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A B S T R A C T

Neuropsychological assessment, brain imaging and computational modelling have augmented our understanding
of the multifaceted functional deficits in people with language disorders after stroke. Despite the volume of
research using each technique, no studies have attempted to assimilate all three approaches in order to generate
a unified behavioural-computational-neural model of post-stroke aphasia.

The present study included data from 53 participants with chronic post-stroke aphasia and merged: apha-
siological profiles based on a detailed neuropsychological assessment battery which was analysed with principal
component and correlational analyses; measures of the impairment taken from Dell's computational model of
word production; and the neural correlates of both behavioural and computational accounts analysed by voxel-
based correlational methodology.

As a result, all three strands coincide with the separation of semantic and phonological stages of aphasic
naming, revealing the prominence of these dimensions for the explanation of aphasic performance. Over and
above three previously described principal components (phonological ability, semantic ability, executive-de-
mand), we observed auditory working memory as a novel factor. While the phonological Dell parameter was
uniquely related to phonological errors/factor, the semantic parameter was less clear-cut, being related to both
semantic errors and omissions, and loading heavily with semantic ability and auditory working memory factors.
The close relationship between the semantic Dell parameter and omission errors recurred in their high lesion-
correlate overlap in the anterior middle temporal gyrus. In addition, the simultaneous overlap of the lesion
correlate of omission errors with more dorsal temporal regions, associated with the phonological parameter,
highlights the multiple drivers that underpin this error type. The novel auditory working memory factor was
located along left superior/middle temporal gyrus and ventral inferior parietal lobe.

The present study fused computational, behavioural and neural data to gain comprehensive insights into the
nature of the multifaceted presentations in aphasia. Our unified account contributes enhanced knowledge on
dimensions explaining chronic post-stroke aphasia, the variety of factors affecting inter-individual variability,
the neural basis of performance, and potential clinical implications.

1. Introduction

Behavioural assessment and computational modelling are important
tools to understand the diverse patterns of impaired performance in
people with aphasia (PWA) (Basilakos et al., 2014; Rogalsky et al.,
2015; Ueno et al., 2011; Walker and Hickok, 2016; for a review see
Cahana-Amitay and Albert, 2015). More recently, each approach has
been linked with brain lesion data to investigate the neural basis of
aphasia. Thus, the computational parameters of the Dell model (Dell
et al., 2013; Schwartz et al., 2012) or behavioural assessment results

(Butler et al., 2014; Halai et al., 2017; Mirman et al., 2015a,b) have
been associated with distinct regions in the brain. However, to date
there has been no attempt to unify behavioural, computational and
neuroimaging data in order to gain a more comprehensive, multi-level
understanding of aphasia. Therefore, the purpose of the present study
was to converge: (i) the principal components of aphasic performance
based on behavioural data; (ii) measures of the impairment taken from
a computational model of aphasic naming; and, (iii) the neural corre-
lates of both behavioural and computational factors. We present prin-
cipal component and correlational analyses of data from a large
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neuropsychological assessment battery and from computer simulations
in the Dell interactive two-step model of word production (Abel et al.,
2009; Dell et al., 1997, 2013; Foygel and Dell, 2000; Schwartz et al.,
2006), with subsequent mapping of the model parameters and beha-
vioural PCA components onto the brain using voxel-based correlational
methodology (VBCM: Basilakos et al., 2014; Butler et al., 2014; Halai
et al., 2017; Tyler et al., 2005). By merging these three levels of de-
scription from behavioural, computational and neuroimaging dis-
ciplines, we offer converging evidence on the theoretical and neural
bases of the variety of behavioural presentations in aphasia.

1.1. Interactive two-step model

In accordance with other models of word production (see overview
in Rapp and Goldrick, 2006), Dell's interactive two-step model of word
production (Foygel and Dell, 2000) assumed lexical functions to be split
into semantic and phonological processes. The cognitive model aimed
to explain intact and impaired performance in confrontation naming. It
contained three layers of interconnected nodes as shown in Fig. 1,
namely semantic feature nodes depicted at the top, lexical nodes in the
middle, and phonological nodes at the bottom. Naming occurred in two
retrieval steps: first, lexical retrieval through activation spreading from
semantic feature nodes to lexical nodes; and second, phonological re-
trieval through activation spreading from lexical to phonological nodes.
The flow of activation between layers was interactive, spreading along
bidirectional connections between neighbouring layers, and it was
modulated by the weights of lexical-semantic connections (s) and lex-
ical-phonological connections (p), respectively. The model explained
naming errors in aphasic speakers by attributing the impairment to
reduced semantic and/or phonological weights, with the former being
broadly associated with word errors and the latter with mainly non-
words. Thus, smaller parameter weights indicated greater impairment.

A recent paper by Dell et al. (2013), suggested that the model
parameters include more processes than previously assumed, drawing
their conclusion from regression analyses of behavioural data and
voxel-based lesion-parameter mapping (VLPM). As in voxel-lesion
symptom mapping (VLSM: Bates et al., 2003), VLPM attempts to relate
the variation in model parameters for each patient to the status of
voxels across the brain (intact or lesioned). While in earlier versions of
the Dell model the parameters were thought to be restricted to con-
nection weights within the lexicon only, current understanding assumes
that the s parameter represents semantic representations and semantic
control processes over and above the lexical-semantic weight. The p
parameter includes phonological representations and aspects of ar-
ticulation over and above the lexical-phonological weight. Walker and
Hickok (2016) recently provided a new fitting algorithm and website
(http://www.cogsci.uci.edu/~alns/webfit) for the SP-model by Foygel
and Dell (2000). It constrains parameter values to be below a pre-
sumably normal level, and thereby provides an improved fit.

1.2. Principal component analysis

Recent studies have demonstrated the separation of semantic,
phonological and other cognitive processes in aphasic performance by
use of varimax rotated principal component analysis (PCA) (Butler
et al., 2014; Halai et al., 2017; Lambon Ralph et al., 2002; Mirman
et al., 2015a,b). PCA can be used as a useful exploratory tool as it can
extract the components that underlie a set of correlated variables (e.g.,
the latent structure underlying a large neuropsychological battery). To
do so, variance in the variables is first redistributed across an equal
number of components as there are variables. In a second step, a pre-
defined criterion is used to extract only as many components as ne-
cessary to explain a ‘sufficient’ amount of variance. Components can
then be rotated, which allows clearer cognitive interpretation of the
components while maintaining their orthogonality. While it is possible
to allow oblique rotation of components, maintaining orthogonality in
this investigation is useful for at least two reasons. First, a number of
computational models have been developed for the language domain,
with independent processes/layers representing fundamentally in-
dependent processes such as phonology, semantics and speech output
(e.g., Dell et al., 2013; Ueno et al., 2011). In addition, co-linearity in
neuroimaging analyses is problematic when mapping behaviours to the
brain, as the shared variance is partitioned out and the model estimates
parameters based on the remaining variance, which can be noisy. As
neuropsychological data are typically highly co-linear, a method to
orthogonalise the data (such as PCA) has been shown to be useful in
producing more interpretable neuroimaging results (see Butler et al.,
2014).

Butler et al. (2014) and Halai et al. (2017) investigated the com-
ponents that contribute to performance of people with aphasia (PWA)
on neuropsychological tasks that involve cognitive and language func-
tions. Along with a phonological and a semantic factor, the two studies
have shown executive processing to contribute to aphasic performance.
In the follow up study, Halai et al. (2017) found that speech fluency
also emerged as a statistically independent factor in addition to pho-
nology, semantics and executive function. Using a similar methodology,
Mirman et al. (2015a,b) investigated semantic and phonological error
rates in the context of a wide language test battery and found four
factors that were assumed to reflect a division of the language system
into semantic versus phonological processes, and recognition versus
production. Of these four factors identified, semantic recognition and
speech production can be related to semantic and phonological factors
mentioned above (Butler et al., 2014; Halai et al., 2017), respectively.
Interestingly, while phonological error rate aligned with speech pro-
duction, semantic errors did not load strongly on any of the first three
factors but formed an independent fourth factor with only small load-
ings for the other assessments, indicating that they are relatively in-
dependent of the other factors.

