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Resting state functional MRI (rs-fMRI) is a widespread and powerful tool for investigating
functional connectivity (FC) and brain disorders. However, FC analysis can be seriously
affected by random and structured noise from non-neural sources, such as physiology.
Thus, it is essential to first reduce thermal noise and then correctly identify and remove
non-neural artifacts from rs-fMRI signals through optimized data processing methods.
However, existing tools that correct for these effects have been developed for human
brain and are not readily transposable to rat data. Therefore, the aim of the present
study was to establish a data processing pipeline that can robustly remove random
and structured noise from rat rs-fMRI data. It includes a novel denoising approach
based on the Marchenko-Pastur Principal Component Analysis (MP-PCA) method,
FMRIB’s ICA-based Xnoiseifier (FIX) for automatic artifact classification and cleaning,
and global signal regression (GSR). Our results show that: (I) MP-PCA denoising
substantially improves the temporal signal-to-noise ratio, (II) the pre-trained FIX classifier
achieves a high accuracy in artifact classification, and (III) both independent component
analysis (ICA) cleaning and GSR are essential steps in correcting for possible artifacts
and minimizing the within-group variability in control animals while maintaining typical
connectivity patterns. Reduced within-group variability also facilitates the exploration
of potential between-group FC changes, as illustrated here in a rat model of sporadic
Alzheimer’s disease.

Keywords: data processing pipeline, global signal regression, ICA, resting state – fMRI, functional connectivity,
rat – brain, denoising

INTRODUCTION

Resting state functional MRI (rs-fMRI) based on spontaneous low-frequency fluctuations in the
blood oxygen level dependent (BOLD) signal in the resting brain is a widely used non-invasive tool
for studying intrinsic functional organization in health and disease (Fox and Raichle, 2007; Fornito
and Bullmore, 2010). By examining spatio-temporal correlations of the BOLD signal between
distinct brain regions, known as functional connectivity (FC), this technique is capable of revealing
large-scale resting state networks (RSNs) (Biswal et al., 1995; Damoiseaux et al., 2006; Buckner
et al., 2013). Nowadays, rs-fMRI has become an increasingly important translational neuroimaging
tool for understanding neurological and psychiatric diseases and for developing treatments, with
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rapidly growing applications not only in human research but
also in rodent models of disease (Fox and Greicius, 2010;
Bajic et al., 2017).

However, the BOLD signal is contaminated by multiple
physiological and non-physiological sources of noise, such as
respiratory and cardiac cycles, thermal noise, changes in blood
pressure, and head motion (Kruger and Glover, 2001; Birn,
2012; Van Dijk et al., 2012; Murphy et al., 2013). These non-
neuronal sources can severely affect rs-fMRI time series and
thereby confound the connectivity analysis (Cole et al., 2010;
Power et al., 2014). Therefore, a robust pre-processing pipeline
is required to extract the neuronal component of the BOLD
signal and minimize the contribution of such noise sources.
Furthermore, existing tools that correct for the effect of non-
neuronal sources are mostly tailored for human rs-fMRI data
and are not readily transposable, or even applicable, to rodent
data. Dedicated pipelines for rodent rs-fMRI processing are just
starting to emerge (Zerbi et al., 2015; Bajic et al., 2017).

For example, signal fluctuations resulting from respiratory
and cardiac cycles can be accounted for by explicitly recording
the physiology and modeling these external confounds as
regressors (Birn et al., 2006; Kasper et al., 2017). While
physiological recordings in rodents are possible, they typically
involve dedicated hardware and invasive procedures, making
them experimentally difficult. However, although cardiac and
respiratory frequencies in rodents are much higher than those of
the resting-state BOLD fluctuations, depending on the temporal
resolution of the acquisition, they can alias into the band of
interest (typically 0.01–0.3 Hz) and corrupt the analysis. Two
complementary approaches are, therefore, suitable to mitigate the
impact of physiological noise in rodent rs-fMRI.

One approach is the removal of global signal defined as the
mean time series averaged over all voxels within the brain by
including the global signal as a nuisance regressor in General
Linear Model (GLM) analyses, which is referred to as global signal
regression (GSR) (Liu et al., 2017). However, the use of GSR
has been one of the most controversial topics in human rs-fMRI
connectivity studies (Liu et al., 2017; Murphy and Fox, 2017).
On one hand, GSR is known to introduce spurious negative
correlations (Murphy et al., 2009) and cause spatial bias on
connectivity measures (Saad et al., 2012). On the other hand,
prior studies have shown that GSR can enhance the detection
of significant FC and improve spatial specificity of positive
correlations (Fox et al., 2009). Most importantly for rodent
studies, GSR can also mitigate confounds related to motion and
physiological processes (Power et al., 2015; Aquino et al., 2019).

Another commonly used data-driven approach that identifies
various physiological noise components directly from the fMRI
data itself is single-level independent component analysis (ICA)
(McKeown et al., 2003; Griffanti et al., 2014; Bajic et al.,
2017; Caballero-Gaudes and Reynolds, 2017). The ICA method
is also confronted by several issues including model order
selection (i.e., the number of components) (Kuang et al., 2018)
and the identification of artifactual components, which is a
manually tedious step (Wang and Li, 2015), especially for a
high order model. Notably, a machine-learning approach for
automatic artifact component classification based on FMRIB’s

ICA-based Xnoiseifier (FIX) (Salimi-Khorshidi et al., 2014) has
been proposed to replace manual classification. The FIX auto-
classifier applied in human and mice rs-fMRI studies has yielded
promising results with a high accuracy in artifact identification
(Griffanti et al., 2014, 2015; Zerbi et al., 2015). However, the
success of FIX classification relies on a proper pre-training on
study-specific datasets.

