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Abstract

Introduction

Obesity, hypertension, and diabetes are independently associated with cardiac remodeling

and frequently co-cluster. The conjoint and separate influences of these conditions on car-

diac remodeling have not been investigated.

Materials and methods

We evaluated 5,741 Framingham Study participants (mean age 50 years, 55% women)

who underwent echocardiographic measurements of left ventricular (LV) mass (LVM), LV

ejection fraction (LVEF), global longitudinal strain (GLS), mitral E/e’, left atrial end-systolic

(peak) dimension (LASD) and emptying fraction (LAEF). We used multivariable generalized

linear models to estimate the adjusted-least square means of these measures according to

cross-classified categories of body mass index (BMI; normal, overweight and obese), hyper-

tension (yes/no), and diabetes (yes/no).

Results

We observed statistically significant interactions of BMI category, hypertension, and diabe-

tes with LVM, LVEF, GLS, and LAEF (p for all 3-way interactions <0.01). Overweight and

obesity (compared to normal BMI), hypertension, and diabetes status were individually and

conjointly associated with higher LVM and worse GLS (p<0.01 for all). We observed an

increase of 34% for LVM and of 9% for GLS between individuals with a normal BMI and
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without hypertension or diabetes compared to obese individuals with hypertension and dia-

betes. Presence of hypertension was associated with higher LVEF, whereas people with

diabetes had lower LVEF.

Conclusions

Obesity, hypertension, and diabetes interact synergistically to influence cardiac remodeling.

These findings may explain the markedly heightened risk of heart failure and cardiovascular

disease when these factors co-cluster.

Introduction

Obesity, diabetes mellitus, and arterial hypertension are important independent risk factors

for heart failure [1–3]. Accordingly, distinct forms of obesity cardiomyopathy [4–8], diabetic

cardiomyopathy [9–13], and hypertensive heart disease [14–17] have been well described.

Obesity increases cardiac output by increasing central and total blood volume and lowering

peripheral resistance [4–6]. These hemodynamic changes are accompanied by an increase in

left ventricular (LV) wall stress, leading to LV diastolic dysfunction and hypertrophy (LVH),

and left atrial (LA) enlargement [4–6]. Additionally, metabolic and neurohormonal changes in

obesity (e.g., increased levels of myocardial triglycerides and fatty acids) may lead to subclini-

cal myocardial dysfunction, reflected by an impairment of LV strain-based measurements [5–

7], while LV ejection fraction (LVEF) is preserved [4, 5].

The metabolic changes seen in diabetes (such as hyperinsulinemia and hyperglycemia) alter

myocardial metabolism and promote myocardial inflammation, fibrosis, and cardiac remodel-

ing [9–12]. Whereas LVEF is often preserved in diabetes, the altered metabolic milieu can con-

tribute to chamber remodeling, LV hypertrophy and diastolic dysfunction, and subtle

impairment of myocardial systolic function [9, 11, 12].

Myocardial hypertrophy occurs as a compensatory mechanism to pressure overload in

hypertension [15–17]. Myocyte hypertrophy is associated with interstitial fibrosis, changes in

cardiomyocyte metabolism, myocyte apoptosis, and microvascular dysfunction. These myo-

cardial changes in hypertension manifest as pathological LV and LA remodeling accompanied

by diastolic dysfunction, LVH, and subtle myocardial systolic dysfunction, while LVEF is ini-

tially preserved [14–17]. Thus, obesity, diabetes mellitus and arterial hypertension all cause

LVH, but it is yet unclear how their conjoint presence may influence cardiac structure, func-

tion and chamber geometry [4–6, 8, 9, 13, 14, 18–27].

Obesity, diabetes, and hypertension often coexist and presumably their conjoint presence

may be associated with an adverse impact on cardiac structural and functional remodeling.

Prior investigations have evaluated the effects of presence of these conditions in pair-wise

combinations and reported that presence of any two of these conditions seems to be additively

associated with adverse cardiac remodeling [28–37], worse LV diastolic function [28, 29, 31,

37], and an impairment of LV strain-based measures [38–40] and LV long axis function [28],

whereas LVEF is preserved typically [28, 29, 35]. These previous investigations did not analyze

the joint effects when all three conditions are present concomitantly [28–36, 39, 40], were

mostly conducted in smaller samples [28, 29, 32–35, 37–39], and only a few studies investi-

gated their possible interactions [28, 35, 36].

In the present investigation, we compared the independent and conjoint associations of

obesity, diabetes mellitus, and arterial hypertension with a comprehensive panel of
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echocardiographic measures including measures of LV size and geometry, LV systolic and dia-

stolic function, LA size and function. We hypothesized that obesity, diabetes, and hypertension

interact synergistically (rather than additively) measured by interaction terms to influence car-

diac remodeling in the community.

Materials and methods

Study sample

The design and selection criteria for the Framingham Heart Study (FHS) Offspring Study, the

Third Generation Cohort and the minority Omni Cohort 1 have been described elsewhere

[41–43]. The present investigation included participants from the FHS Offspring cohort who

attended their eighth examination cycle (N = 3021; 2005–08), the FHS Omni 1 cohort who

attended their third examination cycle (N = 298; 2005–08), and the FHS Third Generation

Cohort who attend their first examination cycle (N = 4095; 2002–05). The study protocol was

approved by the Institutional Review Board of the Boston University Medical Center and all

study participants provided written informed consent.

The analytic methods, data, and study materials will not be made available to other

researchers for purposes of reproducing the results or replicating the procedure.