One can pose the question as to how the s and p parameters from the
Dell model relate to the PCA factors found to be crucial in describing

Fig. 1. Impairment types in the Dell model (Foygel
and Dell, 2000). The model includes a semantic
feature layer, an intermediate lexical layer with
word entries, and a phonological layer. Nodes of
neighbouring layers are bi-directionally connected.
The model features a two-stage access of lexical and
then phonological entries, which occurs via
spreading activation along the connections in the
network.
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aphasic performance. Given that semantic errors, which are a main
input for the calculation of the s parameter, do not align with the core
factors, it is especially interesting to examine whether the s parameter
will behave in a similar way. Another point of interest is the relation of
the model parameters to a more detailed range of naming error cate-
gories, as certain error types like omission errors are not taken into
account in the specification of the model parameters, but constitute an
important part of aphasic naming errors. Thus, our investigation set out
to explore the relationship of the Dell model parameters to principal
components of language in PWA and to examine whether the re-inter-
pretation of the model parameters is consistent with their relation to
this behavioural data set.

1.3. Symptom-lesion mapping

The dissociation of semantic and phonological language functions
can also be observed at the neuroanatomical level. Previous work on
relating semantic and phonological error rates to neural damage in
post-stroke PWA (Schwartz et al., 2009, 2012) found a prominent left
anterior temporal lobe (ATL) involvement in the production of semantic
errors, along with an involvement of inferior and middle frontal gyri.
When relating the primary systems language factors identified by PCA
to neural damage in post-stroke PWA, the left ATL again was identified
as the locus of damage underlying poorer performance on semantic
tasks (Butler et al., 2014; Halai et al., 2017). Likewise, the semantic
error factor identified by Mirman et al. (2015a,b) was associated with
the left ATL, while the semantic recognition factor was correlated with
a frontal white matter bottleneck region medial to the insula and lateral
to the basal ganglia, which the researchers ascribed to executive-se-
mantic processing (cf. Jefferies et al., 2006) and whose damage was
associated with low recovery potential (cf. Abel et al., 2015). In con-
trast, phonological error rate was found to correlate with postcentral
gyrus, insula, superior temporal and supramarginal gyrus (Schwartz
et al., 2012). The phonological factor (Butler et al., 2014; Halai et al.,
2017) was associated with damage to perisylvian regions, as were the
speech production and speech recognition factors (Mirman et al.,
2015a,b), which were linked to regions superior and inferior to the
Sylvian fissure. The additional speech quanta factor (the amount of
speech generated), observed by Halai et al. (2017), was located in left
precentral gyrus, superior insula and putamen, extending medially to
the caudate nucleus.

In a recent paper using voxel-lesion parameter mapping, Dell et al.
(2013) investigated the neural correlates of the parameters of the in-
teractive two-step model of word production. They found a highly
distributed map of neural correlates for parameter s, including the ATL,
middle and inferior frontal gyri, parietal-temporal junction and angular
gyrus. Parameter p was linked to neural damage in pre- and postcentral
gyrus, insula, and supramarginal gyrus.

1.4. Aims and hypotheses of the current study

This investigation determined how evidence from computational
modelling, neuropsychological assessment and neuroimaging converge,
with particular regard to the specialisation of functions in language
processing. To date, investigations have explored the relationship be-
tween lesions and either aphasiological profiles or patients' parameter
fits within the Dell model. In the present study, we brought these dif-
ferent analyses together in order to generate a unified behavioural,
computational and neural account of aphasic naming performance. This
was achieved by fitting the Dell model to a large group of PWA and
relating the resultant s and p parameters to the PCA behavioural com-
ponents and their neural correlates.

We hypothesised (i) parameter p to correlate with typical phono-
logical errors such as phonemic errors and neologisms, and to load
highly with the PCA component relating to patients' phonological
ability. (ii) Parameter s was expected to correlate with a wider range of

naming errors (including omissions and semantic errors) and to load
either across various PCA factors (following previous work showing
that semantic errors can have multiple sources: cf. Morton and
Patterson, 1980; Plaut and Shallice, 1993) or form a separate factor
(following Mirman et al., 2015a,b). In addition, we (iii) expected to find
an association between parameter p and perisylvian regions previously
found to be involved in phonological ability. Furthermore, we (iv)
aimed to specify the highly distributed map for parameter s, expecting
the resulting map to align with converging evidence for ATL involve-
ment in semantics. Finally, we (v) aimed to differentiate and anato-
mically localise PCA factors of language processing, and expected to
corroborate and extend previous findings on their neural correlates.

2. Materials and methods

2.1. Participants

Fifty-three PWA were recruited from local aphasia support groups,
all with post-stroke (ischaemic or haemorrhagic) speech production or
comprehension difficulties. The patient population is part of a database
being collected at the Neuroscience and Aphasia Research Unit since
2010; as such 28 patients have been included in previously published
papers (Butler et al., 2014; Halai et al., 2017). As criteria for inclusion,
PWA had to be at least 12months post-stroke at the time of scanning
and assessment, native English speakers, and have normal or corrected-
to-normal hearing and vision. Exclusion criteria were contraindications
for MRI scanning, pre-morbid left-handedness, or more than one stroke
or any other significant neurological condition. PWA were included
regardless of their level of impairment or type of aphasia; however, if
they could not at least attempt 50% of items they were excluded from
further analysis (7 participants). The project was approved by the local
ethics committee (NRES North West – Haydock, Ethics Ref No: 01/08/
94) and informed consent forms were signed by all PWA prior to par-
ticipation. In the various neuroimaging analyses, data from a healthy
age- and education-matched control group (8 female, 11 male) were
used.

2.2. Overview of procedures for hypothesis testing

In order to test our hypotheses, we conducted detailed correlational
and principal component analyses between large-scale neuropsycholo-
gical data and the parameter weights from the model. This approach
allowed us to test whether the Dell model parameters are similar/dis-
similar to the core language and cognitive factors observed previously
to underlie aphasic performance. To achieve this aim, correlational
analyses first explored how the parameter weights were related to a
wide range of naming error types. It is important to note that the Dell
model takes into account five error types, but there are further error
types which are disregarded. Furthermore, the a priori clustering of the
error types was compared with an exploratory PCA methodology in
order to determine how the model parameters related to core error
types. Finally, in order to determine how the model parameters related
to a wider set of neuropsychological assessments, we conducted an
exploratory PCA that included both s and p parameters and the lan-
guage and cognitive assessments. Once we identified the independent
factors that captured both the model parameters and the detailed
neuropsychological tests, we mapped these factors on to the patients'
lesion distributions using VBCM, a variant of voxel-lesion symptom
mapping (VLSM: Bates et al., 2003) that does not require a binary
classification of the intact/lesioned brain. This additional step in
mapping the components to the lesion can help in validating our un-
derstanding of the nature of the components by determining how they
converge with existing literature. In order to make sure the principal
component analyses were robust, we conducted multiple iterations
using three different extraction methodologies with an additional cross-
validation analysis to determine the optimal number of components
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(Ballabio, 2015; Bro et al., 2008). The cross-validation approach par-
titions the data into 5-folds, performs a PCA on four folds, and uses this
model to predict a test variable that has been left out in the holdout
fold. This is repeated so that all test variables and folds are omitted once
and the resultant average root mean square error (RMSE) is calculated
for each PCA model (where the model is composed of N=1/number of
test components). The first approach used a varimax rotation on the
optimal number of components, which maximises the loading for any
given test on a single component, while orthogonalising the compo-
nents. However, the method of orthogonalising behavioural compo-
nents has been disputed (Fabrigar et al., 1999; Henson and Roberts,
2006; Park et al., 2002; Russell, 2002), since in natural behaviours
inter-correlations between underlying constructs might be expected.
Therefore, in a second approach we conducted the PCA using an ob-
lique rotation (promax). Finally, in the third approach we re-ran the
PCA on the behavioural data while omitting tests that are typically
related to each of the components in the clinic. We then performed post
hoc correlations in order to determine if the PCA components obtained
were related to the omitted tests as expected by their use in clinic. For
clarity throughout the manuscript, we focus on results from the varimax
rotation since this procedure allows for clear interpretations of the
factors (tests maximally loading onto one factor and minimally on
others) and is regularly used in our field. We report outputs from the
other two methods in reference to the Supplementary materials, in
order to evaluate whether they yield overlapping results.