Therefore, the aim of the present study was to propose
and evaluate a data processing pipeline for rat rs-fMRI that
minimizes intra-group variability and maximizes between-
group differences in whole-brain FC. In this pipeline, we
reduced structural noise by combining single-session ICA
cleaning and GSR. For ICA cleaning, we built and used a
dedicated FIX classifier for rats. Furthermore, we enhanced
the sensitivity to the BOLD fluctuations by first increasing
dramatically the temporal signal-to-noise ratio (tSNR) of the
data. For the purpose of stochastic (thermal) noise removal,
we employed a novel method based on Marchenko-Pastur
Principal Component Analysis (MP-PCA). MP-PCA denoising
was recently introduced for diffusion MRI and is a model-
free method that exploits redundancy in MRI series (Veraart
et al., 2016), which has shown great potential for improving
the SNR in other MRI techniques as well (Does et al., 2019;
Ades-Aron et al., 2020).

MATERIALS AND METHODS

Animal Preparation and Anesthesia
All experiments were approved by the local Service for Veterinary
Affairs. Male Wistar rats (236 ± 11 g) underwent a bilateral
intracerebroventricular (icv) injection of either streptozotocin
(3 mg/kg, STZ group) or buffer (control group). When delivered
exclusively to the brain, streptozotocin induces impaired brain
glucose metabolism and is used as a model of sporadic
Alzheimer’s disease (AD) (Lester-Coll et al., 2006; Knezovic et al.,
2015; Grieb, 2016).

As a result of system upgrade, the fMRI data were acquired on
two rat cohorts (1/2) on different MRI consoles (Varian/Bruker).
We refer to animals scanned on the Varian system as Cohort
1 (N = 17 rats) and to animals scanned on the Bruker system
as Cohort 2 (N = 7 rats). Each cohort comprised animals from
both groups: Cohort 1 (CTL/STZ, N = 8/9 rats) and Cohort 2
(CTL/STZ, N = 4/3 rats), which were scanned at 2, 6, 13, and
21 weeks after the surgery (Figure 1). Rats were anesthetized
using 2% isoflurane in a mixture of O2 and air (O2/air: 30/70)
during the initial setup and promptly switched to medetomidine
sedation delivered through a subcutaneous catheter in the
back (bolus: 0.1 mg/kg, perfusion: 0.1 mg/kg/h) as previously
described (Reynaud et al., 2019). Medetomidine preserves neural
activity and vascular response better than isoflurane (Weber et al.,
2006; Pawela et al., 2009; Grandjean et al., 2014). The rat head was
fixed using a homemade holder with a bite bar and ear bars to
minimize the head motion, and body temperature and breathing
rate were continuously monitored. At the end of the scanning
sessions, rats were woken up with an intra-muscular injection of
antagonist atipamezole (0.5 mg/kg) and returned to their cages.
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FIGURE 1 | Timeline of experiments. Two fMRI runs were acquired per rat for each experiment. Figure adapted from Tristão Pereira et al. (2021), NeuroImage 2021,
with permission.

MRI Acquisition
Magnetic resonance imaging experiments were conducted on a
14.1 T small animal scanner with two different consoles: Varian
system (Varian Inc.) equipped with 400 mT/m gradients (Cohort
1) and Bruker system (Ettlingen, Germany) equipped with 1 T/m
gradients (Cohort 2), both using an in-house built quadrature
surface transceiver. The acquisition parameters were the same for
the two cohorts.

An anatomical reference scan was acquired using a fast
spin-echo multi-slice sequence with the following parameters:
TE/TR = 10.17/3000 ms, ETL = 4, TEeff = 10.17 ms, field of
view (FOV) = 19.2 mm × 19.2 mm, matrix = 128 × 128, in-
plane resolution = 150 µm × 150 µm, number of slices = 30,
and thickness = 0.5 mm. Before running the fMRI sequence,
anesthesia was switched from isoflurane to medetomidine. The
fMRI acquisitions were started after a fixed duration (∼1 h)
since the switch from isoflurane to medetomidine to minimize
between-animal anesthesia-related confounds. Rs-fMRI data
were acquired using a two-shot gradient-echo echo-planar
imaging (EPI) sequence as follows: TE = 10 ms, TR = 800 ms,
TRvol = 1.6 s, FOV = 23 mm× 23 mm, matrix = 64× 64, in-plane
resolution = 360 µm × 360 µm, 8 slices, thickness = 1.12 mm,
and 370 repetitions (∼10 min). Two fMRI runs were acquired
for each rat. A short scan with 10 repetitions and reversed phase-
encoding direction was also acquired to correct for EPI-related
geometric distortions.

FMRI Data Pre-processing
Our data processing pipeline was developed based on the
data of Cohort 1.

Anatomical and fMRI images were first skull-stripped
separately using BET (Brain Extraction Tool; FSL)1 (Smith, 2002),
and fMRI time series were denoised using MP-PCA with a
5 × 5 × 5 voxel sliding kernel (Veraart et al., 2016). The quality
of MP-PCA denoising was assessed by inspecting the normality
of the residuals (original – denoised) and the tSNR changes
before and after denoising. Specifically, the normality of the
residuals was tested by the linearity of the relationship between
the natural logarithm of the residual distribution probability and
the squares of multiple residual standard deviation. Then, the

1https://fsl.fmrib.ox.ac.uk/fsl

datasets went through EPI distortion correction using FSL’s topup
(Smith et al., 2004), slice-timing correction (Henson et al., 1999;
Calhoun et al., 2000; Sladky et al., 2011), and spatial smoothing
(Gaussian kernel: 0.36 mm × 0.36 mm × 1 mm). Corrected
fMRI images were registered to the Waxholm Space Atlas of
the rat brain2 using linear and non-linear registration in ANTs
(Avants et al., 2008). Highly parcelated atlas labels were grouped
to yield larger, anatomically consistent, labels [e.g., all sub-regions
pertaining to the anterior cingulate cortex (ACC) were grouped
into one ACC label], and 28 atlas-defined regions of interest
(ROIs, 14 per hemisphere) were thus automatically segmented.
The brain mask extracted based on EPI images was used to mask
atlas labels in fMRI space such that only regions with sufficient
signal were included and areas of drop-out were excluded.