There were, 7,414 eligible participants from the three cohorts. We excluded 93 individuals

with prevalent heart failure and 1580 individuals due to missing data (see S1 Fig), resulting in

a final sample of 5741 participants.

Measurements of covariates

During their FHS examinations, participants provided a detailed medical history, and under-

went phlebotomy (after an overnight fast) for the assessment of CVD risk factors including a

standard lipid panel and renal function, and a cardiovascular-targeted physical examination

that included standardized anthropometry and blood pressure measurements. The presence of

arterial hypertension was defined as a systolic blood pressure�140mm Hg or a diastolic blood

pressure�90 mm Hg or the current use of antihypertensive medications. We classified partici-

pants as having diabetes mellitus if they had a fasting blood glucose concentration�126 mg/

dL or if they were treated with any hypoglycemic medication. The presence of normal, over-

weight and obesity was defined based on the participant’s body mass index (BMI; normal:

BMI<25kg/m2, overweight: 25kg/m2�BMI<30kg/m2, obese: BMI�30kg/m2).

Current smoking was defined as having smoked cigarettes regularly during the year ante-

dating the FHS examination. Details of methods and criteria of measurement of all covariates

have been published previously [44].

Measurement of echocardiographic variables

All attendees underwent routine transthoracic echocardiography based on a standardized pro-

tocol on an HP Sonos 5500 ultrasound machine (Phillips Medical Systems, Andover, MA).

Based on the recommendations of the American Society of Echocardiography (ASE), digitized

images were obtained and measured offline. Digital images were used to measure LV end-sys-

tolic (LVSD) and end-diastolic (LVDD) dimensions as well as left atrial end-systolic (peak)

dimension (LASD) and left atrial end-diastolic dimension (LADD). End-diastolic thicknesses

of the LV posterior wall and the LV septum were summated to yield LV wall thickness

(LVWT) [45]. Relative wall thickness (RWT) was calculated as equal to (LVWT)/LVDD) [46].

We estimated LV mass (LVM) using the method by Devereux et al, as follows: LVM = (0.8�

(1.04(LVDD + septal wall thickness + posterior wall thickness)3 –LVDD3)+0.6) [47]. Because
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LVM indexed to body surface area (LVMIBSA) is used to classify LV geometry, but such index-

ation may underestimate LVH in obese individuals, we indexed LVM to height (LVMIheight)

and to height ^2,7 (LVMIheight^2.7) additionally [36, 46].

We defined LV geometry thus: Normal LV geometry as LVMIBSA� 95 g/m2 in women or

LVMIBSA� 115 g/m2 in men and RWT� 0.42. Concentric remodeling was defined as

LVMIBSA� 95 g/m2 in women or LVMIBSA� 115 g/m2 in men and RWT > 0.42. LVH was

defined as LVMIBSA > 95 g/m2 in women or LVMIBSA > 115 g/m2 in men. In the presence of

LVH, eccentric LVH was defined as RWT� 0.42 and concentric LVH as RWT > 0.42 [46].

LVEF was calculated based on the Teichholz formula [48], which closely approximates that

estimated by quantitative two-dimensional methods in the FHS laboratory [49]. We measured

mitral annular plane systolic excursion (MAPSE), as recommended [50], by measuring the sys-

tolic excursion of the mitral annulus from its lowest point at end-diastole to its highest point at

the time of aortic valve closure at the lateral side of the mitral valve annulus in the apical four-

chamber view.

The speckle-tracking analyses of LV function was performed using an offline analysis pro-

gram (2D Cardiac Performance Analysis version 1.1, TomTec Imaging Systems GmbH,

Unterschleißheim, Germany) according to a standardized protocol that has been described in

detail previously [51]. In summary, global longitudinal strain (GLS) was assessed in the apical

two and apical four chamber views, and global circumferential strain (GCS) was assessed in

the short axis view.

For the measurement of LV diastolic function, we derived early transmitral flow velocity

(E), and the early systolic mitral annulus velocity (E’, using tissue Doppler imaging at the lat-

eral mitral annulus) to calculate the E/e’ ratio [52].

We obtained maximum and minimum volumetric measurements of the LA (LAmax and

LAmin) from apical two and four-chamber views in offline analysis of digital images using the

recommended Simpson’s biplane summation of disks method on a Digisonics DigiView Sys-

tem Software (ver. 3.7.9.3, Digisonics, Houston, TX). We calculated left atrial emptying frac-

tion (LAEF) as ([LAmax—LAmin]/LAmax)�100 as previously published [46, 53]. LAmax and

LAmin measurements were not available for the Third Generation Cohort, but left atrial frac-

tional shortening (LAFS) was available for all participants (LAFS was calculated as [LAS-

D-LADD]/LASD�100). Therefore, we used a linear regression model for the Offspring cohort,

adjusting age, smoking, BMI, diabetes, systolic blood pressure, diastolic blood pressure, anti-

hypertensive medication, heart rate, creatinine, high-density lipoprotein, low-density lipopro-

tein, and log(triglycerides), stratified by sex, with LAEF as the dependent variable, and LAFS,

LAFS squared, and LAFS cubed as independent variables. Based on the resulting regression

equations, we imputed LAEF values for all cohorts.

Measurements of the echocardiographic variables evaluated in this investigation are sum-

marized and depicted in Fig 1. Data on inter-observer correlations have been previously pub-

lished [51, 53, 54].

Statistical analyses

We assessed baseline characteristics for the entire study sample and separately for each BMI

category. We used natural-logarithm transforms of E/e’, LASD, LVM, LVMI-BSA, LVMI-

height, LVEF, LVWT, and RWT in order to normalize their skewed distributions.