2.3. Neuropsychological assessment and analysis

PWA were asked to name 64 black and white drawings from the
Cambridge Naming Test (Bozeat et al., 2000) and 60 black and white
drawings from the Boston Naming Test (Kaplan et al., 1983). Naming
attempts were recorded and coded into one of 14 error categories, in-
cluding semantic (SEM), phonemic (PHON), neologism (NEO), formal
(FORM), mixed (MIX), unrelated (UNREL), initial phoneme (INITIAL),
dysfluency (DSY), perseveration (PERS), circumlocution (CIRC), not-a-
correct (NOT A COR), visual (VIS), omission (OM) and other (OTHER)
(for descriptive details, see Table 1). Some errors occurred seldom;
therefore any error category that both contributed to<2% of overall
errors and was not required for computing the Dell model parameters
was excluded from further PCA analyses. For each naming trial, the first
complete (non-fragment) response produced within 10 s was scored; if
no response was given within this time frame, the item was marked as
an omission. The dependent variable for subsequent analyses was the
ratio of each error type to the total number of items attempted.

Additionally, PWA were tested on an extensive language assessment
battery (described in Butler et al., 2014; Halai et al., 2017). These in-
cluded subtests from the Psycholinguistic Assessments of Language
Processing in Aphasia (PALPA) battery (Kay et al., 1992): auditory
discrimination using non-word (PALPA1) and word minimal pairs
(PALPA2); and immediate and delayed repetition of non-words
(PALPA8) and words (PALPA9). Tests from the 64-item Cambridge
Semantic Battery (Bozeat et al., 2000) were included: spoken and
written versions of the word-to-picture matching task and Camel and
Cactus Test (pictures). To increase the sensitivity to semantic deficits
we used a written 96-trial synonym judgement test (Jefferies et al.,
2009). The spoken sentence comprehension task from the Compre-
hensive Aphasia Test (CAT) (Swinburn et al., 2005) was used to assess
sentential receptive skills. Speech production deficits were assessed by
coding responses to the ‘Cookie theft’ picture in the Boston Diagnostic
Aphasia Examination (BDAE) (Goodglass et al., 2000), which included
tokens (TOK), mean length of utterance (MLU), type/token ratio (TTR)
and words-per-minute (WPM). The additional cognitive tests included
forward and backward digit span (Wechsler, 1987), the Brixton Spatial
Anticipation Task (Burgess and Shallice, 1997), and Raven's Coloured
Progressive Matrices (Raven, 1962). All scores were converted into
percentages; if no maximum score was available for the test, we used

the maximum score in the dataset to scale the data. Assessments were
conducted with PWA over several testing sessions (range 1–8), with
their pace and number determined by the participant.

2.4. Model fitting

Model weight parameters, s and p, were obtained from the new
online WebFit program introduced by Walker and Hickok (2016)
(http://www.cogsci.uci.edu/~alns/webfit). WebFit generates the best
fitting parameters by feeding the model with each PWA's actual number
of errors within each of these categories. The five error categories en-
tered into WebFit were: semantic, formal, mixed, unrelated and non-
word errors (containing phonemic and neologism errors). Persevera-
tions were re-coded in relation to the target. Omissions, circumlocu-
tions, initial, visual, morphological and other errors were not entered
into WebFit, but treated as omissions according to the independence
account (see Schwartz et al., 2006).

2.5. Correlational analysis and principal component analysis

In order to determine how similar the s and p parameters were in
comparison with (a) individual error categories, (b) grouped categories
derived from PCA decomposition, and (c) the core language features
derived from a PCA decomposition of a large neuropsychological bat-
tery, the analysis was split into two parts. First, correlational analyses
were performed (SPSS 20.0) with the square root of s and p parameter
values produced by the WebFit program on the one hand for (a) each
error category and (b) the grouped errors on the other hand. The
grouped errors were achieved by performing a varimax rotated PCA on
the naming errors (extracting components with eigenvalue>1).
Consecutively (c), the square root of s and p parameters and the lan-
guage assessment tests were entered simultaneously into a PCA with
varimax rotation in order to examine how the model parameters relate
to broader measures of language and cognitive performance.
Components were identified using a cross-validation approach and then
rotated while maintaining orthogonality (varimax) to allow for clear
behavioural interpretation of each factor. Individual PWA scores on
each extracted factor were then used as behavioural covariates in the
neuroimaging analysis.

2.6. Acquisition of neuroimaging data

High resolution structural T1-weighted Magnetic Resonance
Imaging (MRI) scans were acquired on a 3.0 Tesla Philips Achieva
scanner (Philips Healthcare, Best, The Netherlands) using an 8-element
SENSE head coil. A T1-weighted inversion recovery sequence with 3D
acquisition was employed, with the following parameters: TR (repeti-
tion time)= 9.0ms, TE (echo time)= 3.93ms, flip angle= 8°, 150
contiguous slices, slice thickness= 1mm, acquired voxel size 1mm3,
matrix size 256×256, FOV=256mm, TI (inversion time)= 1150ms,
SENSE acceleration factor 2.5, total scan acquisition time=575 s.

2.7. Analysis of neuroimaging data

Structural MRI scans were pre-processed with Statistical Parametric
Mapping software (SPM8: Wellcome Trust Centre for Neuroimaging,
http://www.fil.ion.ucl.ac.uk/spm/). The images were normalised into
standard Montreal Neurological Institute (MNI) space using a modified
unified segmentation-normalisation procedure optimised for focal le-
sioned brains (Seghier et al., 2008). Data from all PWA and all healthy
controls were entered into the segmentation-normalisation algorithm.
Images were then smoothed with an 8mm full-width-half-maximum
(FWHM) Gaussian kernel and used in the lesion analyses described
below. The lesion of each PWA was automatically identified using an
outlier detection algorithm, compared to age and education matched
healthy controls, based on fuzzy clustering. We used the default
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parameters for the automated lesion identification procedure apart
from the lesion definition ‘U-threshold’, which was set to 0.5 to create a
binary lesion image. This was modified from 0.3 to 0.5 after comparing
the results obtained from a sample of PWA to what would be nominated
as lesioned tissue by an expert neurologist, and they visually inspected
each image and modified the edges if necessary. The binary lesion
images generated were only used to create the lesion overlap map in
Fig. 2A. We selected the Seghier et al. (2008) method as it is objective
and efficient for a large sample of PWA (Wilke et al., 2011), in com-
parison to a labour intensive hand-traced lesion mask. We should note
here, explicitly, that although commonly referred to as an automated
‘lesion’ segmentation method, the technique detects areas of un-
expected tissue class – and, thus, identifies missing grey and white
matter but also areas of augmented CSF space.

Brain regions where tissue concentration as measured by T1-
weighted signal intensity correlated with individual error measures or
PCA factor scores were assessed using a voxel-based correlational
methodology (VBCM: Tyler et al., 2005), a variant of voxel-lesion
symptom mapping (Bates et al., 2003). VBCM does not require a binary
classification of the intact/lesioned brain to be marked, as in the case of
VLSM, as both the behaviour and signal intensity measures are treated
as continuous variables (conducted in SPM8). As such we used the
smoothed MNI normalised T1 images in subsequent VBCM analyses.
Two analyses were conducted and all reported anatomical regions were
located on the left hemisphere. We included age and years of education
as covariates of no interest in all models. First, the neural correlates of
the s and p parameters were determined separately using VBCM re-
gression models and simultaneously using a multiple regression model.
Next, factor scores of the orthogonal components obtained from a
combined PCA (including parameters and language tests) were entered

into the VBCM analysis. In all models, we performed analyses with and
without covariates of each PWA's lesion volume (obtained using Seghier
et al. (2008), lesion identification methodology). Results were generally
thresholded at voxel height p=0.005, FWE-cluster corrected
p < 0.05; if no voxel exceeded threshold, we presented results at an
uncorrected threshold but state this explicitly. All anatomical labels
were based on the Harvard-Oxford atlas in MNI space.

3. Results

Summary statistics for the behavioural, demographic and model
parameters can be found in Supplementary Table S1.

3.1. Behavioural findings

3.1.1. Correlational analysis
The first analysis set out to examine the relationship between the

Dell model parameters and all sub-errors. As expected from previous
work (e.g., Dell et al., 2013; Schwartz et al., 2006), the s and p para-
meters were uncorrelated (r=−0.008, p > 0.05). As shown in
Table 2, the s parameter was negatively correlated with semantic errors,
perseverations, unrelated errors, omissions, initial errors, mixed errors,
circumlocutions, and other errors, and positively with correct re-
sponses. After examining the types of perseverations, we found that
they consisted mainly of semantic (49.33%) and unrelated (31.78%)
errors, which mirrored the outcome of the correlation analysis for each
of these categories. The p parameter, in contrast, was negatively cor-
related with phonemic, neologism, formal, and initial errors, while also
being positively correlated with semantic, mixed and visual errors, as
well as with correct responses including an indication that the subject

Table 1
Re-coding of error categories.