Finally, single-session ICA was performed on fMRI time
courses using FSL’s MELODIC (Beckmann and Smith, 2004) with
high-pass temporal filtering (f > 0.01 Hz) and 40 independent
components (ICs).

FIX Training
Datasets of Cohort 1 were randomly split into two groups: a
training dataset for FIX (n = 49) and a test dataset (n = 58). The
ICA components in the training dataset were manually classified
to signal or artifact, which was mainly based on thresholded
spatial maps because ICA is theoretically more robust in the
spatial than in the temporal domain (Smith et al., 2012; Salimi-
Khorshidi et al., 2014). Generally speaking, spatial maps of
signal components should contain a low number of anatomically
consistent clusters, whereas artifactual components typically have
either very large clusters covering brain slices or very small
and scattered clusters (Griffanti et al., 2017). Here, we chose an
“aggressive” artifact removal (Griffanti et al., 2014) in the training
dataset in order to give the trained classifier a margin to be
conservative or aggressive via adjusting the threshold fed to it
(small thresholds make it conservative).

The performance of the trained classifier in detecting
artifactual components was evaluated on the test dataset by
comparing the automatic classification of artifactual components
with the manual classification. The classification accuracy was
characterized in terms of “recall” and “precision” (Powers, 2011),

2https://www.nitrc.org/projects/whs-sd-atlas
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which are defined as the percentage of the correctly predicted
artifact components in all actual artifact components and the
percentage of the correctly predicted artifact components in all
predicted artifact components, respectively.

Network Analysis and GSR
After ICA decomposition and classification, the artifactual
components were regressed out of the 4D pre-processed datasets
to obtain “cleaned” rs-fMRI datasets. The cleaned data were used
to compute ROI-to-ROI FC by calculating correlation coefficients
between the ROI-averaged time series of the 28 atlas-defined
ROIs, resulting in a 28× 28 FC matrix for each rat.

For FIX, we relied on spatial maps rather than time courses
to evaluate artifactual components. In several cases, components
displayed sensible spatial distribution to represent a RSN, but
the power spectrum showed a peak at a frequency that could be
attributed to breathing (Supplementary Figure 1) (the breathing
rate was recorded for each run and its aliased frequency within
our 0.01–0.31 Hz band was calculated). These non-neuronal
sources that could not be cleaned using FIX also contribute to
the global signal. To mitigate their effect, we used the partial
correlation of ROI-to-ROI time courses to build FC matrices,
with the global signal as the controlling variable. For every pair of
ROIs, the partial correlation was implemented by measuring the
correlation between their time-series residuals, after each having
been adjusted by the GSR (Smith et al., 2011).

Finally, statistical comparisons of FC between the STZ and
CTL groups at each timepoint were performed using NBS
(Zalesky et al., 2010) to identify network connections that
showed significant between-group difference. Specifically, NBS
uses one-tailed two-sample t-test to detect differences in group-
averaged FC between the two groups. Thereby, two contrasts
(STZ > CTL and STZ < CTL) were tested separately. A t-statistic
threshold was chosen on the basis of medium-to-large sizes of the
subnetwork comprised connections with their t-statistic above
the threshold (Tsurugizawa et al., 2019) as well as the underlying
p-values. Here, we chose 2.2 as the t-statistic threshold. Results
based on other thresholds are provided as Supplementary
Figures 2–4. Significance (p ≤ 0.05) was tested after family wise
error rate (FWER) correction using non-parametric permutation
(N = 5000).

The full data processing pipeline is illustrated in Figure 2.

Pipeline Evaluation on Cohort 1
To evaluate the rs-fMRI data processing pipeline including
MP-PCA denoising (DN), slice-timing correction (SC), spatial
smoothing (SM), high-pass filtering (HP), ICA-FIX cleaning
(CL), and GSR in terms of consistency of within-group FC in the
healthy CTL group and in terms of between-group difference, we
compared results of the PIRACY (Pipeline for Rat Connectivity)
pipeline (DN + CL + GSR, pipeline G) with other processing
approaches depending on the presence of DN, CL, and GSR in
addition to the baseline pipeline (SC + SM + HP, pipeline A),
namely, GSR (pipeline B), CL + GSR (pipeline C), DN (pipeline
D), DN+ CL (pipeline E), and DN+GSR (pipeline F) in Cohort
1, shown in Table 1.

FIGURE 2 | The proposed pipeline for rs-fMRI data processing.

TABLE 1 | The seven data processing pipelines and methods they include (“×” –
including, “◦” – excluding).

Pipelines MP-PCA-denoising
(DN)

ICA-FIX
cleaning (CL)

Global signal
regression (GSR)

A ◦ ◦ ◦

B ◦ ◦ ×

C ◦ × ×

D × ◦ ◦

E × × ◦

F × ◦ ×

G × × ×

SC, SM, and HP are included in all of the seven pipelines.

Based on the hypothesis that an optimal processing procedure
should minimize the variability within the homogeneous group of
healthy controls (Zerbi et al., 2015), the within-group variability
was assessed by calculating the standard deviation of the Fisher
z-transformed correlation coefficients of the FC matrices in
the CTL group of healthy rats at each timepoint. In addition,
the sensitivity to between-group differences was evaluated by
comparing the significant difference in FC between the STZ and
CTL groups at each timepoint.