There were twelve strata when the three BMI categories were cross-classified by diabetes

(yes/no) and hypertension (yes/no) status. Using multivariable generalized linear models, we

estimated least square means of LVM, LASD, LVEF, GLS, E/e’, and LAEF (dependent vari-

ables) according to BMI category (normal, overweight and obese), hypertension (yes/no)
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status, and diabetes (yes/no) status (independent exposure variables) separately and jointly. All

models were adjusted for age, sex, and cohort status. We used a Bonferroni-corrected p value

<0.003 (= 0.05/(3�6)) because we investigated 6 echocardiographic variables in relation to 3

different groups. We incorporated cross-product interaction terms for BMI category, hyper-

tension status, and diabetes status to examine potential effect modification of associations

(with the dependent variables) of each exposure individually by the conjoint presence of the

other exposures. For the interaction terms, we used a p-value threshold of p<0.05 to indicate

statistical significance.

We generated frequencies of normal LV geometry, concentric remodeling, eccentric LVH,

and concentric LVH by BMI category, hypertension and diabetes status groupings.

In secondary analyses, we used regression models to estimate least square means of

LVMIBSA, LVMIheight, LVMIheight^2.7, LVWT, RWT, MAPSE, and GCS as additional measures

of cardiac mass, wall thickness, and LV systolic and diastolic function, respectively. A less con-

servative p-value threshold of<0.05 was used for these exploratory analyses.

Fig 1. Schematic presentation of the measurement of the investigated echocardiographic measures. Panel A shows

a 2D parasternal long axis view, lines B and C indicate the position of the m-mode. The respective m-mode view is

shown in panels B and C. Left ventricular end-diastolic dimension (LVDD) and left ventricular end-systolic

dimension (LVSD), posterior wall thickness, and septal wall thickness are measured as shown in panel B. Left

ventricular mass (LVM), relative wall thickness (RWT) and left ventricular ejection fraction (LVEF) are calculated

based on these measures. Left atrial end-systolic dimension (LASD) and left atrial end-diastolic dimension (LADD) are

measured as shown in panel C. Panel E depicts the basic directions in which circumferential strain (CS) and

longitudinal strain (LS) are measured. Panel F shows the measurements of transmitral Doppler (E and A) and tissue

Doppler (e’ and a’) velocities. We have measured early systolic mitral annulus velocity using tissue Doppler imaging at

the lateral mitral annulus. E/e’ ratio is calculated based on these measurements. Mitral annular plane systolic excursion

(MAPSE) was measured by the systolic excursion of the mitral annulus from its lowest point at end-diastole (panel G,

right) to its highest point at the time of aortic valve closure (panel G, left) at the lateral side of the mitral valve annulus

in the apical four-chamber view. Maximum and minimum volumetric measurements of the LA (LAmax and LAmin)

from apical two and four-chamber views were taken at end-diastole for LAmin (panel H, left) and at end-systole for

LAmax (panel H, right). Left atrial emptying fraction (LAEF) is calculated based on these measurements.

https://doi.org/10.1371/journal.pone.0243199.g001
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We calculated variance inflation factor values for all models, but we did not observe major

collinearity. All analyses were performed using SAS version 9.4 (SAS, Cary, NC).

Results

Baseline characteristics

The clinical characteristics of our middle-aged sample (mean age 50 years, 54.6% women) are

presented in Table 1. About 38% of the participants were overweight and 23% were obese,

Table 1. Baseline characteristics of study sample, stratified by BMI category.

Overall (n = 5741) Normal weight (n = 2229) Overweight (n = 2186) Obese (n = 1326)

Cardiovascular risk factors

Age, years 50 (15) 47 (15) 51 (15) 52 (14)

Female, % 54.6 69.7 41.4 51.1

Height, cm 169.1 (9.6) 167.7 (9.1) 170.7 (9.7) 168.9 (9.7)

Weight, kg 77 (17) 63 (9) 80 (10) 98 (15)

Body mass index, kg/m2 27.0 (5.1) 22.4 (1.8) 27.3 (1.4) 34.1 (4.0)

Systolic blood pressure, mm Hg 121 (16) 115 (16) 123 (16) 125 (15)

Diastolic blood pressure, mm HG 74 (10) 72 (9) 76 (9) 77 (10)

Heart rate, bpm 59 (9) 59 (9) 59 (9) 61 (9)

No Smoking, % 70 67 71 72

Active Smoking, % 17 18 17 16

Former Smoking, % 14 15 12 13

Hypertension treatment, % 22 12 24 35

Prevalent CVD, % 5 3 6 8

Serum creatinine, mg/100ml 0.84 (0.22) 0.79 (0.16) 0.87 (0.23) 0.84 (0.26)

Total cholesterol, mg/100ml 188 (35) 185 (34) 191 (36) 190 (36)

High density lipoprotein, mg/100ml 56 (17) 63 (18) 53 (15) 50 (14)

Low density lipoprotein, mg/100ml 110 (32) 104 (31) 114 (32) 113 (32)

Triglycerides, mg/100ml 109 (58) 87 (45) 116 (60) 132 (63)

Category

No hypertension, no diabetes, N (%) 3936 (68.6%) 1838 (82.5%) 1436 (65.7%) 662 (49.9%)

Hypertension, no diabetes, N (%) 1496 (26.1%) 346 (15.5%) 645 (29.5%) 505 (38.1%)

Diabetes, no hypertension N (%) 85 (1.5%) 17 (0.8%) 30 (1.4%) 38 (2.9%)

