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a b s t r a c t

During ice navigation, blade measurements of ice-induced
moments on ship propellers, are challenged by the harsh
operating environment. To overcome this problem, shaft line
measurements are performed inboard, and the required pro-
peller loads are subsequently estimated using a dynamic model
and the solution of an inverse problem. The inverse problem is
mathematically ill-posed and requires the determination of the
ice-induced moment on the propeller blades from shaft line
measurements. Full-scale torsional response data is presented
as calculated from indirect strain measurements on the shaft
line of a polar supply and research vessel. The vessel operated
on a 68-day voyage between Cape Town and Antarctica and
spent almost 11 days in sea ice with observed concentrations
above 90% and a maximum thickness of 3 m. Data for five ice-
induced load cases are presented, including the shaft torque
from indirect measurements and the estimated ice-induced
moment, which is obtained by solving an ill-posed inverse
problem. The ice-induced moments on the propeller are
obtained by approximating the drive-train as a viscously
damped, elastic lumped mass model. The ice-induced moment
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is then determined through existing approaches to solving the
ill-conditioned inverse problem. The lumped mass model is
presented along with algorithms to solve the inverse problem,
including truncated singular value decomposition, truncated
generalized singular value decomposition and Tikhonov's
method. The resulting time series data for the inversely cal-
culated ice-induced moments is published to provide industry
with load cases for ice-going propulsion design.
& 2018 The Authors. Published by Elsevier Inc. This is an open

access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Engineering

ore specific subject area
 Polar shipping

ype of data
 Table, text file

ow data was acquired
 Strain gauge measurements through a LORD MicroStrain V-Link LXRS

Wireless 7 channel analog sensor node and a WSDA-Base.

ata format
 Raw and processed

Example:
Case1_ShaftTorque.txt
� Time – Time vector
� ShaftTorq_Normal – Torque calculated from strain measurements
� ShaftTorq_ExHydro – Processed: Torque calculated from strain mea-

surements – hydrodynamic torque. This implies that a constant motor
torque is applied to overcome hydrodynamic resistance.

Case1_IceTorque.txt
� Time – Time vector
� IceInd_Torq_TSVD – Processed: Inversely determined ice-induced pro-

peller torque using Truncated Singular Value Decomposition.
� IceInd_Torq_TGSVD – Processed: Inversely determined ice-induced pro-

peller torque using Truncated Generalized Singular Value
Decomposition.

� IceInd_Torq_Tikh – Processed: Inversely determined ice-induced pro-
peller torque using the Tikhonov method.
xperimental factors
 Data was captured using a Höttinger Baldwin Messtechnik (HBM)
Quantum, which received data from a V-link system and converted the
digital signal to strain using a scale obtained from calibrating the node,
and passed the data through an aliasing filter.
xperimental features
 The response of ice-induced loading on the shaft line of a polar supply
and research vessel was recorded using strain gauges. This data was
processed through inverse methods in order to determine the ice-induced
moment on the propeller of the vessel.
ata source location
 SA Agulhas II Polar Supply and Research Vessel, during her 2015/2016
relief voyage between Cape Town and Antarctica.
ata accessibility
 Data is provided with this article.

elated research article
 [19] ‘Indirect load case estimation for propeller-ice moments from shaft

line torque measurements’, Cold Regions Science and Technology, 151,
pp.237-248, http://dx.doi.org/10.1016/j.coldregions.2018.03.016.

http://dx.doi.org/10.1016/j.coldregions.2018.03.016
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Value of the Data

� Shaft-line torque data are presented for operational incidences of propeller ice impacts on a polar
supply and research vessel on a voyage between Cape Town and Antarctica. The data included the
maximum ice-impacts as measured on the shaft-line, although this does not necessarily imply that
these load cases are also the maximum ice-induced moments on the propeller blade.

� Time histories of the induced propeller torque are published as determined through inverse
moment calculations, by using a viscously damped, elastic, lumped mass structural model.