Group ICA Analysis
At each timepoint, group-level ICA was performed using FSL’s
Melodic (Smith et al., 2004) on the pooled CTL and STZ datasets
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of Cohort 1 that were pre-processed using pipeline E (no GSR).
Prior to group-level ICA in Melodic, all the rs-fMRI datasets
from a given timepoint were registered to a common template
using ANTs (Avants et al., 2008), and the template registration
in Melodic was by-passed. Thirty group-level spatial ICs were
extracted. The selection of IC number is a trade-off between
biological detail (small and refined networks) and noise (too
many components that can be supported by data quality) (Bajic
et al., 2017). N = 30 or 40 components are common for rodent
group ICA (Jonckers et al., 2011; Zerbi et al., 2015; Bajic et al.,
2017). In our case, N = 30 had the advantage of yielding a
similar number of nodes to the ROI-to-ROI FC analysis for the
network analyses. Dual regression (Filippini et al., 2009) was
used to estimate subject-specific time courses and associated
spatial maps. Similar to the ROI-based FC analysis, ICA-based FC
matrices were built by calculating correlation coefficients between
all pairs of time courses (excluding artifact components) using
FSLNets (Griffanti et al., 2014). Both full correlation (original
Pearson’s correlation) and partial correlation with GSR (mean
time course as regressor) were employed by FSLNets to evaluate
the similarity between time courses. In the end, differences in
FC between the STZ and CTL groups were tested using the
NBS toolbox using the same parameters in the Network Analysis
and GSR section.

Pipeline Evaluation on Cohort 2
To test the robustness of the proposed pipeline, we further
evaluated it on the independent datasets of Cohort 2.
Similarly, we compared results of the PIRACY pipeline G
(DN + CL + GSR) with three other processing pipelines:
DN (D), DN + CL (E), and DN + GSR (F) in terms of the
within-group variability for the control rats of Cohort 2. Then,
we assessed the between-group differences in FC between the
STZ and CTL groups on the pooled datasets of Cohorts 1 and 2.

RESULTS

To experimentally evaluate the processing pipeline, a total of 109
rs-fMRI datasets (Cohort 1) were acquired from 17 rats at four
timepoints ranging from 2 to 21 weeks (Figure 1). Two datasets
with bad image quality were discarded. Figure 3 shows the MR
images in one representative dataset including rs-fMRI images,
matching anatomical reference, and the atlas-based anatomical
labels registered to the fMRI images.

To assess the robustness of the PIRACY pipeline, an
independent cohort with 56 rs-fMRI datasets was acquired
from seven different rats at four timepoints ranging from 2 to
21 weeks (Figure 1).

MP-PCA Denoising
The average tSNR after MP-PCA denoising improved
significantly for all the 107 datasets. Figure 4 shows an
example of the average tSNR increase from 75 to 146 after
MP-PCA denoising, residuals map, histogram, and the normality
test. The linearity of log(P) = f (r2) confirms that the residuals
are normally distributed and only Gaussian noise has been

removed from the signal. Moreover, the number of components
classified as artifacts decreased, whereas the z-statistic for signal
components increased when MP-PCA denoising was applied
prior to ICA decomposition (Figure 5).

FIX Classification
Here, we preferred a lower order model to avoid overfitting (Li
et al., 2007; Kuang et al., 2018), and we chose the number of ICs
to be 40, which typically explained 90% of the variance. Notably,
reaching 95% of explained variance would have required about
90 components, which would potentially cause over-splitting
networks and making the classification more complicated.

The single-subject ICA was performed on each dataset with
40 components. In the training dataset (n = 49), 19.8 ± 4.7
components (50%) were classified as artifacts by hand. In the
test dataset (n = 58), between 40 and 64% of components were
classified as artifacts automatically by FIX depending on the
threshold. More components could be recognized as artifacts
by increasing the FIX threshold at the expense of lowering the
classification precision due to more misclassification. Here, 45
might be an “optimal” threshold with overall 88% in recall and
90% in precision achieved (Table 2). In practice, we ran FIX twice
with a low and high threshold, respectively. We then examined
only the components differing between the two artifact lists given
by the two FIX thresholds and manually restored the true noise
components. This represented nonetheless a significant gain in
processing time, as we only needed to classify one third of the
ICA components by hand.

Comparison of Pipeline Performance
The seven data processing pipelines (A–G) were first
compared based on resulting FC matrices of 28 atlas-based
ROIs in Cohort 1.

Pipelines C and G that include both CL and GSR yielded lower
within-group variability in the homogeneous group of healthy
controls for all timepoints than other procedures excluding CL
and/or GSR (Figure 6). The combination of CL + GSR also
corrected for physiological artifacts that CL or GSR alone could
not systematically address (Figure 7). Furthermore, our proposed
pipeline G (DN+ CL+ GSR) yielded between-group differences
most consistently at 2, 6, and 13 weeks, whereas pipeline C
(without DN) only detected between-group differences at 2 and
6 weeks. No significant difference was found between the CTL
and STZ groups for the baseline pipeline A and pipeline D (only
DN). Pipeline E (DN + CL) exhibited numerous different edges
at 6 weeks and none at the other timepoints, whereas pipelines B
and F (GSR or DN+ GSR) yielded numerous different edges at 6
and 21 weeks but none at 2 and 13 weeks (Figure 8).