Hypertension and diabetes, N (%) 224 (3.9%) 28 (1.3%) 75 (3.4%) 121 (9.1%)

Echocardiographic indices

Left ventricular mass, g 161.1 (44.1) 139.2 (35.1) 170.2 (42.3) 182.8 (44.5)

Left ventricular mass indexed by height, g/m 94.7 (23.3) 82.6 (18.2) 99.2 (22.0) 107.7 (23.4)

Left ventricular mass indexed by body surface area, g/m2 84.2 (17.5) 80.8 (16.0) 87.0 (18.2) 85.3 (17.7)

Left ventricular wall thickness, cm 1.84 (0.26) 1.72 (0.22) 1.89 (0.24) 1.97 (0.26)

Relative wall thickness 0.38 (0.05) 0.36 (0.05) 0.38 (0.05) 0.39 (0.06)

Left atrial systolic dimension, cm 3.77 (0.51) 3.48 (0.42) 3.87 (0.45) 4.09 (0.47)

Left ventricular ejection fraction, % 66 (6) 66 (6) 66 (6) 66 (6)

Mitral annular plane systolic excursion, cm 1.57 (0.23) 1.57 (0.22) 1.57 (0.23) 1.57 (0.23)

Global longitudinal strain, % -20.3 (3.1) -21.1 (3.1) -19.9 (2.9) -19.5 (3.2)

Global circumferential strain, % -29.8 (5.3) -29.6 (5.4) -29.8 (5.2) -30.0 (5.2)

E/e’ 6.3 (1.9) 5.9 (1.7) 6.3 (1.9) 6.9 (2.0)

Left atrial emptying fraction, % 48.1 (2.1) 48.3 (2.0) 48.0 (2.1) 47.9 (2.2)

Data are shown as means (standard deviation) for continuous variables and as percentage for categorical variables. Prevalent CVD = prevalent cardiovascular disease.

https://doi.org/10.1371/journal.pone.0243199.t001
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26% had hypertension but no diabetes, 2% had diabetes but no hypertension, and 4% had both

hypertension and diabetes. In about 3% of the individuals, diabetes, hypertension and over-

weight/obesity co-clustered. Most participants with hypertension or diabetes were overweight

or obese.

Association of body mass index, hypertension, and diabetes with cardiac

structural remodeling

When modeled individually, overweight/obese participants and individuals with hypertension

or diabetes had higher LVM, higher LASD (Table 2), and, in secondary analysis, higher

LVMIheight, LVMIheight^2.7, LVWT, and RWT compared to those with normal body mass

index, and participants without hypertension or diabetes, respectively (S1 Table). Individuals

with either hypertension or diabetes had higher LVMIBSA compared to individuals without

hypertension or diabetes, but LVMIBSA did not differ between normal weight, overweight and

obese individuals.

When we included BMI category, hypertension and diabetes status jointly in a model, we

observed significant three-way multiplicative statistical interactions for LVM, and, in second-

ary analysis, for LVMIheight, LVMIheight^2.7, LVMIBSA, LVWT, and RWT (Table 3, S2 Table).

We observed a pattern of increasing LVM values across the three BMI categories, for all

combinations of hypertension and diabetes status. The increase in LVM between those with

normal BMI and obese individuals was most pronounced among individuals with diabetes

Table 2. Least square means of echocardiographic parameters by BMI category, hypertension status, and diabetes

status (modeled separately), adjusted for age, sex, and cohort.

Trait A) BMI Category

Normal Weight (39%) Over-

weight

(38%)

Obese

(23%)

P Value

LVM, g 142.6 157.8 174.7 <0.0001

LASD, cm 3.53 3.78 4.03 <0.0001

LVEF, % 65.64 65.60 65.75 0.73

GLS, % -20.9 -20.1 -19.5 <0.0001

E/e’ 5.71 6.07 6.56 <0.0001

LAEF, % 48.1 48.0 48.0 0.20

Trait B) Hypertension Status C) Diabetes Status

No HTN (70%) HTN (30%) P Value No DM

(95%)

DM (5%) P Value

LVM, g 151.0 166.0 <0.0001 154.5 169.9 <0.0001

LASD, cm 3.69 3.86 <0.0001 3.72 3.96 <0.0001

LVEF, % 65.36 66.34 <0.0001 65.70 64.84 0.0087

GLS, % -20.5 -19.7 <0.0001 -20.3 -19.5 <0.0001

E/e’ 5.86 6.46 <0.0001 6.00 6.76 <0.0001

LAEF, % 48.1 47.9 0.0005 48.1 47.3 <0.0001

Least squares means of left ventricular mass (LVM), left atrial systolic dimension (LASD), left ventricular ejection

fraction (LVEF), global longitudinal strain (GLS), E/e’, and left atrial emptying fraction (LAEF) according to A) body

mass index (BMI) category (normal weight: BMI < 25kg/m2, overweight: 25kg/m2� BMI < 30kg/m2, obese:

BMI� 30kg/m2), B) hypertension status (HTN), C) and diabetes status (DM). All models are adjusted for cohort,

age, and sex. We used a Bonferroni-corrected p<0.003 (= 0.05/(3�6)) because we investigated 6 echocardiographic

variables in relation to 3 different groups.

https://doi.org/10.1371/journal.pone.0243199.t002
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(37% increase) and with both diabetes and hypertension (33% increase) (Fig 2A). Within each

BMI category, hypertension was associated with a similar increase of LVM of ~6%, while the

increase in LVM seen in individuals with diabetes was more pronounced in obese (15%) versus

in individuals with normal BMI (1%). We observed similar patterns in secondary analyses for

LVMIheight, LVMIheight^2.7, LVWT and RWT (S1A, S1C and S1D Fig). In contrast, there was

no increase of LVMIBSA with BMI category (S1B Fig).