� This data provides industry with operational load cases for ice-going propulsion design.
� The co-publication of time histories from inversely calculated shaft moments enables the

validation and further development of methodologies for inverse moment estimation.
1. Data

To determine the loading contribution of ice impact, the hydrodynamic torque was subtracted
from the measured internal torque and the direction of the moment inverted to obtain a positive
external ice-induced moment on the propeller. It was further evaluated if the estimated ice moment
could again be inverted to match the measured shaft torque value. This inverted internal torque was
obtained by determining the relevant external moment through the Tikhonov method and using this
result as an input to the dynamic model to obtain the internal torque (by solving the forward
problem).

The time series data of five propeller ice impact cases are published here as shown in Fig. 1. The ice
impacts were identified through indirect measurements on the port-side shaft line of a polar supply
and research vessel during ice passage in Antarctica. The operational conditions of the vessel are
summarized in Table 1.
2. Experimental design, materials, and methods

2.1. Vessel and voyage

The SAA II, depicted in Fig. 2, was manufactured in Rauma shipyard in 2012 by STX Finland [1]. Her
hull is strengthened in accordance with DNV ICE-10 and the vessel classified to Polar Ice Class PC-5,
which rates her capabilities for year-round operations in medium first-year ice containing old ice
inclusions (International Association of Classification Societies, 2011). The ship is propelled by four 3
MW diesel generators which power two Conver Team electric motors of 4.5MW each. She is
equipped with two four-bladed variable pitch propellers with individual shaft lines [16]. The SAA II
has open propellers and a direct diesel to electric drive to the propulsion shaft. Some additional
specifications of the vessel are presented in Table 2.

Shaft-line measurements were performed during the 2015/2016 Antarctic relief voyage of the SAA
II as presented by the GPS track in Fig. 3. A photograph of the four-bladed propellers is shown in Fig. 4.
The vessel departed from Cape Town Harbour (1) and headed south along the Greenwich Meridian.
Ice was encountered prior to reaching the ice shelf at Penguin Bukta (3). From here the vessel
departed for Akta Bukta near the German Antarctic Research Station, Neumayer, and continued
through heavy pack ice towards the South Sandwich Islands, South Thule (4). She exited the ice field
and reached South Georgia (5). She then returned to her original course from Cape Town and sailed
south to Penguin Bukta (3) and SANAE IV before heading back to Cape Town (1).

2.2. Visual ice observations

Visual observations of ice conditions were performed from the bridge of the vessel when operating
in ice as comprehensively documented by Suominen et al. [17]. The observations were executed in
round-the-clock two- to three hour shifts with five to seven observers in the group to mitigate



Fig. 1. Time histories for five load case data sets containing indirectly measured shaft torque and inversely calculated
ice-induced propeller moments.
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Table 1
Operating conditions during five propeller-ice impact conditions. Case 1, 2 and 5 were extracted from data on 12 December,
Case 3 on 13 December 2015 and Case 4, on 11 December 2015. Average values of machine control and data for the ice contact
duration and hydrodynamic torque, Qh, at the start of the ice contact condition are included.

Case Start Time Speed Qh Motor speed Motor power Propeller pitch Average ice
concentration

Ice thickness Floe size

[hh:mm:ss] [knots] [kNm] [rpm] [kW] [%] [%] [cm] [m]

Case 1 09:27:16 5.0 219.2 109.0 2270.0 88 2 110 60
Case 2 09:52:52 5.4 145.0 94.3 1313.3 88 12 70 30
Case 3 07:46:44 6.6 310.7 130.0 4073.0 88 59 35 2420
Case 4 16:50:47 3.8 222.1 85.1 670.3 70 21 110 15
Case 5 11:32:11 4.7 254.3 104.4 1830.0 88 10 54 60

R.J.O. de Waal et al. / Data in Brief 19 (2018) 1222–12361226
observer fatigue. Observations were reported in 10min intervals and included ice thickness, ice
concentration, snow thickness, brash ice amount, floe size as well as general comments. The thick-
ness, concentration, and floe size were estimated as occurrence percentages (in tenths) for given
categories during the measurement period.