Initial error coding: Manchester
classification

Description Re-coded Dell classification

Correct Correct response Correct

Dysfluency The correct initial phonemes of the word are produced followed by a correct production of the target
word

Not-a-correct Correct responses including an indication that the subject believes that the response was incorrect or was
unsure of accuracy, or the response was posed as a question

Semantic error A real word that was semantically related but not phonologically related to the target Semantic

Formal error A real word that was phonologically related to the target by the phonemic definition, but not
semantically related to the target

Formal

Mixed error A semantically and phonologically related real word, but not morphologically related Mixed

Unrelated error A real word that was neither semantically or phonologically related to the target Unrelated

Phonemic error A non-word with the correct first or last phoneme or at least two other phonemes in their correct
position, or at least 30% correct phonemes in any position

Non-word

Neologism A non-word that was phonologically unrelated to the target by the phonemic definition

Perseveration Repetition of a previous response Coded in relation to target

Circumlocution A description of the target alone, without an attempt to produce the name Omission

Omission No attempt to produce the target

Initial error Only the initial phoneme of the word is produced

Visual error Incorrect visual identification of the target

Other errors Could not be classified or does not fit into any of the other categories

Not-a-incorrect Incorrect responses including an indication that the subject believes that the response was incorrect or
was unsure of accuracy, or the response was posed as a question

Not re-coded
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believed the answer was incorrect (not-a-correct response) (Table 2).
Perseverations, visual and ‘other’/miscellaneous errors were ex-

cluded from later PCA analyses due to their rare occurrence (< 2% of
overall errors; see Materials and Methods). The main error types of
formal and unrelated errors were rare as well (1.95% and 1.56%, re-
spectively), however as they are central to the Dell model we included
them in the subsequent analyses.

The principal component analysis on the naming error data pro-
vided an exploratory approach to clustering error types; resulting in
five groups of errors as listed in Table 3: 1) phonemic, formal, neolo-
gism and initial (termed PhonErr); 2) semantic, mixed and not-a-in-
correct (termed SemErr); 3) dysfluency and not-a-correct (termed
DysErr); 4) circumlocution errors (termed CircErr); and 5) omissions
(termed OmErr). We computed the correlations between these clustered
naming error factor scores and the s and pmodel parameters (Table 3): s
negatively correlated with SemErr, OmErr and CircErr, which suggests
that PWA exhibit increased errors of these types if they have a poor s
parameter weight. The p weight negatively correlated with PhonErr and
positively with SemErr (Table 3). Results from the single categories and

PCA combined errors are highly overlapping, so that poor s weights led
to more meaning-related errors or omissions, while poor p weights lead
to more errors of sound structure.

3.1.2. Principal component analysis
To examine the relationship between s and p weights and a wide

range of language and cognitive tests, an omnibus PCA was performed
which included 21 neuropsychological assessments and the Dell model
parameters (see Supplementary Fig. S1 for covariance matrix of raw
data). The cross validation analysis to determine the optimal number of
components revealed that a four-component solution produced the best
model that minimised RMSE. The Kaiser-Meyer-Olkin measure of
sampling adequacy was 0.646 and the Bartlett's Test for Sphericity was
significant (approx. chi-square= 1041.67, df=253, p < 0.001).
Three of the factors closely resembled factors reported previously
(Butler et al., 2014; Halai et al., 2017) and were termed ‘phonological
ability’ (29.93% variance explained by factor 1), ‘semantic ability’
(14.80% variance explained by factor 2) and ‘executive-demand’
(12.60% variance explained by factor 4). Another factor identified here

Fig. 2. (A) Lesion overlap map across PWA in the current study. Maximum voxel= 38 (x, y, z: −21, −11, 26), located in the left superior corona radiata white
matter. (B) VBCM analysis for s parameter weight (blue) and p parameter weight (red) (voxel height p < 0.005, FWE-cluster corrected p < 0.05). (C) VBCM analysis
for s and p parameter weights, omission errors, and their overlap (voxel height threshold p=0.005, FWE-cluster corrected p < 0.05). (D) VBCM correlations on
factors from omnibus principal component analysis. Significant clusters are colour coded according to legend and thresholded at p=0.005 voxel height, FWE-cluster
corrected p < 0.05 (except blue cluster in D) which is at p=0.005 voxel height uncorrected, 244 voxels). All results corrected for age, education and lesion volume;
see Supplementary Table S4 for details on peak coordinates and anatomy. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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was termed ‘auditory working memory’ (13.01% variance explained by
factor 3), as it loaded with tasks that required the online maintenance
and use of verbal inputs (forward and backwards digit span and spoken
sentence comprehension).

By performing correlational analyses between the s/p weights and
factors scores we observed that the sweight is positively correlated with
semantic ability (r=0.592, p < 0.001) and auditory working memory
(r=0.442, p=0.002), while the p weight only correlated with pho-
nological ability (r=0.876, p < 0.001). The omnibus PCA reiterates
these findings, where the p parameter was found to load with the
phonological ability factor only and the s weight loaded positively
across two factors, semantic ability and auditory working memory
(Table 4). The results were principally identical when performing this
analysis with a PCA with promax rotation (see Supplementary Table
S2).

As a further validity test of the PCA solution, we identified those
neuropsychological tests that are used in clinical practice to determine
the respective deficits. Since these highly representative tests might
have driven the PCA results, we re-ran the analysis by withholding
them and compared the PCA components to these typical clinical as-
sessments of each language/cognitive domain. Thus, we removed a test
of phonology (immediate non-word repetition), semantics (synonym
judgement), auditory working memory (backward digit span), and ex-
ecutive demand (Brixton Spatial Anticipation). The resultant PCA
model produced was very similar to the original PCA result. We found

factors relating to phonology (Component 1), semantics (Component
2), auditory working memory (Component 3) and executive-demand
(Component 4). For each component, we correlated the left out neu-
ropsychological tests to determine the validity of the components (see
Supplementary Table S3). We found that the phonology component
correlated strongly with immediate non-word repetition (r=0.848,
p < 0.001) and moderately with synonym judgement (r=0.415,
p < 0.01) and backward digit span (r=0.478, p < 0.001). Each of
these three tests require good phonological ability, where it is evident
that non-word repetition relies on this aspect the most, hence showing
strongest correlations, while the latter tests also require some level of
good phonological abilities to succeed. The semantic component cor-
related with synonym judgement (r=0.419, p < 0.01), which pro-
vides supporting evidence for this factor to be related to semantics. This
component was also weakly correlated with Brixton Spatial
Anticipation (r=0.311, p < 0.035), but it would not survive multiple
comparison correction. The auditory working memory component only
correlated with backward digit span to some extent (r=0.350,
p < 0.02), and finally the executive-demand component correlated
with synonym judgement (r=0.377, p < 0.01) and Brixton Spatial
Anticipation (r=0.368, p=0.01). It is plausible that the synonym
judgement test correlated with this component as this test is mainly
used to detect semantic deficits, and it is known to demand good ex-
ecutive-semantic processes (cf. Jefferies et al., 2006).

3.2. Neuroimaging results

In order to determine the neural correlates of the model parameters
and the factor scores, we performed a VBCM analysis controlling for age
and education (both with and without control for lesion size). Lesion
analysis for the s parameter revealed a significant cluster (voxel height
p < 0.005, FWE-corrected p=0.05) in anterior middle temporal gyrus
(MTG) extending to anterior parahippocampal gyrus and posterior su-
perior temporal gyrus (STG). This result survived cluster correction
when lesion volume was added as a covariate. We did not find any
neural correlates for the p parameter without lesion size correction;
however, we did with lesion volume correction (voxel height
p < 0.005, FWE-corrected p < 0.05) in anterior MTG/STG, Heschl's
gyrus and central opercular cortex extending to insula and pre- and
postcentral gyrus. In a subsequent analysis, we entered both s and p
weights simultaneously and found that both the s weight cluster and p
weight cluster described above survived the threshold (voxel height
p < 0.005, FWE-corrected p < 0.05, corrected for lesion size)
(Fig. 2B, placed below a lesion overlap map in Fig. 2A). Despite some
temporal lobe overlap between both parameters, the p parameter was
placed more anterior-dorsal compared to the s parameter.