Similar to LVM, LASD increased from normal BMI to overweight and to obese individuals

for all combinations of diabetes and hypertension, with the strongest increase among those

with diabetes (20%) (Fig 2B), but a three-way interaction term was statistically nonsignificant

(consistent with additive effects).

Association of body mass index, hypertension, and diabetes with cardiac

function

When analyzed separately, overweight/obese participants and those with hypertension or dia-

betes had higher (presumably unfavorable) values of GLS and E/e’ compared to those with

normal body mass index, and those without hypertension or diabetes, respectively (Table 2).

Individuals with hypertension or diabetes had lower values of LAEF compared with individu-

als without hypertension or diabetes, respectively. There was no difference in LAEF across the

three BMI categories.

Individuals with hypertension had higher LVEF and, in secondary analysis, lower (more

negative) GCS values (both presumably favorable effects) compared to individuals without

hypertension. In contrast, individuals with diabetes had higher (less negative values) GCS

Table 3. Least square means of echocardiographic traits by BMI category, hypertension status, and diabetes status (modeled jointly), adjusted for age, sex, and

cohort.

Echo Parameter BMI Category Healthy DM, no HTN HTN, no DM HTN and DM P-Value for 3-way interaction

LVM (g) Normal 140.7 141.5 150.7 140.7 0.0042

Overweight 155.1 160.4 163.2 169.7

Obese 168.6 193.5 179.8 187.3

LASD, cm Normal 3.51 3.50 3.60 3.69 0.31

Overweight 3.76 3.79 3.82 3.97

Obese 3.98 4.21 4.06 4.18

LVEF, % Normal 65.43 65.76 66.84 61.96 0.0002

Overweight 65.35 66.26 66.36 64.21

Obese 65.34 63.16 66.40 66.46

GLS, % Normal -21.1 -17.7 -20.3 -20.7 0.0005

Overweight -20.2 -19.3 -19.7 -19.1

Obese -19.7 -19.3 -19.1 -19.2

E/e’ Normal 5.60 5.77 6.09 6.41 0.25

Overweight 5.92 6.22 6.39 6.91

Obese 6.36 7.30 6.68 7.23

LAEF, % Normal 48.1 47.1 48.0 48.5 0.0006

Overweight 48.1 47.6 47.9 46.8

Obese 48.2 46.6 47.8 47.6

Least squares means of left ventricular mass (LVM), left atrial systolic dimension (LASD), left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), E/e’,

and left atrial emptying fraction (LAEF) according to body mass index (BMI) category (normal weight: BMI < 25kg/m2, overweight: 25kg/m2� BMI < 30kg/m2, obese:

BMI� 30kg/m2), hypertension status (HTN), and diabetes status (DM). All models are adjusted for cohort, age, and sex.

P-Value <0.05 was considered significant for interaction terms.

https://doi.org/10.1371/journal.pone.0243199.t003
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values (S1 Table) compared to individuals without diabetes. Higher BMI was accompanied by

an increase in MAPSE in secondary analysis (presumably a favorable effect) whereas individu-

als with hypertension or diabetes had lower MAPSE (S1 Table). We observed statistically sig-

nificant three-way interactions between BMI categories, hypertension, and diabetes status for

LVEF, GLS, and LAEF (Table 3) in the joint models.

LVEF (Fig 2C) was higher in normal weight, overweight, and obese individuals with hyper-

tension compared to normal weight, overweight, and obese individuals without hypertension

(+2% increment in LVEF for all three groups). Normal and overweight individuals with diabe-

tes had higher LVEF compared to normal and overweight individuals without diabetes (+1%

increment in LVEF). Obese individuals with hypertension and diabetes had higher LVEF than

individuals with a normal BMI who had hypertension and diabetes (+7% increment in LVEF).

In contrast, LVEF was lower in obese individuals with diabetes compared to their normal BMI

counterparts (4% decrement in LVEF).

GLS (Fig 2D, GLS is depicted as -GLS) values were higher (less negative, i.e., presumably

unfavorable effects) in individuals with diabetes and/or hypertension in all BMI categories

(+2% to +16% increase) and in overweight or obese individuals compared to individuals with

normal BMI in individuals with hypertension or those with hypertension and diabetes (+6%

to +7% increase, respectively).

Fig 2. Means of echocardiographic measures. Least squares means of left ventricular mass (A), left atrial systolic

dimension (B), left ventricular ejection fraction (C), negative global longitudinal strain (D), E/e’ (E), and left atrial

emptying fraction (F) according to cross-classified body mass index (normal weight: BMI< 25kg/m2, overweight:

25kg/m2� BMI< 30kg/m2, obese: BMI� 30kg/m2)) hypertension, and diabetes status categories. All models are

adjusted for cohort, age and sex. P values correspond to 3-way interactions.

https://doi.org/10.1371/journal.pone.0243199.g002
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We investigated MAPSE and GCS (S2E and S2F Fig, GCS is depicted as -GCS) as addi-

tional measures of LV long axis and circumferential function in secondary analyses. MAPSE

was lower in individuals with diabetes and/or hypertension in all BMI categories (0 to -3% dec-

rement) compared to individuals without diabetes and/or hypertension. However, MAPSE

was higher in obese individuals compared to that in individuals with normal BMI irrespective

of their diabetes or hypertension status (2% to 3% increment).