The ice thickness was estimated by comparing the thickness of the cross-section of upturning ice
debris which was scaled with the aid of a yard stick. The yard stick was suspended overboard from the
main deck and was marked with 10 cm wide black and white markings to calibrate the estimations of
observers, see Fig. 5. Observers estimated the ice thickness using the stick as it is visible from the
bridge. The real ice thickness was obtained by scaling the observations with a factor of 1.5 in order to
correct for the parallax error. The factor was determined based on the distances to the sea surface and
measurement stick from the bridge. Observers were required to perform the classification of ice
thickness in categories with 20 cm increments between 0m to 2m with a final category for ice
thickness in excess of 2m (see Table 3). Additional thickness classes 2.0–2.5m, 2.5–3.0m and 43.0m
Fig. 2. SAA II vessel was instrumented for the 2015/2016 relief voyage Antarctica.

Table 2
Vessel specifications of the SA Agulhas II [16].

Gross tonnage 12,897 t Main engine maker Wärtsilä
Length / Breadth 134m / 22m Diesel engine type 6L32
Classification Det Norske Veritas Electric motor type N3 HXC 1120 LL8
Class notation 1A1 PC-5/ICE-10 Speed / Power at MCR 140 rpm / 4500 kW
Yard STX Finland, Rauma, Finland Nominal torque 307 kNm
Year built 2012 Propeller maker Rolls-Royce

No. of blades / Diameter 4 / 4.3m
Shaft characteristics Direct drive
No. of motors / propellers 2 / 2



Fig. 3. A GPS track of the 2015/2016 Antarctic relief voyage of the SAA II.

Fig. 4. The four-bladed, variable-pitch propeller of the SAA II.

Fig. 5. The measurement stick for ice thickness estimation. Each marker is 10 cm wide.
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Table 3
An extract from the subjective ice observation data template, which shows an example of ice concentration estimates [17]. A
similar process was followed for the subjective assessment of floe size and ice thickness.

Time UTC þ0 Snow [cm] Ice concentration in tenths

Start End 0–
10

10–
20

20–
30

30–
40-

40–
50

50–
60

60–
70

70–
80

80–
90

90–
100

Year mm dd hh mm hh mm Lat Lon min max

2013 12 22 8 0 8 10 �70.46 �8.426 50 6 3 1
2013 12 22 8 10 8 20 �70.45 �8.379 60 0 1 4 3 2
2013 12 22 8 20 8 30 �70.45 �8.377 4 2 1 3
2013 12 22 8 30 8 40 �70.45 �8.376 60 0 3 4 3

Fig. 6. The (a) operational profile and ice conditions, including (b) thickness (c) concentration and (d) floe size encountered by
the SAAII on the 2015/2016 Antarctic relief voyage.
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were added to observation classes for the 2015/2016 voyage. A limitation is that as the yard stick is
only 1.5m long, therefore the uncertainty increases significantly for the thickness classes exceeding
2.0m. The average ice thickness for a 10min period was determined by calculating a weighted
average from the thickness observation periods.

The concentration of the ice field was estimated from inboard observations from conditions
experienced in the close vicinity of the ship. As the crew preferably navigated in openwater instead of
ice, the ship followed open water leads in the ice whenever possible. In this case, the concentration
was marked as zero, although floes of ice could be seen. The range from 0 to 100% was divided into
categories with 10% increments, i.e. 0–10%, 10–20%, for observations of ice concentration. Here, zero
denotes openwater and 100% indicates complete ice cover. Table 3 presents an example from a part of
the visual observation sheet.