ROI-Based FC Analysis
To analyze group differences in connectivity obtained following
the PIRACY pipeline G, a more detailed visualization is provided
in Figure 9. The complete list of edges with significant between-
group differences is provided as Supplementary Table 1. Nodes
with altered connectivity in STZ animals were consistent with
regions affected by AD and with previous findings on this
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FIGURE 3 | Example of rs-fMRI images of eight coronal slices (A), matching anatomical MR images (B), and atlas-based anatomical labels registered to the fMRI
images (C).

FIGURE 4 | Example of temporal SNR maps, before (A) and after MP-PCA denoising (B). The mean tSNR over the middle brain slice was improved dramatically
from 75 to 146. The SNR profile is typical of a surface coil placed on top of the head, with higher sensitivity in the cortex. (C) Residuals map of all voxels within the
brain mask (rows) and time frame (columns). (D) Histogram of residuals. (E) Normality test.

animal model (Mayer et al., 1990; Shoham et al., 2003; Lester-
Coll et al., 2006; Kraska et al., 2012; Grieb, 2016). At 2 weeks,
increased positive connectivity of the ACC to the retrosplenial
cortex (RSC) and decreased anti-correlations of the default mode
network (DMN) including the ACC, RSC, posterior parietal
cortex (PPC), and hippocampus (Hip/Sub) to the lateral cortical
network (LCN) involving somatosensory (S1) as well as motor
(M) were found. The 6-week timepoint showed widespread
reduced anti-correlations between the DMN (including the RSC,
PPC, Hip), somatosensory of the LCN, and striatum (Str). At
13 weeks, weaker positive correlations were found within the

DMN involving not only the ACC, PPC, RSC, Hip, medial
temporal lobe (MTL), and visual cortex (V) but also the
hypothalamus (HTh) to the DMN.

Group ICA
Group ICA with 30 components was carried out on Cohort
1. Artifactual components were identified and removed,
which resulted in 28, 25, 25, and 26 signal components left
for the four timepoints, respectively. Figure 10 displays the
significant between-group differences in partial correlations
with GSR between ICA components. The complete list
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FIGURE 5 | (A) Number of ICs classified as artifacts across all datasets without (blue) and with (red) prior MP-PCA denoising, respectively. MP-PCA denoising
substantially reduced artifactual ICA components for most datasets. (B) Prior MP-PCA denoising improved the z-statistic for signal components. Thresholded IC
maps in (B) were given by FSL’s MELODIC.

TABLE 2 | FIX artifact classification accuracies at different thresholds.

FIX threshold 20 30 40 45 50 60 70

Signal components (%) 44.9 44.9 44.9 44.9 44.9 40.4 36.2

Artifact components (%) 39.6 43.9 49.4 52.7 55.1 59.6 63.8

Unknown components (%) 15.5 11.2 5.7 2.5 0 0 0

FIX artifact recall (%) 69.8 76.5 83.3 87.8 89.7 95.1 98.5

FIX artifact precision (%) 100 95.4 91.6 90.2 86.5 84.4 82.2

Recall = correctly classified artifacts/all real artifacts, precision = correctly classified artifacts/all classified artifacts. As the threshold increases, both the percentage of
artifacts detected by FIX and the recall increase, but the precision decreases. Namely, with increasing thresholds, more real artifact components are identified; however,
signal components will also tend to be misclassified as artifacts. Bold font identifies an optimal threshold.

of edges with significant between-group differences is
provided as Supplementary Table 2. Remarkably, group
ICA analysis with GSR showed intergroup differences at
three timepoints from 2 to 13 weeks, in agreement with
differences found in ROI-based FC analysis using pipeline
G. At 2 weeks, most changes were found in connections
between the RSC, PPC, Hip, thalamus (Tha), and S1/2.
At 6 weeks, there were alterations found in connectivity
involving the PPC, Hip, RSC, S1/2, Str, as well as Tha. At

13 weeks, primary changes were detected in connections
between the Hip, S1, Str, Tha, and HTh. Full correlation
between ICA components–an equivalent to pipeline E:
DN + CL–revealed significant differences at all timepoints
(Supplementary Figure 5), in poor agreement with the
ROI-based FC analysis using pipeline E, which only identified
group differences at one timepoint (6 weeks). This inconsistency
may indicate the importance of GSR in obtaining consistent
intergroup differences.
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FIGURE 6 | Standard deviation of the Fisher z-transformed correlation coefficient for functional connectivity in the CTL group of Cohort 1 at four different timepoints
for the seven pipelines (A–G). Pipelines including CL and GSR (C,G) obtained the minimal within-group variability in the homogeneous group of healthy controls for
all timepoints, whereas other procedures excluding CL and/or GSR had higher variability.

FIGURE 7 | Example FC matrices of two control rats scanned at 2 weeks (Subjects 1 and 2) processed with four different pipelines (D–G). For Subject 1, GSR alone
(pipeline F) reinforces a widespread anti-correlation between the left and right hemispheres, manifest in a checkerboard pattern (odd/even rows and columns
correspond to the left/right hemisphere ROIs, respectively) that was otherwise removed by ICA cleaning (pipeline E). For Subject 2, GSR alone does not attenuate
very strong positive/negative correlation blocks spanning large portions of the brain, whereas ICA cleaning alone yields artificially high whole-brain connectivity. The
combination of CL + GSR (pipeline G) mitigates these effects in both examples and yields more consistent between-subject connectivity matrices.