GCS values were higher (less negative, i.e., presumably unfavorable) in obese individuals

compared to individuals with normal BMI with diabetes and/or hypertension (1% to 2%

worse) and in overweight participants with diabetes and hypertension compared to their coun-

terparts with normal BMI (5% worse). In contrast, GCS values were lower (more negative, i.e.,

presumably beneficial) in individuals with hypertension compared to individuals without

hypertension in all three BMI categories (-2% to -3% lower/better).

E/e’ (Fig 2E) was 3% higher in participants with normal BMI with diabetes compared to

participants with normal BMI without diabetes, and it was 15% higher in obese subjects with

diabetes compared to obese subjects without diabetes. Individuals with hypertension had

5–8% higher E/e’ than normotensive individuals in all BMI categories, and individuals with

both diabetes and hypertension had 14–17% higher E/e’ than individuals without either condi-

tion (in all BMI groups). The highest increase in E/e’ was observed in obese individuals with

diabetes (27% increase relative to those with normal BMI).

While there were no differences in LAEF between individuals with normal BMI, overweight

or obesity (Fig 2F), individuals with hypertension and/or diabetes had lower adjusted mean

values of LAEF compared to individuals without hypertension and/or diabetes. We observed

the lowest values of LAEF in obese participants with diabetes but without hypertension, and in

overweight participants with diabetes and hypertension.

Association of body mass index, hypertension, and diabetes with LV

geometric patterns

The prevalence of normal LV geometry decreased and that of concentric remodeling, eccentric

LVH, and concentric LVH increased among those with hypertension and/or diabetes regard-

less of their BMI category (Fig 3, S3 Table). Only about 50% of subjects with both hyperten-

sion and diabetes had normal LV geometry. Overweight and obesity were associated with an

increase in concentric remodeling in individuals without hypertension or diabetes. With

increasing BMI, there were only small changes in the prevalence of LV geometric patterns in

individuals with hypertension. In the presence of diabetes, the presence of overweight and obe-

sity shifted the distribution of LV geometry to higher frequencies of concentric remodeling

and concentric LVH (relative to those without diabetes). In participants with both diabetes

and hypertension, overweight and obesity led to only a small change of the frequency of abnor-

mal geometry generally but increased the frequency of concentric LVH.

Discussion

We investigated conjoint influences of obesity, hypertension, and diabetes on cardiac structure

and function, and chamber geometry in a large community-based sample free of heart failure.

Principal findings

Our principal findings are four-fold, as summarized in Table 4.

First, we observed that BMI category, hypertension, and diabetes were each associated with

cardiac remodeling and altered LV geometry. Most of these associations reflected unfavorable
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consequences, although we observed associations between hypertension and higher LVEF and

better GCS, and between higher BMI and greater MAPSE (see below).

Second, when modeled jointly, we observed significant three-way statistical interactions

between BMI category, hypertension, and diabetes for LVM, LVEF, GLS, and LAEF; and in

Fig 3. Distribution of left ventricular geometry. Frequencies (percentages) of left ventricular geometry (LV) patterns

by body mass index (BMI) category (normal weight: BMI< 25kg/m2, overweight: 25kg/m2� BMI< 30kg/m2, obese:

BMI� 30kg/m2), hypertension status, and diabetes status.

https://doi.org/10.1371/journal.pone.0243199.g003

Table 4. Summary of associations.

Three-way interaction + Additive effects

LVM LVEF LAEF GLS LASD E/e’ MAPSE GCS

Hypertension " " # " " " # "

Obesity " ! ! " " " " !

Diabetes " " # " " " # #

" indicates values increase (become more positive/less negative in case of GLS and GCS)

! indicates no association

# indicates values decrease (become less positive/more negative in case of GLS and GCS)

https://doi.org/10.1371/journal.pone.0243199.t004
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secondary analyses, for LVMI, LVWT, and RWT. The strengths of the unfavorable associa-

tions of these three risk factors (overweight/obesity, hypertension and diabetes) with LVM,

GLS, and LAEF suggest that these influences are synergistic. In contrast, for select echocardio-

graphic measures, the associations of these risk factors were opposite in directionality—for

instance, individuals with hypertension tended to have higher LVEF compared to their non-

hypertensive counterparts (BMI being held constant) whereas obese individuals had a lower

LVEF compared to those with a normal BMI (blood pressure being held constant).

Third, there were no statistically significant synergistic interactions for these three risk fac-

tors in relation to their associations with LASD or E/e’ in primary analyses, and for their rela-

tions to MAPSE and GCS in secondary analyses. There were unfavorable additive effects of

BMI, diabetes and hypertension on LASD and E/e’. For select echocardiographic measures the

associations of these three risk factors varied in directionality. For instance, obesity was posi-

tively associated with MAPSE, whereas diabetes or hypertension were negatively related to

long axis LV function. Likewise, hypertension was associated with better (more negative) GCS,

whereas relations for obesity or diabetes were opposite in direction.

Fourth, we observed a lower prevalence of normal LV geometry in obese individuals and in

individuals with hypertension or diabetes; normal LV geometry was least common in partici-

pants with both hypertension and diabetes (Fig 3) suggesting synergistic effects.