Ice floes were categorized in terms of diameter in categories which included o20 m, 20–100
m, 100–500 m, 500–2000m, 2–5 km, 45 km. The classes were selected based on the egg code
[2] used, for example, in the Baltic Sea. The floe diameters were estimated with the help of the
main dimensions of the ship. If the floes were smaller than the width of the ship (�20 m), those
belonged to the first class. If the floes were larger than the breadth, but smaller than the length
of the ship (�120 m), those belonged to the class 20–100 m. If the floes were larger than the ship
length, the diameter was estimated in multiples of the ship length.



Fig. 7. Location of strain gauges mounted along the shaft line.

Fig. 8. Shaft line measurements with (a) the Wheatstone bridge configuration (b) strain gauge placement and orientation and
(c) measurement setup on the shaft-line of the SAA II.
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The total voyage lasted 68 days, of which 10.7 days were spent navigating in ice, 40 days navi-
gating in openwater and 17.5 days stationary. The pie chart in Fig. 6a depicts the operational profile of
the vessel. The ice conditions varied throughout the voyage and are summarized in Fig. 6b-d.

2.3. Full-scale measurements

.Strain gauges were installed on the port side intermediate shaft line, 25.9m from the center of
gravity of the propeller (Fig. 7), to determine torque loading from strain gauge measurements. The
strain gauges were connected in a Wheatstone bridge configuration to reject axial strain, compensate
for temperature variations and reject bending. This was achieved by installing two pairs of T-rosette
strain gauges on diametrically opposing sides of the shaft. The gauges were inclined at 745° with
respect to the horizontal mid-plane of the shaft in order to measure the maximum shear stress on the
outer surface (Fig. 8a). A V-link lossless extended range synchronized (LXRS) system produced by
LORD MicroStrain, was installed to transmit the measurements wirelessly (Fig. 8b) to a HBM Quantum
mobile data acquisition system. The HBM Quantum was connected to a laptop via an Ethernet cable
and recorded through Catman AP V3.5 software at a sample rate of 600 Hz.

Fig. 8a provides a diagram of the Wheatstone bridge layout, indicating the supply voltage, UE , and
output voltage, UA, as well as the strain gauge resistances (R1 to R4) for the four gauges in a full bridge.
Fig. 8b depicts the orientation of the strain gauges for shear strain measurement on the shaft and
Fig. 8c shows the physical installation. The bridge was set up to reject both axial- and bending strain
whilst compensating for temperature variations. The gauge factor, k¼ 1:99, is supplied on the
packaging and εi, where (i¼ 1;2;3;4) represent the strain measurements from gauges 1,2,3 and 4 of
the Wheatstone bridge. When a torsional moment is applied, with the sense indicated in Fig. 8b,
strain gauge 2 and 4 will sense a negative strain and strain gauge 1 and 3 will sense an equal and
opposite positive strain. The resultant voltage, UA, is obtained through the relationship:

UA

UE
¼ k

4
ε1�ε2þε3�ε4ð Þ ð1Þ

The torque in the shaft, Qshaft ; is determined from the output voltage of the Wheatstone bridge
through:

Qshaft ¼UA
πEðd40�d4i Þ

16UEkd0 1þνð Þ ð2Þ



Table 4
Shaft line dimensions, material properties and shaft related variables at the measurement locations [3,6,14–16].

Description Symbol Value Description Symbol Value

Modulus of elasticity E 210 GPa Max ice thickness Hice 2.0m
Shear modulus G 81 GPa Ice strength index Sice 1.1m
Outer diameter d0 0.5m Pitch at 70% of blade radius P0.7 5.15m
Inner diameter di 0.175m Expanded blade area ratio EAR 0.51
Hub diameter dh 1.32m Depth of propeller centerline h0 3.75m

Fig. 9. A diagram of the dynamic model for the SAA II shaft line comprising inertia, damping and torsional spring
elements [15].
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Here, E, is the Young's modulus, ν; is the Poisson's ratio and d0 and di respectively reflect the outer
and inner diameters of the hollow shaft. The strain gauge factor, k, is directly obtained from manu-
facturer specifications. The shaft dimensions for the SAA II were obtained from engineering drawings
by STX Finland [16]. The material specifications were sourced from Rolls-Royce [15], which provided
parameters for numerical calculations during the propulsion system design phase. The dimensions,
material properties and shaft related variables are presented in Table 4. The depth of the propeller
centerline, h0, was not directly obtainable from engineering drawings and was inferred from scaled
vessel drawings.