Pipeline Performance on Independent
Datasets (Cohort 2)
The proposed pipeline G also yielded the minimal within-group
variability in control rats of Cohort 2 at all timepoints, compared
with three other pipeline variants without GSR and/or cleaning,
in agreement with results on Cohort 1 (Figure 11). Moreover,
between-group differences in FC in the combined dataset

Cohorts 1 + 2 (Figure 12) were consistent with that in Cohort 1
alone (Figure 6), in a pattern of initial hyperconnectivity and later
hypoconnectivity from 2 to 13 weeks. At 21 weeks, Cohort 1 alone
was likely underpowered due to missing datasets, and no group
differences were reported with pipeline G. The combination of
Cohorts 1 + 2 enabled to reveal widespread hypoconnectivity
in STZ at 21 weeks (see Supplementary Figure 6 for a detailed
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FIGURE 8 | Significant differences in FC between the CTL and STZ groups of Cohort 1 at each timepoint (2, 6, 13, and 21 weeks) for each data processing
approach under NBS threshold 2.2. No significant difference was found between the CTL and STZ groups for the baseline pipeline (A) and pipeline (D) (DN only),
whereas significant differences were only found at 6 weeks for pipeline (E) (DN + CL, no GSR). Pipelines (B,F) (GSR, or DN + GSR) had similar results with
between-group differences detected at 6 and 21 weeks. Pipeline (G) (DN + CL + GSR) most consistently yielded between-group differences across timepoints,
whereas pipeline (C) (CL + GSR, no DN) only detected significant differences at two timepoints. Blue edges indicate group differences in contrast 1 (STZ > CTL),
and red edges indicate group differences in contrast 2 (STZ < CTL). p1 and p2 are FWER corrected p-values for contrast 1 and contrast 2, respectively. Green
nodes indicate ROIs involved in group differences.

comparison of significant edges for Cohort 1 and Cohorts 1 + 2
at all timepoints). In contrast, group differences as highlighted
by pipelines E (DN + CL) and F (DN + GSR) showed less
consistency between Cohort 1 and Cohorts 1 + 2, with dramatic
changes in outcome at 6 weeks particularly.

DISCUSSION

In this work, we proposed a novel rs-fMRI processing pipeline
adapted for rat data: PIRACY, which combines MP-PCA
denoising, ICA cleaning, and GSR. We built a dedicated FIX
ICA classifier for rat brain that showed a high accuracy
in distinguishing artifactual ICA components from the rs-
fMRI signal after training. We evaluated the performance of
the proposed pipeline by comparing it to six other possible
approaches that excluded denoising, artifact cleaning, and/or
GSR. We further evaluated the pipeline on separate datasets
from an independent cohort. We showed that these three steps
were essential in minimizing the within-group variability in the
healthy control group. Differences between a control group and
a diseased group using the STZ animal model were found more

consistently across timepoints with pipeline G and were also
more consistent between different analysis approaches: ROI-to-
ROI FC or group-level ICA.

We included a novel thermal noise reduction method based on
MP-PCA applied to rs-fMRI data that substantially improved the
tSNR, resulting in fewer artifactual components to be cleaned in
the ICA decomposition, and improved the statistical strength and
anatomical consistency of components classified as signal. While
the MP-PCA denoising technique was initially implemented for
diffusion MRI data (Veraart et al., 2016), it has recently also
shown great value for task fMRI (Ades-Aron et al., 2020), and it
is also applicable to rs-fMRI. Indeed, resting-state neural activity
may appear as random temporal events, but it falls into a specific
0.01–0.3 Hz frequency range, which makes it discernible from
white Gaussian thermal noise, with a flat power spectral density.
This feature is apparent in the normality test (Figure 4E) for
the residuals of MP-PCA denoising. Furthermore, denoising is
performed within a sliding window of 5 × 5 × 5 voxels, within
which the BOLD fluctuations are likely to be correlated (cluster),
whereas the thermal noise is not. Thus, the thermal noise
reduction using the MP-PCA approach is very unlikely to remove
the genuine BOLD fluctuations and, on the contrary, will improve
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FIGURE 9 | (A) Hybrid average FC matrices at each timepoint (top-right half: STZ, bottom-left half: CTL) based on the data of Cohort 1 processed by the optimized
pipeline G. ∗: p < 0.05 (FWER corrected) at threshold of 2.2. (B) Graph networks at four timepoints. Blue/red edges and green nodes indicate connections with
significant difference. The p-value for each network was given after FWER correction. ACC, anterior cingulate cortex; RSC, retrosplenial cortex; PPC, posterior
parietal cortex; MTL, medial temporal lobe; Hip, hippocampus; Sub, subiculum; Au, auditory; V, visual; S1/S2, primary/secondary somatosensory; M, motor; Str,
striatum; Tha, thalamus; HTh, hypothalamus; L/R, left/right. Figure adapted from Tristão Pereira et al. (2021), NeuroImage 2021, with permission.

the sensitivity of the analysis for the latter, as is apparent from the
ICA decomposition with and without denoising (Figure 5).

It is often suggested that ICA also has denoising properties
(McKeown et al., 2003; Griffanti et al., 2014), which need be
clarified. On one hand, if just a few artifactual components are
removed from the signal (as in FIX cleaning), the effect of ICA is
primarily to remove structured noise, and not thermal (random)
noise. On the other hand, if the ICA decomposition is used
to keep and examine just a few ICs that appear anatomically
consistent with RSNs, then indeed most of thermal noise is also
removed in that process (Beckmann and Smith, 2004). However,
group-level ICA suffers from its own limitations (Cole et al.,
2010) and is not necessarily the appropriate analysis tool for all
studies, and seed-based analyses are expected to benefit greatly
from prior denoising using MP-PCA. Another study using MP-
PCA denoising prior to task fMRI analysis reported an increase
of 60% in SNR and improved statistics and extent of the activation
(Ades-Aron et al., 2020).

Interestingly, MP-PCA denoising alone or even combining
with GSR had almost no effect in reducing intra-group variability
(Figure 6, columns D, F vs. A), and it also had no contribution
to the detection of between-group difference in pipelines D and
F compared with the variants without it (pipelines A and B,
Figure 8).

