM, Hua PY, Jones G, Zhang SY, Rossiter SJ: Historical
introgression and the persistence of ghost alleles in the
intermediate horseshoe bat (Rhinolophus affinis). Mol Ecol 2013,
22(4):1035–1050.

31. Jones G, Teeling EC, Rossiter SJ: From the ultrasonic to the infrared:
molecular evolution and the sensory biology of bats. Front Physiol 2013,
4:117.

32. Li G‚ Wang JH‚ Rossiter SJ‚ Jones G‚ Zhang SY: Accelerated FoxP2 evolution
in echolocating bats. PLoS ONE 2007, 2(9):e900.

33. Li G‚ Wang JH‚ Rossiter SJ, Jones G, Cotton JA, Zhang SY: The hearing
gene Prestin reunites echolocating bats. P Natl Acad Sci USA 2008,
105(37):13909–13964.

34. Liu Y, Han NJ, Franchini LF, Xu H, Pisciottano F, Elgoyhen AB, Rajan KE,
Zhang SY: The voltage-gated potassium channel subfamily KQT member
4 (KCNQ4) displays parallel evolution in echolocating bats. Mol Biol Evol
2012, 29(5):1441–1450.

35. Coyne JA, Orr HA: Speciation. Sunderland, Massachusetts: Sinauer Associates;
2004.

36. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH, Schneider CJ: Acoustic
divergence in two cryptic Hipposideros species: a role for social
selection? Proc R Soc London B Biol Sci 2001, 268(1474):1381–1386.

37. Mao XG, Zhang JP, Zhang SY, Rossiter SJ: Historical male-mediated intro-
gression in horseshoe bats revealed by multi-locus DNA sequence data.
Mol Ecol 2010, 19(7):1352–1366.

38. Matthee CA, BurzlaV JD, Taylor JF, Davis SK: Mining the mammalian
genome for artiodactyl systematics. Syst Biol 2001, 50(3):367–390.

39. Eick GN, Jacobs DS, Matthee CA: A nuclear DNA phylogenetic perspective
on the evolution of echolocation and historical biogeography of extant
bats (Chiroptera). Mol Biol Evol 2005, 22(9):1869–1886.

40. Lim BK, Engstrom MD, Bickham JW, Patton JC: Molecular phylogeny of
New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci
from the four genetic transmission systems in mammals. Biol J Linn Soc
2008, 93(1):189–209.

41. Stephens M, Smith N, Donnelly P: A new statistical method for
haplotype reconstruction from population data. Am J Hum Gen 2001,
68(4):978–989.

42. Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of
DNA polymorphism data. Bioinformatics 2009, 25(11):1451–1452.

43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The
CLUSTAL_X windows interface: flexible strategies for multiple sequence
alignment aided by quality analysis tools. Nucleic Acids Res 1997,
25(24):4876–4882.

44. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference
under mixed models. Bioinformatics 2003, 19(12):1572–1574.

45. Posada D, Crandall KA: MODELTEST: testing the model of DNA
substitution. Bioinformatics 1998, 14(9):817–818.

46. Posada D, Crandall KA: Intraspecific gene genealogies: trees grafting into
networks. Trends Ecol Evol 2001, 16(1):37–45.
47. Clement M, Posada D, Crandall KA: TCS: a computer program to estimate
gene genealogies. Mol Ecol 2000, 9(10):1657–1660.

48. Rosenberg NA: The probability of topological concordance of gene trees
and species trees. Theor Popul Biol 2002, 61(2):225–247.

49. Liu L: BEST: Bayesian estimation of species trees under the coalescent
model. Bioinformatics 2008, 24(21):2542–2543.

50. Liu L, Edwards SV: Phylogenetic analysis in the anomaly zone. Syst Biol
2009, 58(4):452–460.

51. Weir BS, Cockerham CC: Estimating F-statistics for the analysis of
population structure. Evolution 1984, 38(6):1358–1370.

52. Excoffier L, Lischer HEL: Arlequin suite ver 3.5: a new series of programs
to perform population genetics under Linux and Windows. Mol Ecol
Resour 2010, 10(3):564–567.

53. Tajima F: Statistical method for testing the neutral mutation hypothesis
by DNA polymorphism. Genetics 1989, 123(3):585–595.

54. Hudson RR, Kreitman M, Aguade M: A test of neutral molecular evolution
based on nucleotide data. Genetics 1987, 116(1):153–159.

55. Knowles LL, Maddison WP: Statistical phylogeography. Mol Ecol 2002,
11(12):2623–2635.

56. Galbreath KE, Hafner DJ, Zamudio KR, Agnew K: Isolation and introgression
in the intermountain West: contrasting gene genealogies reveal the
complex biogeographic history of the American pika (Ochotona
princeps). J Biogeogr 2010, 37(2):344–362.

57. Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary
analysis, v2.5. Available at: http://mesquiteproject.org; 2008.

58. Slatkin M, Maddison WP: A cladistic measure of gene flow inferred from
the phylogenies of alleles. Genetics 1989, 123(3):603–613.

59. Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4.0.B10. Sunderland, Massachustts: Sinauer & Associates; 2002.

60. Beerli P: Comparison of Bayesian and maximum-likelihood
inference of population genetic parameters. Bioinformatics 2006,
22(3):341–345.

61. Nielsen R, Wakeley J: Distinguishing migration from isolation: a Markov-chain
Monte Carlo approach. Genetics 2001, 158(2):885–896.

62. Hey J, Nielsen R: Integration within the Felsenstein equation for
improved Markov chain Monte Carlo methods in population genetics.
P Natl Acad Sci USA 2007, 104(8):2785–2790.

63. Hey J: The divergence of chimpanzee species and subspecies as
revealed in multi-population isolation-with-migration analyses. Mol Biol
Evol 2010, 27(4):921–933.

64. Hudson RR, Kaplan N: Statistical properties of the number of
recombination events in the history of a sample of DNA sequences.
Genetics 1985, 111(1):147–164.

65. Takahashi A, Liu YH, Saitou N: Genetic variation versus recombination
rate in a structured population of mice. Mol Biol Evol 2004,
21(2):404–409.

66. Keinan A, Reich D: Human population differentiation is strongly correlated
with local recombination rate. PLoS Genet 2010, 6(3):e100088655.

67. Carneiro M, Blanco-Aguiar J, Villafuerte R, Ferrand N, Nachman MW:
Speciation in the European rabbit (Oryctolagus cuniculus): Islands of
differentiation on the X chromosome and autosomes. Evolution 2010,
64(12):3443–3460.

68. Geraldes A, Basset P, smith KL, Nachman MW: Higher differentiation
among subspecies of the house mouse (Mus musculus) in genomic
regions with low recombination. Mol Ecol 2011, 20(22):4722–4736.

69. Herrig DK, Modrick AJ, Brud E, Llopart A: Introgression in the Drosophila
subobscura- D. Madeirensis sister species: evidence of gene flow in
nuclear genes despite mitochondrial differentiation. Evolution 2014,
68(3):705–719.

70. Borge T, Webster MT, Andersson G, Sætre GP: Contrasting patterns
of polymorphism and divergence on the Z chromosome and
autosomes in two Ficedula flycatcher species. Genetics 2005,
171(4):1861–1873.

71. Macholán M, Munclinger P, Šugerková M, Dufková P, Bímová B,
Božíková E, Zima J, Piálek J: Genetic analysis of autosomal and
X-linked markers across a mouse hybrid zone. Evolution 2007,
61(4):746–771.

72. Arnold ML, Martin NH: Adaptation by introgression. J Biol 2009, 8:82.
73. Hedrick PW: Adaptive introgression in animals: examples and comparison

to new mutation and standing variation as sources of adaptive variation.
Mol Ecol 2013, 22(18):4606–4618.

http://mesquiteproject.org


Mao et al. BMC Evolutionary Biology 2014, 14:154 Page 13 of 13
http://www.biomedcentral.com/1471-2148/14/154
74. Hamilton JA, Lexer C, Aitken SN: Differential introgression reveals
candidate genes for selection across a spruce (Picea sitchensis x
P. glauca) hybrid zone. New Phytol 2013, 197(3):927–938.

75. Larson E, Andrés JA, Bogdanowicz SM, Harrison RG: Differential
introgression in a mosaic hybrid zone reveals candidate barrier genes.
Evolution 2013, 67(12):3653–3661.

76. Roux C, Fraȉsse C, Castric V, Vekemans X, Pogson GH, Bierne N: Can we
continue to neglect genomic variation in introgression rates when
inferring the history of speciation? A case study in Mytilus hybrid zone.
J Evol Biol 2014. in press.

doi:10.1186/1471-2148-14-154
Cite this article as: Mao et al.: Differential introgression among loci
across a hybrid zone of the intermediate horseshoe bat (Rhinolophus
affinis). BMC Evolutionary Biology 2014 14:154.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Sampling and echolocation calls recording
	Gene selection and sequencing
	Gene genealogies and species tree
	Analyses of polymorphism, genetic differentiation and neutrality
	Coalescent simulations of incomplete lineage sorting
	Estimates of gene flow

	Results
	Echolocation call frequency and species tree
	MtDNA tree and network
	Discordance in genealogical topologies among nuclear loci
	Polymorphisms and genetic differentiation, and neutral test
	Coalescent simulations of incomplete lineage sorting
	Estimates of gene flow

	Discussion
	Conclusions
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