Individual associations of body mass index, diabetes and hypertension with

cardiac remodeling

Our findings that a higher BMI category and the presence of hypertension or diabetes each is

associated with adverse LV and LA remodeling have been reviewed extensively in the literature

along with delineation of the underlying mechanisms [4–17]. The observation, that a higher

BMI category was not associated with LVMIBSA but was associated with greater LVM, LVMI-

height and LVMIheight^2.7, underscore previous observations that indexation of LVM by body

surface area may mask the adverse impact of obesity on cardiac mass and hypertrophy [55].

We observed, that adjusted mean values of GCS were more negative (presumably favorable

effects) in subjects with hypertension, but higher (less negative, i.e., unfavorable) in subjects

with diabetes. There is evidence that in the early stages of myocardial response in hypertension,

when GLS may be impaired, GCS is augmented to maintain LVEF [56]. It is possible that the

subtle myocardial dysfunction in our study sample was more pronounced in participants with

diabetes compared to individuals with hypertension, leading to augmented GCS in individuals

with hypertension but worse GLS and GCS in those with diabetes. In our investigation adjusted

mean values of LVEF were higher in individuals with hypertension, which has been described

previously [57, 58]. One possible explanation for the increase in LVEF might be an increase in

ventricular torsion and/or LV wall thickening in individuals with hypertension [58].

Presumably unfavorable associations between diabetes [28] and hypertension [28, 59] with

MAPSE have been described previously [48]. We observed that MAPSE was higher (presum-

ably a favorable effect) in overweight/obese subjects. So far, only unfavorable associations

between MAPSE and body weight have been described by three prior studies with small sam-

ples (n<120) [28, 60, 61], two of which investigated severely obese individuals with a mean

BMI>40kg/m2 [60, 61]. Therefore, previous studies may not be comparable to our present

investigation of a larger community-based sample. A possible explanation for the favorable

association of higher BMI with MAPSE observed in our investigation might be the increase

cardiac work necessitated with higher body weight [4–6]. Additional studies including larger

samples are warranted to confirm our findings and to investigate the physiological mecha-

nisms underlying the observed associations.
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Conjoint associations of body mass index, diabetes and hypertension with

cardiac structural remodeling

Previous investigators have reported additive and unfavorable associations of obesity and

hypertension [30–33], obesity and diabetes [30–32, 37], and hypertension and diabetes [28–30,

37] with measures of cardiac remodeling. Two studies investigated possible interactions

between hypertension and obesity on LVM. A prior study of severely obese individuals

reported an interaction [35], while a previous report from the FHS did not observe any inter-

action between obesity and hypertension in terms of their associations with LVM but that

report excluded participants who were on antihypertensive medications and presumably had

longstanding high blood pressure [36].

We observed significant three-way statistical interactions between BMI category, hyperten-

sion, and diabetes for LVM, LVMI and LVWT, which indicates that BMI, hypertension and

diabetes have interrelated influences on LV remodeling. It is noteworthy that an overweight

individual without diabetes or hypertension already has comparable LVM and LVWT as an

individual with a normal BMI who has both hypertension and diabetes. Although a participant

with hypertension and diabetes is usually considered to be at risk for heart failure, a similar

risk (of heart failure) might be underappreciated in overweight but seemingly healthy individ-

uals. The high values of LVM observed in obese individuals with diabetes emphasizes the

higher risk of heart failure observed in such individuals, thereby might underscore the impor-

tance of weight loss and optimal management of diabetes in obese individuals. In fact, a recent

echocardiographic study of patients with diabetes reported that those with diabetes but with

low rates of hypertension and obesity remained at higher risk of cardiovascular mortality and

hospitalization if they had increased LVMI [37].

Conjoint associations of body mass index, diabetes, and hypertension with

LV diastolic function

A previous study [31] of approximately 2500 participants investigated the associations between

BMI category and several echocardiographic markers including E/e’ and E/A in the presence

or absence of at least one component of the metabolic syndrome (including diabetes and

hypertension). That study reported that obesity was associated with worse LV diastolic

function in both metabolically healthy and unhealthy individuals, and that unhealthy partici-

pants had worse LV diastolic function compared to their counterparts with a normal BMI

[31].

Similarly, we observed an increase in E/e’ with increasing BMI category, with the increase

being more pronounced in obese individuals with diabetes compared to obese individuals

without diabetes. We observed higher values of E/e’ for individuals with normal BMI with

hypertension compared to individuals with normal BMI with diabetes. We did not observe

any statistically significant interaction between BMI category, hypertension and diabetes for E/

e’. Overall, our results suggest that there are additive associations of BMI category, hyperten-

sion and diabetes on LV diastolic function.

Conjoint associations of body mass index, diabetes, and hypertension with

LV systolic function

There are only few reports on the possible conjoint associations of obesity, hypertension, and

diabetes with LVEF [28, 29, 35], GLS [38–40], GCS [38], and MAPSE [28]. These investiga-

tions reported unfavorable associations between different combinations of obesity, hyperten-

sion and diabetes, with GLS, GCS, and MAPSE, but not with LVEF [28, 29, 35, 37–40].
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We observed a significant three-way multiplicative interaction for the associations of BMI

category, hypertension, and diabetes with GLS, which suggests synergistic effects. Individuals

with all three conditions or the combination of obesity with either diabetes or hypertension

had the highest (less negative, i.e., unfavorable) mean adjusted values of GLS.

Hypertension was associated with better (more negative) mean GCS, but this association

was attenuated by the presence of a higher BMI category or diabetes.