2.4. Inverse methods

Ice-induced moments on the propeller are to be determined from indirect shaft line mea-
surements. This is achieved through a two-step process. Firstly, a forward problem is solved
whereby the dynamic model is subjected to a step impulse moment at the propeller. The
impulse response function between the externally applied ice moment on the propeller and the
internal torque response in the shaft line is thereby determined at the measurement location.
Secondly, an inverse problem is solved to determine externally applied propeller moments from
the measured shaft line torque and ill-posed inverted impulse response.

A simplified dynamic model of the torsional dynamic response of the SAA II was obtained by using
a lumped mass model documented by Rolls-Royce [15] and Ikonen et al. [11]. This was done to
determine the impulse response function, which describes the strain gauge output when a unit
moment is applied, at t ¼ 0, to the propeller. The governing matrix equation for the torsional response
of a mass-damper system is:

J €θ ðtÞþC _θ ðtÞþKθðtÞ ¼ Q ðtÞ ð3Þ
Here, J, is a matrix containing entries, which relate to the polar moment of inertia, C, the damping,

K, the stiffness, Q , the generalized excitation torque vector and θ , the angular displacement vector of
the twisting angles at the system nodes.

A diagram of the lumped-mass model for the SAA II shaft line is shown in Fig. 9. J1 represents the
controllable pitch propeller (CPP), J3 the mid-propeller shaft, J5 the sleeve coupling, J7 the oil



Table 5
Parameters for the lumped-mass model as published by Rolls-Royce [15].

Variable Description Value

J1 Propeller 1.347 � 104 kgm2

J3 Mid propeller shaft 5.590 � 102 kgm2

J5 Sleeve coupling 5.120 � 102 kgm2

J7 OD box flange 4.870 � 102 kgm2

J9 Thrust shaft collar 1.410 � 102 kgm2

J11 Motor flange 1.740 � 102 kgm2

J13 Propulsion motor 4.415 � 103 kgm2

c1 Water damping 1.136 � 105 Nm s/rad
c2,4,.,12 Steel shaft 1.800 � 102 Nm s/rad
k2 Steel shaft 5.950 � 107 Nm rad
k4 Steel shaft 5.950 � 107 Nm rad
k6 Steel shaft 1.120 � 108 Nm rad
k8 Steel shaft 6.930 � 108 Nm rad
k10 Steel shaft 5.090 � 108 Nm rad
k12 Steel shaft 1.430 � 108 Nm rad

Fig. 10. A diagram depicting the elements and relative nodes of the SAA II shaft-line model.( Adapted from [11]).
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distribution box flange, J9 the thrust shaft collar, J11 the electric motor flange and J13 the propulsion
motor. The hydro-dynamic damping on the rotating propeller is modelled by c1 whereas c2, c4, …, c12
and k2, k4, …, k12 respectively represent the shaft line damping and torsional stiffness. Q shaft is the
shaft torque vector, which is calculated from full-scale measurements using Eq. 2. Inverse methods
are subsequently required to determine the ice-induced moment at the propeller, Q shaft . The variables
used for the parameters of the dynamic model were obtained from Rolls-Royce documentation [30]
as presented in Table 5.