Since the correlational analysis revealed that omissions were
strongly related to the s parameter, we performed a post-hoc analysis on
this special error type to investigate whether the relationship is mir-
rored in the lesion-symptom mapping results. Thus, we performed an-
other VBCM which mapped the lesion correlates of omission errors
(with covariates of age, education and lesion volume, FWE-corrected)
in order to determine the overlap between omission errors and the s and
p parameters. Omissions were associated with the MTG, partly ex-
tending to STG and inferior temporal gyrus (ITG) (Supplementary Table
S4). Thus, we found a striking overlap with the s parameter in anterior
MTG (voxel height p < 0.005, FWE-corrected p < 0.05); however,
there was also overlap with the p parameter more dorsally in MTG/STG
(see Fig. 2C).

Finally, we performed a VBCM analysis on the omnibus varimax
rotated PCA factor scores to determine the neural correlates of each
factor. In order to control for potential confounds, we added age and
years of education as covariates as well as lesion size. Fig. 2D (Sup-
plementary Table S4) shows significant clusters for phonological ability
(red) and auditory working memory (green) (voxel height p < 0.005,
FWE-corrected p < 0.05). The cluster for semantic ability did not reach

Table 2
Correlation analysis of square-rooted model parameters and naming error ca-
tegories.

√s-weight √p-weight

Correct 0.539⁎⁎⁎ 0.724⁎⁎⁎

Semantic −0.491⁎⁎⁎ 0.295⁎

Perseveration −0.711⁎⁎⁎ −0.178
Unrelated −0.506⁎⁎⁎ −0.148
Omission −0.467⁎⁎ −0.249
Initial −0.440⁎⁎ −0.434⁎⁎

Mixed −0.359⁎ 0.293⁎

Circumlocution −0.317⁎ 0.167
Other −0.437⁎⁎ −0.203
Phonemic 0.269 −0.786⁎⁎⁎

Neologism −0.089 −0.735⁎⁎⁎

Formal −0.111 −0.464⁎⁎

Visual −0.059 0.362⁎

Not-a-correct 0.250 0.307⁎

Not-a-incorrect −0.246 0.250
Dysfluency 0.137 0.169
Morphological −0.146 0.047

Statistical thresholds:
⁎ p < 0.05.
⁎⁎ p < 0.01.
⁎⁎⁎ p < 0.001.

Table 3
Correlation analysis of square-rooted model parameters and weighted naming
error factors obtained from a PCA of error types.

√s-weight √p-weight

PhonErr 0.112 −0.908⁎⁎⁎

SemErr −0.414⁎⁎ 0.321⁎

DysErr 0.234 0.284
CircErr −0.359⁎ 0.242
OmErr −0.462⁎⁎ −0.232

Principal components of error types formed five categories: phonological errors
(PhonErr), semantic errors (SemErr), dysfluency errors (DysErr), circumlocu-
tion errors (CircErr) and omission errors (OmErr).

⁎ p < 0.05.
⁎⁎ p < 0.01.
⁎⁎⁎ p < 0.001.
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significance at the current threshold, but was identified at the reduced
threshold with no other spurious clusters arising (p=0.005 voxel
height uncorrected, 244 voxels) (blue). The executive-demand factor
did not reveal significant correlations with any neural damage. The
phonological ability cluster was located on anterior/middle part of
middle/superior temporal gyrus (MTG/STG), planum temporale, cen-
tral opercular cortex and precentral gyrus. Auditory working memory
overlapped with phonological ability in the planum temporale, but the
cluster extended posteriorly along Heschl's gyrus, posterior STG and
posterior MTG, temporo-occipital MTG and ventral portions of the an-
gular and supramarginal gyrus. The sub-threshold cluster identified for
semantic ability was located within anterior and inferior portion of
MTG, extending medially through small portions of the anterior inferior
temporal gyrus, fusiform gyrus and parahippocampal gyrus as found in
previous VBCM studies (Butler et al., 2014; Halai et al., 2017) and
known to be involved in semantics (see review by Lambon Ralph et al.,
2017).

We further examined relationship between lesions and the beha-
vioural data in two ways: 1) we used the factors scores from an oblique
(promax rotation) PCA solution and 2) we used the varimax PCA model
to identify key behavioural tests (max loadings), which have not been
transformed into multidimensional space. The results for the promax
PCA are virtually identical to the results observed using varimax PCA
(Supplementary Fig. S2A), when all variables are entered simulta-
neously into one General Linear Model (GLM). We also created a se-
parate model for each component to identify areas that would normally
be discarded due to co-linearity, as the factors are not orthogonal – the
results again were almost identical except for the phonology compo-
nent, which was placed within the temporal lobe and did not extend
dorsally into the precentral gyrus (Supplementary Fig. S2B). Next we
chose four behavioural tests, whose loadings were high for each factor
(see Table 4), to be correlated to the lesions: 1) immediate word re-
petition, 2) spoken word-to-picture matching, 3) forward digit span and
4) Ravens Coloured Progressive Matrices. The results revealed high
overlap with already reported results (see Supplementary Fig. S2C & D).
In the first instance, when all four variables were entered into a single

model, the results replicated both the varimax and promax (when en-
tered together) neural correlates (compare Fig. 1D with Supplementary
Fig. S2C). Secondly, when we entered each test score as a separate
model, the results replicated those found in the promax (separate
model) analyses (compare Supplementary Fig. S2B with Supplementary
Fig. S2D). In brief, immediate word repetition correlated with the mid/
anterior parts of the middle and superior temporal gyrus (akin to
phonological ability), the spoken word-to-picture matching correlated
with a cluster in the middle and inferior temporal gyrus (similar to
semantic ability) and forward digit span correlated with a large cluster
in the mid to posterior superior temporal lobe extending posteriorly
into the supramarginal gyrus (similar to auditory working memory
ability).

4. Discussion

There are several albeit separate lines of research investigating word
production errors and speech difficulties in PWA, spanning from be-
havioural assessment, neuroimaging and computational modelling
(Basilakos et al., 2014; Rogalsky et al., 2015; Ueno et al., 2011; Walker
and Hickok, 2016; for a review see Cahana-Amitay and Albert, 2015).
The principal aim of this study was to draw all three key methods to-
gether for the first time – this is a key step towards generating unified
theories that bridge between behavioural, computational and neural
levels of explanation. Specifically, we examined the relation of the Dell
computational model (Foygel and Dell, 2000) to an extensive neu-
ropsychological test battery, as well as the neural correlates of both
measures.

At the most general level, it is striking that the dissociation between
semantic and phonological processes was reflected strongly across all
three methodologies, suggesting that these are two of the most im-
portant dimensions that underpin aphasic performance; this was found
in the Dell model (Foygel and Dell, 2000) through semantic and pho-
nological weights and in the factors underlying aphasic performance on
neuropsychological tests extracted by PCA (Butler et al., 2014; Halai
et al., 2017; Mirman et al., 2015a,b), with a clear one-to-one mapping
between these strands and to separate lesion correlates which align

Table 4
Factor loadings from the omnibus principal component analysis with varimax rotation (assessments and model parameters).

F1
29.93%

F2
14.80%

F3
13.01%

F4
12.60%

Communalities

Word repetition Del 0.89 0.17 0.20 0.09 0.87
Word repetition Imm 0.88 0.14 0.18 0.08 0.83
√p parameter weight 0.88 0.13 −0.02 −0.01 0.79
NonWord repetition Imm 0.86 0.02 0.28 0.07 0.81
NonWord repetition Del 0.80 −0.02 0.42 0.10 0.83
Cambridge Naming Test 0.75 0.55 0.24 −0.02 0.92
Boston Naming Test 0.74 0.46 0.26 −0.07 0.84
Mean length of utterance 0.70 0.12 −0.19 0.42 0.71
Words per minute 0.64 −0.02 0.01 0.37 0.55
Spoken word-picture matching 0.08 0.93 0.17 0.13 0.91
Written word-picture matching 0.05 0.85 0.03 0.33 0.84
√s parameter weight 0.13 0.59 0.44 −0.08 0.57
Word minimal pairs 0.49 0.54 0.21 0.27 0.64
96 Synonym judgement 0.36 0.44 0.33 0.42 0.61
Forward digit span 0.46 0.09 0.74 0.03 0.77
Type/token ratio −0.06 0.25 0.67 0.02 0.51
Spoken sentence comprehension 0.31 0.23 0.65 0.44 0.76
Backward digit span 0.41 0.09 0.61 0.21 0.59
Ravens Coloured Matrices −0.04 −0.07 0.13 0.85 0.74
Camel and cactus pictures −0.03 0.33 0.00 0.73 0.64
Token 0.42 −0.04 −0.44 0.52 0.64
Brixton Spatial Anticipation 0.20 0.26 0.19 0.52 0.41
NonWord minimal pairs 0.31 0.28 0.34 0.38 0.43

PCA on a large neuropsychological test battery and the s and p parameter weights (square root) from the interactive two-step model
(Foygel and Dell, 2000). Values ≥0.05 are indicated in bold, ≥0.04 in italics. Imm: Immediately, Del: Delayed. Numbered factors (F),
with percentages showing the variance explained per factor, were termed (1) ‘phonological ability’, (2) ‘semantic ability’, (3) ‘auditory
working memory’, (4) ‘executive-demand’.
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with independent convergent functional magnetic resonance imaging
(fMRI), transcranial magnetic stimulation (TMS) and neuropsycholo-
gical evidence with respect to semantic and phonological processing
(Hickok and Poeppel, 2004, 2007; Lambon Ralph et al., 2017;
Rauschecker and Scott, 2009). These results also provide strong evi-
dence for the validity of the extracted PCA components.