Overweight and obesity were associated with higher (favorable) mean MAPSE values com-

pared to normal weight individuals in all subgroups (no additional risk factors, only hyperten-

sive, only diabetes, and both, diabetes and hypertensive), but MAPSE was lower (unfavorable)

in individuals with hypertension, diabetes, or both if BMI was held constant. Overall, these

observations are consistent with a possible greater long axis LV shortening with higher BMI

category, but attenuated shortening in the presence of concomitant hypertension and diabetes

(on MAPSE). As mentioned above, additional studies are warranted to confirm this observa-

tion and to investigate potential physiological mechanisms.”

Conjoint associations of body mass index, diabetes and hypertension with

LAEF

We observed lower adjusted mean values for LAEF in individuals with diabetes or hyperten-

sion compared to individuals without diabetes or hypertension, respectively. However, we did

not observe any statistically significant associations between BMI category and LAEF. The

inverse associations of hypertension and diabetes with LAEF seemed to be synergistic,

although the absolute magnitude of the effect sizes (0–3%) were very modest and their clinical

significance is unclear.

Conjoint associations of body mass index, diabetes and hypertension with

LV geometric patterns

In individuals without diabetes or hypertension, there was an overall low prevalence of abnor-

mal LV geometry—we observed an increase in the prevalence of a concentric remodeling pat-

tern with overweight and obesity (compared to normal BMI). There were relatively more

overweight and obese individuals with eccentric compared to concentric LVH. Both, the pres-

ence of concentric and eccentric LVH have been reported in obese individuals with a tendency

towards a higher prevalence of eccentric LVH. It has been suggested that concomitant hyper-

tension might promote a change in the geometric pattern to concentric LVH [6, 8, 22].

Individuals with hypertension (compared to their non-hypertensive counterparts) had a

relatively higher prevalence of eccentric compared to concentric LVH, irrespective of their

BMI category. The question whether concentric or eccentric LVH is more frequent in individ-

uals with hypertension has been discussed controversially and recent reviews report similar

prevalence of concentric and eccentric LVH or even a slightly higher prevalence of eccentric

LVH in hypertensive individuals. These reports emphasize the role of comorbidities to influ-

ence the pattern of LVH [14, 23].

Previous investigations reported an association between diabetes and abnormal LV geome-

try, but were inconsistent about the relative prevalence of concentric versus eccentric remodel-

ing/LVH [18–20]. We observed that in participants with diabetes and a normal BMI/

overweight, eccentric LVH was the predominant geometric pattern. Yet, in obese individuals

with diabetes the prevalence of concentric LVH was higher. Thus, the BMI category may deter-

mine the pattern of LV geometry in people with diabetes.

Obese individuals with both diabetes and hypertension had a higher prevalence of concen-

tric compared to eccentric LVH. It is possible, that the combination of volume overload
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(obesity), metabolic changes (diabetes, obesity) and pressure overload (hypertension) synergis-

tically contribute to the development of concentric LVH, which is known to most adversely

impact overall survival [21].

Strength and limitations

The strengths of our investigation include the large community-based sample, the evaluation

of a comprehensive panel of novel and standard echocardiographic markers of cardiac remod-

eling and aortic stiffness, and the study of the synergistic interactions between BMI category,

hypertension, and diabetes. However, several limitations of our approach must be considered.

Although we included the racially diverse minority FHS Omni cohort in our sample, our over-

all study sample was comprised predominantly of whites of European ancestry with a low

overall prevalence of diabetes. Future validation of our observations in large multiethnic

cohorts is necessary, especially as the influence of race on LVH has been emphasized [18]. It

must be noted that the mean differences in LVEF across the different strata were small and

within the normal range. Our large sample size might have given us the possibility to detect

very modest differences in echocardiographic measure of LV systolic and LA function that

may be statistically significant, but these small differences might not be clinically meaningful.

Due to the observational as well as cross-sectional design of our investigation, it is not possible

to make causal interferences and we cannot exclude residual confounding by additional factors

not adjusted for.

Conclusions

In our large community-based sample, we observed synergistic interactions between a higher

BMI category and the presence of hypertension or/and diabetes and their associations with

adverse cardiac structural and functional remodeling. Additional studies of larger and multi-

ethnic samples are warranted to confirm our findings and investigate whether these synergistic

effects are also linked to an increased risk of clinical outcomes when these risk factors co-

cluster.
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S2 Fig. Least squares means of left ventricular mass indexed by height (A), left ventricular

mass indexed by body surface area (B), left ventricular wall thickness (C), relative wall thick-

ness (D), mitral annular plane systolic excursion (E), and negative global circumferential strain

(F) according to cross-classified body mass index (normal weight: BMI < 25kg/m2, over-

weight: 25kg/m2� BMI< 30kg/m2, obese: BMI� 30kg/m2)) hypertension, and diabetes status

categories. All models are adjusted for cohort, age and sex. P values correspond to 3-way inter-

actions.
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S1 Table. Least square means of echocardiographic traits by BMI category, hypertension

status and diabetes status (modeled separately) in secondary analysis, adjusted for age,

sex, and cohort. Least squares means of left ventricular mass index (LVMI) indexed by height

(g/m), height^2.7, and body surface area (g/m2), left ventricular wall thickness (LVWT), rela-

tive wall thickness (RWT), mitral annular plane systolic excursion (MAPSE), global
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wall thickness (RWT), mitral annular plane systolic excursion (MAPSE), and global circumfer-

ential strain (GCS) according to body mass index (BMI) category (normal weight: BMI<

25kg/m2, overweight: 25kg/m2� BMI < 30kg/m2, obese: BMI� 30kg/m2), hypertension sta-

tus (HTN), and diabetes status (DM). All models are adjusted for cohort, age, sex. P-Value

<0.05 was considered significant for interaction terms.
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