In order to determine the ice-induced torque at the propeller, rotational degrees of freedom were
defined along the longitudinal shaft axis (x-axis). The model comprised two types of elements,
namely inertia elements and shaft elements. The respective elements each contained two nodes as
shown in Fig. 10. Each node is associated with a torsional moment, Q , and angular displacement, θ.
Using the governing equation of torsional vibration in Eq. (3), Eq. (4) is derived for inertia elements
(corresponding to odd values of i) and Eq. 5 for torsional spring elements (even values of i):

Ji €θ i;1þci _θ i;1 ¼ �Qi;1þQi;2þQice ð4Þ

ci _θ i;2� _θ i;1
� �þki θi;2�θi;1

� �¼Qi;1 ð5Þ

with i being the increment for the thirteen elements of the shaft line system. Subscript ði;1Þ
denotes the value of the variable on the left side of the element and subscript ði;2Þ on the right side of
the element. For inertia elements, the angular displacement on the right and left sides are equal, and
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therefore, θi;1 ¼ θi;2. For spring elements, the internal torque remains constant and therefore,
Qi;1 ¼ Qi;2.

Direct integration methods could be used to obtain approximate solutions of dynamic systems
[20]. Two principal approaches to multi-degree of freedom direct integration methods include
explicit and implicit schemes [4]. For an explicit scheme, previously determined values of dis-
placement, velocity and acceleration are used to determine the response quantities. Implicit
schemes combine the equations of motion with difference equations to calculate the displacement
directly. Implicit schemes involve iterative procedures for each time step, making them more
computationally intensive [20]. The disadvantage of explicit schemes is that they are conditionally
stable relative to the size of the selected time step, whereas implicit schemes can be either con-
ditionally or unconditionally stable. Wilson [20] recommends that single-step, implicit, uncondi-
tionally stable methods should be used for step-by-step analysis of practical structures. To this end,
the unconditionally stable Newmark-Beta method was used for direct integration in the time
domain as outlined by Ikonen et al. [11].

The dynamic model was solved by first defining an integration formula for the angular velocity, _θ ,
and angular acceleration, €θ , through the Newmark-Beta method [20]. The Average Acceleration
Method is used for the Newmark-Beta integration with parameter values α¼ 0:5 and β¼ 0:25: Wilson
[20] recommends that these parameter values will result in no energy dissipation with good accuracy
for small time steps. The dynamic problem is solved by combining the Newmark-Beta integration
method using an incremental form of the governing equation of torsional vibration. For a more
detailed procedure, the reader is encouraged to refer to De Waal [18] and Ikonen et al. [11]. (Ikonen
et al., All calculations were performed using custom algorithms programmed in MATLAB.

2.4.1. Inverse methods
The principle of superposition [12] is used to model the response of linearly elastic dynamic

systems. The relationship between the shaft torque and ice-induced moment is expressed by the
convolution integral in Eq. (6), which represents the dependency between the loading on the pro-
peller, Qice, and the response measured on the shaft line, Qshaft . H is the impulse response function
between the loading point at the propeller and the measurement location on the shaft. The impulse
response function is shifted by the variable of integration φ to represent a random load history as a
series of impulses [12].

QshaftðtÞ ¼
Z t

0
Hðt�φÞQiceðφÞdφ ð6Þ

Eq. 6 can be solved by transforming it into a system of linear equations and discretizing the
integral into time steps, which results in Eq. (7) [13]:

Q shaftðtÞ ¼HðtÞQ iceðtÞ ð7Þ

Here, H is the impulse response matrix representing the transfer function between the loading
point at the propeller and the measurement location on the shaft, and Q shaft and Q ice respectively
represent the shaft- and ice-induced moment vectors. In order to solve for the unknown ice-induced
moment vector, Q ice, from shaft line measurements, Q shaft , Eq. (7) is rearranged, as presented in Eq.
(8). This results in the requirement to solve an inverse problem in order to determine the causal
factors that produce the observed response.