More specifically, in addition to three behavioural factors (pho-
nology, semantic, and executive-demand) that have been previously
described to underlie aphasic performance (Butler et al., 2014; Halai
et al., 2017; Mirman et al., 2015a,b), we also obtained an additional
factor - auditory working memory. This result was fairly robust as
shown in the supplementary analysis (see Supplementary Table S3)
where we repeated the analysis using an oblique rotated PCA in a
follow up analysis where we removed a number of clinically important
tests. The post-hoc correlations showed the components indeed re-
flected the behaviours indicated by the PCA exploration. Moreover,
application of various alternative approaches to VBCM yielded similar
results, corroborating the robustness of the methodological approach
chosen.

In the current dataset, the ‘speech quanta’ factor, which was iden-
tified previously (Halai et al., 2017), did not materialise. Instead the
words per minute and mean length of utterances loaded strongly with
phonological ability as well as moderately with executive-demand. In
addition, Tokens displayed a similar loading pattern, where it loaded
more strongly with executive-demand but moderately with phonolo-
gical ability. These results suggest that within this particular group of
patients there was enough variance to subdivide input and output
phonological abilities (factors 1 and 3), but in doing so the measures
previously related to speech quanta typically collapsed into the output
phonological abilities (factor 1) not leaving enough consistent variance
to form an independent speech quanta variable; this is also supported
by the neural correlates identified.

Relating the model parameters to our original factors including all
tests, we found that model parameter p was unambiguously related to
phonological errors and the phonological ability PCA factor. Following
the previous literature (Mirman et al., 2015a,b; Morton and Patterson,
1980; Plaut and Shallice, 1993), model parameter s was less clear-cut,
being related to both semantic errors and omissions, and loading
heavily with the PCA factors of semantic ability and auditory working
memory.

We also examined the relationship of the Dell model parameters and
PCA factor scores to neural damage using VBCM. Interestingly, the close
relationship between the s parameter and omission errors was mirrored
by their strong lesion-correlate overlap; in addition, there was also
some overlap with parts of the network for the p parameter, reflecting
the fact that omission errors can have multiple underlying causes.
Moreover, when simultaneously entering model parameters s and p and
controlling for lesion size, as expected we identified a lesion cluster
with maximum in anterior MTG for s, and a cluster in STG/central
opercular cortex for p. In short, we were able to corroborate previous
findings on neural correlates of PCA factors, and extended knowledge to
our novel factor of auditory working memory. There were no significant
clusters for the executive factor which also mirrors previous studies
(Butler et al., 2014; Halai et al., 2017; though see Lacey et al., 2017).

4.1. Parameters of the Dell model: phonological weight

In the analysis of behavioural data, we confirmed and extended the
findings of Schwartz et al. (2006) for the correlations of the Dell model
parameters with aphasic naming errors. We found that parameter p was
correlated negatively with errors in the phonological domain; the
moderate positive correlation with semantic and mixed semantic-pho-
nological errors can be explained by the fact that although semantics
and phonology may be impaired to a different degree, PWA who are
severely impaired in phonology tend to make fewer semantic errors, as
the proportion of semantic errors is related to a better overall

performance (see Schwartz et al., 2006) – presumably reflecting the fact
that output phonology has to be sufficiently intact to be able to output
semantic and other errors of commission. The same may hold for the
positive correlation with visual errors, though these were rare in oc-
currence (< 2%). Moreover, there is a positive correlation with correct
responses during which the participants indicated that they believed
the answer was incorrect (i.e., not-a-correct response), indicating that
with better phonological competence the accurate self-monitoring of
responses is more robust.

In the correlational analysis with the model parameters and the PCA
error factors, p was correlated negatively with the PhonErr factor only,
constituted by neologisms, phonemic errors, initial errors and formal
errors. Likewise, when the model parameters were included in an om-
nibus PCA with the full background neuropsychological assessments,
parameter p was found to load strongly yet uniquely on the phonolo-
gical ability component. Both these results again highlight the notion
that model parameter p is uniquely related to phonological abilities.

The neural correlates of the p parameter are in line with previous
evidence for the areas within the superior temporal lobe that are in-
volved in phonological processing. In particular, the cluster we found
was located at Heschl's gyrus, which is known to process auditory input,
and the surrounding areas are involved in the processing of phonolo-
gical forms (Hickok and Poeppel, 2007; Mirman et al., 2015a,b;
Rauschecker and Scott, 2009; Scott et al., 2000). Moreover, the iden-
tification of superior temporal, central opercular, insular and pre- and
postcentral areas for our phonological parameter p using VBCM highly
overlaps with regions found for phonological error frequency using
VLSM by Schwartz et al. (2012), whereby it especially overlaps with
their whole group result which includes persons with apraxia of speech
as in our sample, and its anterior-centred focus. Moreover, it reveals
high overlap with the VLSM results from Dell et al. (2013) for the p-
parameter (as obtained in contrast to the non-lexical weight parameter
of repetition nl, while our p-parameter includes both lexical and non-
lexical phonology) in pre-and postcentral and insular brain areas. The
STG component as found for our p-parameter was covered by their nl-
parameter instead, suggesting that the STG component covers the non-
lexical aspect of phonology within our data as well. The supramarginal
region, as found in their analyses, has been found for our working
memory factor in a more posterior region instead.

4.2. Parameters of the Dell model: semantic weight

Parameter s correlated negatively with a wide range of errors in-
cluding omissions, semantic errors, perseverations, and unrelated er-
rors. Moreover, s was correlated negatively with the PCA error factor
OmErr (omission errors), SemErr (comprising semantic, mixed, and not-
a-incorrect errors) and CircErr (comprising circumlocutions). In the
omnibus PCA with neuropsychological assessments and Dell model
parameters, s loaded positively across the factors of semantic ability
and auditory working memory.

These findings indicate a higher complexity for parameter s than the
pattern of results for the phonological parameter, p. Specifically, s is not
solely linked to semantic errors or just to the underlying semantic
ability neuropsychological factor. For example, s relates to omission
errors to similar degree, with lower s weights related to greater rates of
omission errors. This is particularly interesting, as omission errors are
not accounted for in the Dell model (Dell et al., 2013; Foygel and Dell,
2000; Schwartz et al., 2006) and are often disregarded in studies in-
vestigating naming errors in PWA (Cloutman et al., 2009; Mirman et al.,
2015a,b; Rohrer et al., 2008; Schwartz et al., 2009, 2012; Walker et al.,
2011), although they constitute one of the most common error types in
aphasia (in this sample 16% of naming responses according to our
classification and 25% according to the Dell classification) and are the
most common error type in semantic dementia (in which their profound
word-finding difficulties are underpinned solely by progressive de-
gradation of the semantic system: Lambon Ralph et al., 2001).
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Collectively, these results are consistent with accounts and models of
omission errors in terms of insufficient semantic input to speech pro-
duction to drive any lexical items to threshold (Laine et al., 1998;
Lambon Ralph et al., 2001). Alternative theories (the lexical editor
account: Baars et al., 1975; Dell et al., 2004) suggest that at least some
omission errors might also relate to mechanisms beyond the speech
production system which are able to monitor and edit potential re-
sponses before they are overtly generated. Our data are silent on this
hypothesis, which to be tested would require an independent measure
of internal speech monitoring which is not contained in our large test
battery.