Head motion during fMRI acquisitions is one of the
major confounding factors that leads to artificial correlation
compromising the interpretation of rs-fMRI data (Van Dijk
et al., 2012; Maknojia et al., 2019). However, compared with
human studies where head motion is common, rodent studies
are less impacted by this confound due to the restraint achieved

by a fixation setup with ear bars and a bite bar and the use
of anesthesia (Pan et al., 2015). In our datasets, no apparent
head motion was observed by visual inspection of time courses
except for two datasets, which were discarded. Moreover, based
on the framewise displacement (FD) analysis (Power et al.,
2012), head motion in our rat datasets was extremely small
with displacements less than 1 µm (<0.3% of voxel size) for
75% datasets and less than 7 µm (<2% of voxel size) for all
(Supplementary Figure 7), whereas in human data, it is on the
order of several tenths of a millimeter (∼5–10% of voxel size)
(Power et al., 2012). Motion correction was, therefore, skipped in
the proposed data processing pipeline since it has been shown to
introduce spurious correlations (Grootoonk et al., 2000; Chuang
et al., 2019; Sirmpilatze et al., 2019).

The FIX-based artifact auto-classification has already been
applied in human and mouse fMRI datasets (Salimi-Khorshidi
et al., 2014; Zerbi et al., 2015). In this work, this automatic
artifact removal approach was for the first time implemented
for rat data. After being trained in a manually classified dataset,
the classifier showed a high accuracy in identifying artifact
components from rs-fMRI signal in an untouched test dataset.
Nonetheless, Table 2 shows that there is a trade-off between the
recall and precision in the fully automatic classification of artifact
components, which means that it is not possible to achieve
both very high recall and precision with one FIX threshold.
However, in practice, this problem could be addressed by half
automated classification in which two auto-classifications are
first performed with, respectively, low and high thresholds (20
and 70 for instance), and then the difference between their two
artifact lists are manually examined. In this way, by manually
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FIGURE 10 | Between-group differences in ICA-based functional connectivity with GSR (partial correlation) at NBS threshold of 2.2 for each timepoint in Cohort 1.
Colored edges display the existence of STZ–CTL difference in connections between ICs. Each IC is denoted by a spatial map and its IC number. The nodes of ICs
are listed in an order based on its position in the brain (anterior to posterior). ROI labels are attached to every ICA component. Artifactual components were removed,
and the IC number was reordered accordingly. Blue edges indicate group differences in contrast 1 (STZ > CTL), and red edges indicate group differences in contrast
2 (STZ < CTL).

classifying a small portion of ICA components (∼24%), we were
able to achieve a very high classification accuracy in a short
time. Note that the training set was cleaned aggressively in
order to give flexibility in aggressiveness/conservatism for test
datasets by adjusting the threshold. This classifier is available
along with the rest of the pipeline code3. The impact of ICA
cleaning alone on individual datasets suggested that this approach
is not sufficient for a comprehensive mitigation of artifacts in rat
rs-fMRI data (Figure 7).

Although controversial, GSR is still commonly used in the
analysis of rs-fMRI data (Falahpour et al., 2018) due to its
capability of reducing the effects of respiration and motion on
FC estimates (Birn, 2012; Yan et al., 2013; Power et al., 2014)
and enhancing the spatial specificity of positive correlations
(Fox et al., 2009). Here, we found that pipelines B and F
that included GSR but no CL had little effect in reducing
intra-group variability compared with the baseline protocol A

3https://github.com/Mic-map/PIRACY

and could also not systematically address pronounced artifacts
in individual connectivity matrices. However, combined with
ICA-based cleaning, GSR reduced most within-group variability
in the healthy CTL group for both Cohorts 1 and 2 and
revealed differences in connectivity between the CTL and STZ
groups most consistently across timepoints. The benefits of
CL + GSR have previously been highlighted in human fMRI
data to strengthen the association between FC and behavior
(Li et al., 2019).

Taken separately, minimizing within-group variability could
favor pipelines that wipe out any relevant information-carrying
signal while favoring widespread between-group differences
could select a pipeline with the highest false-positive rate.
Satisfying both criteria concomitantly though prevents either
scenario. As far as low intra-group variability being potentially
a signature of over-cleaning, we underline that the average FC
in the control group (Figure 9, bottom left halves of each
matrix) displays expected features of strong inter-hemispheric
connectivity between L/R regions as well as, for instance,
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FIGURE 11 | Standard deviation of the Fisher z-transformed correlation coefficient for functional connectivity in the CTL group of Cohort 2 at four different timepoints
for four pipelines (D–G) all including DN. Pipeline (G) (DN + CL + GSR) yielded the minimal within-group variability in the homogeneous group of healthy controls for
all timepoints, whereas other procedures excluding CL and/or GSR had higher variability.

anti-correlation between midline regions of the DMN and
the sensorimotor system, as previously reported (Gozzi and
Schwarz, 2016), which argue in favor of preserving expected
baseline FC with our optimized pipeline. As mentioned, MP-PCA
denoising results in more clear-cut ICA decomposition where
fewer components are labeled as structural noise and removed.
Over-cleaning is perhaps instead manifest in the pipeline variant
without MP-PCA denoising (pipeline C: ICA cleaning + GSR)
that achieved the minimal intra-group variability due to more
ICs being labeled as structured noise and removed (see Figure 6).
The positive influence of MP-PCA denoising on downstream
ICA decomposition and identification of stronger and cleaner
RSNs suggests that such an approach may also be beneficial
for identifying relevant variability within a control group
(Bergmann et al., 2020).