Q iceðtÞ ¼H�1ðtÞQ shaftðtÞ ð8Þ

The complication with the discretization of inverse problems is that this leads to an ill-conditioned
coefficient matrix for the system of linear equations, which require regularization methods to obtain
stable solutions [7]. Regularization is the procedure whereby the initial problem is modified to reduce
the sensitivity of the response towards a robust solution [13].

To this end three inverse methods have been investigated to perform inverse moment determi-
nation in an impact loading situation of the dynamic shaft line structure. In keeping with the
approach of Ikonen et al. [11] three regularization methods, namely Truncated Singular Value
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Decomposition (TSVD), Truncated Generalized Singular Value Decomposition (TGSVD) and Tikhonov
regularization were implemented.

TSVD is a common method used to regularize ill-posed systems. The SVD of HARm�n, where
mZn, can be defined as [9]:

H¼UΣVT ¼
Xn
i ¼ 1

uiσivi
T ð9Þ

Here, U is a matrix of orthonormalized eigenvectors of HHT and V comprises the orthonormalized
eigenvectors of HTH. Furthermore, Σ is a diagonal matrix containing non-negative singular values of H
in decreasing order. As expressed in Eq. (9) the solution of the system depends on the singular values,
σi, and singular vectors (ui and vi) of H. TSVD aims to reduce the rank of the matrix, H, by eliminating
small singular values, thereby obtaining a closest well-conditioned approximation. This is achieved by
evaluating the magnitude of the singular values. If a discontinuity occurs where the singular values
decrease rapidly in magnitude, the larger singular values are retained and the remainder are set equal
to zero [10]. Eq. (9) can be rewritten to obtain the desired solution through the TSVD method, where,
j, represents the number of singular values retained [10] and qs is the internal shaft torque:

Q ice ¼
Xj

i ¼ 1

ui
Tqs

σi
vi; jrn ð10Þ

Truncated Generalized Singular Value Decomposition (TGSVD) is a more sophisticated method
whereby further information about the desired solution can be incorporated to stabilize the problem
[13]. This is achieved through the regularization matrix, L, which often takes the form of the first or
second derivative operator [7]. Ikonen et al. [11] found that the first order regularization matrix (Eq.
(11)) is well-suited to smooth the obtained propeller moment solution. It should be noted that, since
the elements of the solution correspond to changes in the ice-induced moment vector,
M ¼ ½Δm1Δm2Δm3…Δmn�T the regularization in fact corresponds to smoothing the solution by the
second order derivative.

L¼

�1 1 0 … 0
0 �1 1 … 0
⋮ ⋮ ⋱ ⋱ ⋮
0 0 … �1 1

2
6664

3
7775 ð11Þ

The system can be represented by the real matrix pair (HARm�n and LARp�n) with mZnZp [5]:

H¼U
Σ 0
0 In�p

" #
X�1 ð12Þ

L¼VðM;0ÞX�1 ð13Þ
Here, UARp�r and VARq�q, which have orthonormal columns. Therefore, UUT ¼ Ir and VTV¼ Iq.

Furthermore, XARr�r is a non-singular matrix. The desired solution can be obtained by applying
TGSVD, which is similar to TSVD wherein the number of singular values is reduced to j [10]:

Q ice ¼
Xp

i ¼ p� jþ1

ui
Tqs

σi
xiþ

Xn
i ¼ pþ1

ðui
TqsÞxi ð14Þ

Another widely used regularization method is Tikhonov's regularization method, which involves
the solution of a least squares problem. This method is convenient for problems in which both the
coefficient matrix and the required solution can only be determined approximately [7]. This method
filters out the unwanted components corresponding to small singular values by adding damping to
each TSVD component of the solution. The formulation of Tikhonov's method is [7]:

min
���HQ ice�Q shaft

���2
2
þλ

���LQ ice

���2
2

� �
ð15Þ



Fig. 11. Synthesized data for linear and half sine moment impulses of 40 ms duration presented as (a) a function of time and
(b) the first derivative as a function of time.
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Here, λ is a positive constant referred to as the regularization parameter. The required solution for
the ice moment vector, Q ice, minimizes the jectivi function for Thikonov's method in Eq. (15).