Notwithstanding, the omission error type is clinically significant for
diagnostic purposes, and it deserves further investigation, especially
regarding monitoring and editing mechanisms, since deeper under-
standing will probably impact on language rehabilitation. It would be
important to understand whether a PWA's omission errors originate
from semantic and/or phonological difficulties, in order to attribute this
error type to the according origin, perform an appropriate diagnosis,
and focus treatment at the appropriate level of language impairment
including both linguistic and editorial processes. The current study
reveals that knowledge on the neuroscience basis of this multi-faceted
error type in each PWA, along with behavioural measures, might assist
in determining the origin of the deficit and assigning the appropriate
treatment method.

4.3. Lesion correlates

Regarding the lesion mapping results, we confirmed the close as-
sociation of parameter s to semantics by identifying a specified region
for s in the anterior MTG and anterior parahippocampal gyrus. This
results is consistent with the considerable, convergent data indicating
that the anterior temporal lobe (ATL) plays a major role in semantic
representation (for a review see Lambon Ralph et al., 2017) as well as
the importance of the ventral language route in semantic aspects of
language processing (Mesulam et al., 2015; Ueno et al., 2011; Weiller
et al., 2009). This cluster overlapped to a high degree with the cluster
found for omission error, corroborating the behavioural findings of a
close relation between parameter s and omission errors.

We were also able to replicate previous findings on the neural
correlates of phonological ability and semantic ability (Butler et al.,
2014; Halai et al., 2017; Mirman et al., 2015a,b), and we found neural
correlates of the new auditory working memory factor in superior and
middle temporal gyrus extending to ventral inferior parietal gyrus (see
also Mirman et al., 2015a,b for a potentially related split of receptive vs.
expressive spoken language), which is in accordance to the auditory-
motor integration and storage phases of working memory as described
by Hickok and Poeppel (2004), located in STS/superior temporal
sulcus, in Sylvian parietal (Spt) area, and in inferior parietal lobe. Ad-
ditionally, it overlapped with the two distinct MTG areas related to
phonological ability. Interestingly, since within the temporal lobe the
lesion correlates for semantic and phonological factors are located in
close proximity, omission errors which were associated with the middle
temporal gyrus overlapped with both factors, which explains the long-
standing difficulty to unequivocally attribute omissions to either im-
pairment type (Dell et al., 2004). In sum, the present study is a suc-
cessful example of bridging between computational, behavioural and
neural data to generate a unified account.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.03.031.

Acknowledgements

We thank all the patients and their carers for their contributions to
this research project. This research was supported by grants from the
Rosetrees Foundation (A1699), the MRC (MR/J004146/1) and ERC
(GAP: 670428 - BRAIN2MIND_NEUROCOMP).

References

Abel, S., Huber, W., Dell, G.S., 2009. Connectionist diagnosis of lexical disorders in
aphasia. Aphasiology 23 (11), 1353–1378.

Abel, S., Weiller, C., Huber, W., Willmes, K., Specht, K., 2015. Therapy-induced brain
reorganisation patterns in aphasia. Brain 138, 1097–1112.

Baars, B., Motley, M., MacKay, D., 1975. Output editing for lexical status in artificially
elicited slips of the tongue. J. Verbal Learn. Verbal Behav. 14, 382–391.

Ballabio, D., 2015. A MATLAB toolbox for Principal Component Analysis and un-
supervised exploration of data structure. Chemom. Intell. Lab. Syst. 149, 1–9.

Basilakos, A., Fillmore, P.T., Rorden, C., Guo, D., Bonilha, L., Fridriksson, J., 2014.
Regional white matter damage predicts speech fluency in chronic post-stroke aphasia.
Front. Hum. Neurosci. 8, 845.

Bates, E., Wilson, S.M., Saygin, A.P., Dick, F., Sereno, M.I., Knight, R.T., Dronkers, N.F.,
2003. Voxel-based lesion-symptom mapping. Nat. Neurosci. 6 (5), 448–450.

Bozeat, S., Lambon Ralph, M.A., Patterson, K., Garrard, P., Hodges, J.R., 2000. Non-
verbal semantic impairment in semantic dementia. Neuropsychologia 38 (9),
1207–1215.

Bro, R., Kjeldahl, K., Smilde, A.K., Kiers, H.A.L., 2008. Cross-validation of component
models: a critical look at current methods. Anal. Bioanal. Chem. 390 (5), 1241–1251.

Burgess, B.W., Shallice, T., 1997. The Hayling and Brixton Tests. Thames Valley Test
Company, Bury St Edmunds.

Butler, R.A., Lambon Ralph, M.A., Woollams, A.M., 2014. Capturing multidimensionality
in stroke aphasia: mapping principal behavioural components to neural structures.
Brain 137 (Pt 12), 3248–3266.

Cahana-Amitay, D., Albert, M.L., 2015. Neuroscience of aphasia recovery: the concept of
neural multifunctionality. Curr. Neurol. Neurosci. Rep. 15 (7), 568.

Cloutman, L., Gottesman, R., Chaudhry, P., Davis, C., Kleinman, J.T., Pawlak, M.,
Herskovits, E.H., Kannan, V., Lee, A., Newhart, M., Heidler-Gary, J., Hillis, A.E.,
2009. Where (in the brain) do semantic errors come from? Cortex 45 (5), 641–649.

Dell, G.S., Schwartz, M.F., Martin, N., Saffran, E.M., Gagnon, D.A., 1997. Lexical access in
aphasic and nonaphasic speakers. Psychol. Rev. 104 (4), 801–838.

Dell, G.S., Lawler, E.N., Harris, H.D., Gordon, J.K., 2004. Models of errors of omissions in
aphasic naming. Cogn. Neuropsychol. 21, 125–145.

Dell, G.S., Schwartz, M.F., Nozari, N., Faseyitan, O., Branch, C.H., 2013. Voxel-based
lesion-parameter mapping: identifying the neural correlates of a computational
model of word production. Cognition 128 (3), 380–396.

Fabrigar, L.R., Wegener, D., MacCallum, R.C., Strahan, E.J., 1999. Evaluating the use of
exploratory factor analysis in psychological research. Psychol. Methods 4.

Foygel, D., Dell, G.S., 2000. Models of impaired lexical access in speech production. J.
Mem. Lang. 43, 182–216.

Goodglass, H., Kaplan, E., Barresi, B., 2000. Boston Diagnostic Aphasia Examination
(BDAE). Pearson, London.

Halai, A.D., Woollams, A.M., Lambon Ralph, M.A., 2017. Using principal component
analysis to capture individual differences within a unified neuropsychological model
of chronic post-stroke aphasia: revealing the unique neural correlates of speech flu-
ency, phonology and semantics. Cortex 86, 275–289.

Henson, R.K., Roberts, J.K., 2006. Use of exploratory factor analysis in published re-
search: common errors and some comment on improved practice. Educ. Psychol.
Meas. 66 (3), 393–416.

Hickok, G., Poeppel, D., 2004. Dorsal and ventral streams: a framework for understanding
aspects of the functional anatomy of language. Cognition 92, 67–99.

Hickok, G., Poeppel, D., 2007. The cortical organization of speech processing. Nature 8,
393–402.

Jefferies, E., Crisp, J., Lambon Ralph, M.A., 2006. The impact of phonological or semantic
impairment on delayed auditory repetition: evidence from stroke aphasia and se-
mantic dementia. Aphasiology 20, 963–992.

Jefferies, E., Patterson, K., Jones, R.W., Lambon Ralph, M.A., 2009. Comprehension of
concrete and abstract words in semantic dementia. Neuropsychology 23 (4),
492–499.

Kaplan, E., Goodglass, S., Weintraub, S., 1983. The Boston Naming Test. Lea und Febiger,
Philadelphia.

Kay, J., Lesser, R., Coltheart, M., 1992. Psycholinguistic Assessments of Language
Processing in Aphasia (PALPA). Erlbaum, Hove.

Lacey, E.H., Skipper-Kallal, L.M., Xing, S., Fama, M.E., Turkeltaub, P.E., 2017. Mapping
common aphasia assessments to underlying cognitive processes and their neural
substrates. Neurorehabil. Neural Repair 31 (5), 442–450.

Laine, M., Tikkala, A., Juhola, M., 1998. Modelling anomia by the discrete two-stage
word production architecture. J. Neurolinguist. 11 (3), 275–294.

Lambon Ralph, M.A., McClelland, J.L., Patterson, K., Galton, C.J., Hodges, J.R., 2001. No
right to speak? The relationship between object naming and semantic impairment:
neuropsychological evidence and a computational model. J. Cogn. Neurosci. 13 (3),
341–356.