A pipeline’s ability to reveal true group differences assumes
that such true differences exist, which may be challenging to
ascertain. First, we underline that the proposed PIRACY pipeline
revealed group differences consistently across timepoints and
across integration of additional datasets (Cohort 2) to the
initial Cohort 1. In contrast, other pipelines either revealed no
differences at all (without CL nor GSR) or differences that were
inconsistent across timepoints and across dataset pooling, and
thereby indeed pointed to false positives. For example, pipeline
E (DN + CL) showed overwhelming group differences only
at 6 weeks (Cohort 1), which disappeared in Cohort 1 + 2
analysis, and nothing otherwise. Pipeline F (DN + GSR) showed
no differences at 2 and 13 weeks and overwhelming group

differences at 6 and 21 weeks (Cohort 1), with only the latter being
sustained in the Cohort 1+ 2 analysis.

In terms of the reliability of the differences pointed by
the PIRACY pipeline, while false positives cannot be excluded
due to the relatively small sample size, we stress that group
differences were indeed expected at all chosen timepoints and
the pattern that PIRACY showcased for these changes agreed
with previous literature on this animal model assessed from
histology, behavior, and volumetry (Lester-Coll et al., 2006;
Kraska et al., 2012; Knezovic et al., 2015). The FC analysis
resulting from Cohort 1 and its pertinence with respect to
the animal model and to AD have been published separately
(Tristão Pereira et al., 2021). Briefly, STZ rats in Cohort 1
exhibited not only altered FC but also intra-axonal damage and
demyelination (assessed using diffusion MRI) in brain regions
typical of AD, in a temporal pattern of acute injury, transient
recovery/compensation, and chronic degeneration. The non-
monotonic pattern in FC changes was characterized by initial
hyper-connectivity and impaired network dissociation, followed
by later hypo-connectivity, consistent with patterns found in pre-
clinical AD and mild cognitive impairment (Dickerson et al.,
2005; Schultz et al., 2017). The switch occurred between the 6-
and 13-week timepoints. FC in the CTL group was consistent
with previous reports that midline regions of the DMN are anti-
correlated with the sensorimotor system (Gozzi and Schwarz,
2016). In STZ animals, these anti-correlations between DMN
and LCN were initially reduced (2 and 6 weeks), suggesting less
efficient network dissociation and brain processing (Fox et al.,
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FIGURE 12 | Significant differences in FC between the CTL and STZ groups of pooled Cohorts 1 + 2 at each timepoint (2, 6, 13, and 21 weeks) for data processing
approaches (D–G) under NBS threshold 2.2. No significant difference was found with pipelines (D–F) (except pipeline F at 21 weeks). In particular, previous
widespread differences at 6 weeks with pipelines (E,F) from Cohort 1 (Figure 8) disappeared entirely for Cohorts 1 + 2. Pipeline (G) exhibited similar group
differences to previously (Figure 8) with the exception of new significant edges at 21 weeks, given a large increase in number of datasets at 21 weeks with the
addition of Cohort 2. Blue edges indicate group differences in contrast 1 (STZ > CTL), and red edges indicate group differences in contrast 2 (STZ < CTL). p1 and
p2 are FWER corrected p-values for contrast 1 and contrast 2, respectively. Green nodes indicate ROIs involved in group differences.

2005). Concomitantly, hyperconnectivity within the DMN was
found in STZ rats at these early timepoints. By 13 weeks, however,
STZ rats exhibited reduced connectivity (or hypoconnectivity) in
regions typically involved in AD, also consistent with eventual
memory impairment in this animal model and reduced FC in
AD patients (Binnewijzend et al., 2012; Franzmeier et al., 2019).
While Cohort 1 had too few datasets at 21 weeks to identify group
differences, the combination of Cohorts 1 + 2 in the context of
the current work revealed patterns of sustained inter-hemispheric
hypoconnectivity particularly between posterior brain and DMN
regions at this timepoint. In the context of sustained glucose
hypometabolism, these non-monotonic trends–also reported in
behavioral studies of this animal model (Knezovic et al., 2015) as
well as in human AD (Dickerson et al., 2005; Fortea et al., 2011,
2014; Pegueroles et al., 2017; Sierra-Marcos, 2017; Dong et al.,
2020)–suggest a compensatory mechanism, possibly recruiting
ketone bodies, that allows a partial and temporary repair of brain
structure and function.

Limitations
First, free breathing of animals was chosen as an easier setup, best
suited for longitudinal studies. While it certainly brings in higher
respiratory variations to fMRI data than artificial ventilation,
the breathing rate was carefully monitored and was relatively
stable during the 10′ of fMRI acquisition. Breathing fluctuations
were further mitigated at the level of ICA cleaning and GSR.
Second, animals breathed a consistent mixture of air and oxygen,
but SpO2 was not monitored. While we did maintain a strictly
consistent experimental protocol throughout the study in terms
of gas mixture, anesthesia levels, and timings, varying SpO2 levels
might confound the BOLD signal and thereby the results. We
note, however, that a recent meta-analysis has shown that, even
when blood gas levels are monitored, their impact on the BOLD
signal is not consistent/systematic across studies (Steiner et al.,
2020), which makes it difficult to account for. Finally, how our
findings generalize to completely different datasets, particularly
in terms of disease model, remains to be investigated.
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CONCLUSION

We conclude that the PIRACY processing pipeline for rat rs-
fMRI data proposed herein, which includes MP-PCA denoising,
a FIX auto-classification and cleaning of structured artifacts
uncovered by ICA, and GSR, allowed to greatly reduce the
within-group variability and improve the detection of between-
group differences at the same time. This data processing
pipeline, therefore, has strong potential to improve the sensitivity
and reproducibility of rs-fMRI studies on rat models of
disease and injury.
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