2.4.2. Validation and determination of regularization parameters
The solution of ill-posed inverse problems using TSVD and the Tikhonov methods, require the

determination of the respective regularization parameters, ne and λ. To validate that the applied
regularization methods were implemented correctly, a known ice moment impulse was applied as
described by Ikonen et al. [11]. This has three purposes: firstly, the feasibility of the method is
evaluated; secondly, the optimum levels of regularization for the application of real data can be
determined and thirdly, the different methods can be compared to one another to determine their
relative strengths.

Synthesized moment impulses were created, with the requirement that it be representative of a
real ice induced loading moment. A linear impulse of 40 ms duration and a peak of 200 kNm was
used, as well as a half sine impulse also of 40 ms duration and a maximum value of 175 kNm. These
impulses therefore represent potential ice impacts with sharp and round peaks. The duration of the
impulse is based on the modelled torque excitation for a 90 degree single blade impact sequence of a
four-bladed propeller. Furthermore, the impulse duration was also selected for algorithm validation
by Ikonen et al. [11] and selection of similar loadings would enable a comparison of the results
obtained. These impulses are presented in Fig. 11a.

The dynamic model applies the change in external moment, therefore the first time derivative of
the known moments need to be determined. This was done with a time step of 2ms, the equivalent to
a sample frequency of 500 Hz, as presented in Fig. 11b. The change in external known moment is
applied as in ice-induced moment. The hypothetical shaft-line response is then “recorded” at the
model element corresponding to the measurement location on the shaft line. In order to avoid inverse
crime, which is when the same, or very similar, theoretical information is employed to synthesize and
invert data in an inverse problem [21], Ikonen et al. [11] suggested adding deviations to the ver-
ification data. Two types of deviations were added. Firstly, 710% deviations were added to the inertia
and torsional spring stiffness, which resembles the uncertainty of the dynamic model. Secondly,
random deviations of 7650 Nm were added to each data point of the verification data to model the
uncertainty of the strain gauge measurements. This value corresponds to 71% of the peak torque
value measured on the propulsion shaft during ice-induced loading.

In order to apply inverse methods, the regularization parameters, ne and λ required determination.
The L-curve was plotted, whereby the semi-norm is depicted against the residual norm. The optimal
regularization values are located at the corner of the curve. If too much regularization is applied, then
the solution will not fit the desired curve properly and if too little regularization is applied then the
solution will fit the desired curve well but will be dominated by the contribution from the data errors
[9]. The L-curve is used to find the best compromise between the two quantities that need to be
controlled.



Fig. 12. Comparison of TGSVD and Tikhonov L-curves for a synthesized linear moment impulse.

Fig. 13. The calculation procedure used in InverseMethod.m.
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This plot is only applicable to the TGSVD and Tikhonov methods as SVD does not implement the
L-matrix. The zero, first and second order regularization matrix L was evaluated for the current model
and it was determined that the first order regularization matrix provided the best results for all three
inverse methods. The optimum number of non-zero eliminated singular values for GSVD was
determined to be ne ¼ 120 and the optimum regularization parameter for the Tikhonov was deter-
mined to be λ¼ 24:57� 10�2: Compact truncated methods were used whereby only the non-zero
eigenvalues with the corresponding eigenvectors were retained. These regularization methods were
implemented using algorithms written by Hansen [8]. The L-curve for the linear moment impulse is
presented in Fig. 12. The half sine moment impulse provided similar results.
2.4.3. Algorithm
Matlab algorithms are published with this data to load the load case data and perform the required

inverse calculations. The procedure followed by the Matlab algorithm, InverseMethod.m is outlined in
Fig. 13 and further highlighted in the fully commented algorithms attached to this submission.
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