Lambon Ralph, M.A., Moriarty, L., Sage, K., 2002. Anomia is simply a reflection of se-
mantic and phonological impairments: evidence from a case-series study.
Aphasiology 16, 56–82.

Lambon Ralph, M.A., Jefferies, E., Patterson, K., Rogers, T.T., 2017. The neural and
computational bases of semantic cognition. Nat. Rev. Neurosci. 18 (1), 42–55.

Mesulam, M.M., Thompson, C.K., Weintraub, S., Rogalski, E.J., 2015. The Wernicke
conundrum and the anatomy of language comprehension in primary progressive
aphasia. Brain 138 (Pt 8), 2423–2437.

Mirman, D., Chen, Q., Zhang, Y., Wang, Z., Faseyitan, O.K., Coslett, H.B., Schwartz, M.F.,
2015a. Neural organization of spoken language revealed by lesion-symptom map-
ping. Nat. Commun. 6, 6762.

Mirman, D., Zhang, Y., Wang, Z., Coslett, H.B., Schwartz, M.F., 2015b. The ins and outs of

M. Tochadse et al. NeuroImage: Clinical 18 (2018) 952–962

961

https://doi.org/10.1016/j.nicl.2018.03.031
https://doi.org/10.1016/j.nicl.2018.03.031
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0005
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0005
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf4535
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf4535
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0010
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0010
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0015
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0015
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0020
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0020
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0020
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0025
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0025
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0030
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0030
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0030
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0035
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0035
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0040
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0040
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0045
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0045
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0045
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0050
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0050
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0055
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0055
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0055
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf8936
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf8936
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0065
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0065
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0070
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0070
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0070
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0075
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0075
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0080
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0080
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0085
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0085
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0090
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0090
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0090
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0090
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0095
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0095
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0095
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0100
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0100
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0105
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0105
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0110
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0110
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0110
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0115
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0115
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0115
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0120
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0120
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0125
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0125
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0130
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0130
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0130
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0135
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0135
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0140
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0140
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0140
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0140
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0145
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0145
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0145
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0150
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0150
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0155
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0155
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0155
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0160
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0160
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0160
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0165


meaning: behavioral and neuroanatomical dissociation of semantically-driven word
retrieval and multimodal semantic recognition in aphasia. Neuropsychologia 76,
208–219.

Morton, J., Patterson, K., 1980. A new attempt at an interpretation, or, an attempt at a
new interpretation. In: Coltheart, M., Patterson, K., Marshall, J. (Eds.), Deep Dyslexia.
Routledge & Kegan Paul, London, pp. 91–118.

Park, H.S., Dailey, R., Lemus, D., 2002. The use of exploratory factor analysis and prin-
cipal components analysis in communication research. Hum. Commun. Res. 28 (4),
562–577.

Plaut, D.C., Shallice, T., 1993. Deep dyslexia: a case study of connectionist neu-
ropsychology. Cogn. Neuropsychol. (5), 377–500.

Rapp, B., Goldrick, M., 2006. Speaking words: contributions of cognitive neuropsycho-
logical research. Cogn. Neuropsychol. 23, 39–73.

Rauschecker, J.P., Scott, S.K., 2009. Maps and streams in the auditory cortex: nonhuman
primates illuminate human speech processing. Nat. Neurosci. 12 (6), 718–724.

Raven, J.C., 1962. Advanced Progressive Matrices, Set II. H.K. Lewis, London.
Rogalsky, C., Poppa, T., Chen, K.H., Anderson, S.W., Damasio, H., Love, T., Hickok, G.,

2015. Speech repetition as a window on the neurobiology of auditory-motor in-
tegration for speech: a voxel-based lesion symptom mapping study.
Neuropsychologia 71, 18–27.

Rohrer, J.D., Knight, W.D., Warren, J.E., Fox, N.C., Rossor, M.N., Warren, J.D., 2008.
Word-finding difficulty: a clinical analysis of the progressive aphasias. Brain 131 (Pt
1), 8–38.

Russell, D.W., 2002. In search of underlying dimensions: the use (and abuse) of factor
analysis in personality and social psychology bulletin. Personal. Soc. Psychol. Bull. 28
(12), 1629–1646.

Schwartz, M.F., Dell, G.S., Martin, N., Gahl, S., Sobel, P., 2006. A case-series test of the
interactive two-step model of lexical access: evidence from picture naming. J. Mem.
Lang. 54, 223–264.

Schwartz, M.F., Kimberg, D.Y., Walker, G.M., Faseyitan, O., Brecher, A., Dell, G.S.,

Coslett, H.B., 2009. Anterior temporal involvement in semantic word retrieval: voxel-
based lesion-symptom mapping evidence from aphasia. Brain 132, 3411–3427.

Schwartz, M.F., Faseyitan, O., Kim, J., Coslett, H.B., 2012. The dorsal stream contribution
to phonological retrieval in object naming. Brain 135, 3799–3814.

Scott, S.K., Blank, C.C., Rosen, S., Wise, R.J., 2000. Identification of a pathway for in-
telligible speech in the left temporal lobe. Brain 123 (Pt 12), 2400–2406.

Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J., 2008. Lesion
identification using unified segmentation-normalisation models and fuzzy clustering.
NeuroImage 41 (4), 1253–1266.

Swinburn, K., Porter, G., Howard, D., 2005. Comprehensive Aphasia Test. Psychology
Press, Hove.

Tyler, L.K., Marslen-Wilson, W., Stamatakis, E.A., 2005. Dissociating neuro-cognitive
component processes: voxel-based correlational methodology. Neuropsychologia 43
(5), 771–778.

Ueno, T., Saito, S., Rogers, T.T., Lambon Ralph, M.A., 2011. Lichtheim 2: synthesizing
aphasia and the neural basis of language in a neurocomputational model of the dual
dorsal-ventral language pathways. Neuron 72 (2), 385–396.

Walker, G.M., Hickok, G., 2016. Bridging computational approaches to speech produc-
tion: the semantic-lexical-auditory-motor model (SLAM). Psychon. Bull. Rev. 23 (2),
339–352.

Walker, G.M., Schwartz, M.F., Kimberg, D.Y., Faseyitan, O., Brecher, A., Dell, G.S.,
Coslett, H.B., 2011. Support for anterior temporal involvement in semantic error
production in aphasia: new evidence from VLSM. Brain Lang. 117 (3), 110–122.

Wechsler, D., 1987. Manual for the Wechsler Memory Scale - Revised. Psychological
Corporation, San Antonio.

Weiller, C., Musso, M., Rijntjes, M., Saur, D., 2009. Please don't underestimate the ventral
pathway in language. Trends Cogn. Sci. 13 (9), 369–370.

Wilke, M., de Haan, B., Juenger, H., Karnath, H.O., 2011. Manual, semi-automated, and
automated delineation of chronic brain lesions: a comparison of methods.
NeuroImage 56 (4), 2038–2046.

M. Tochadse et al. NeuroImage: Clinical 18 (2018) 952–962

962

http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0165
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0165
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0165
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0170
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0170
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0170
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0175
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0175
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0175
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0180
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0180
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0185
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0185
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0190
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0190
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0195
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0200
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0200
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0200
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0200
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0205
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0205
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0205
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0210
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0210
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0210
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0215
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0215
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0215
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0220
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0220
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0220
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0225
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0225
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0230
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0230
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0235
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0235
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0235
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0240
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0240
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0245
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0245
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0245
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0250
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0250
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0250
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0255
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0255
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0255
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0260
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0260
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0260
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0265
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0265
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0270
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0270
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0275
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0275
http://refhub.elsevier.com/S2213-1582(18)30101-3/rf0275

	Unification of behavioural, computational and neural accounts of word production errors in post-stroke aphasia
	Introduction
	Interactive two-step model
	Principal component analysis
	Symptom-lesion mapping
	Aims and hypotheses of the current study

	Materials and methods
	Participants
	Overview of procedures for hypothesis testing
	Neuropsychological assessment and analysis
	Model fitting
	Correlational analysis and principal component analysis
	Acquisition of neuroimaging data
	Analysis of neuroimaging data

	Results
	Behavioural findings
	Correlational analysis
	Principal component analysis

	Neuroimaging results

	Discussion
	Parameters of the Dell model: phonological weight
	Parameters of the Dell model: semantic weight
	Lesion correlates

	Acknowledgements
	References




