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Abstract: The ability of cancer to metastasize is regulated by various signaling pathways, including
transforming growth factor β (TGFβ), also implicated in the upregulation of Snail-1 transcription
factor in malignant neoplasms. B-type Raf kinase gene (BRAF)V600E, the most common driving
mutation in papillary thyroid carcinoma (PTC), induces epithelial to mesenchymal transition (EMT)
in thyroid cancer cells through changes in the Snail-1 level, increasing cell migration and invasion.
However, little is known about the mechanism of Snail-1 and BRAFV600E relations in humans.
Our study included 61 PTC patients with evaluated BRAFV600E mutation status. A total of 18 of
those patients had lymph node metastases—of whom 10 were BRAFV600E positive, and 8 negative.
Our findings indicate that the expression of Snail-1, but not TGFβ1, correlates with the metastatic
phenotype in PTC. This is the first piece of evidence that the upregulation of Snail-1 corresponds with
the presence of BRAFV600E mutation and increased expression of Snail-1 in metastatic PTC samples is
dependent on BRAFV600E mutation status.
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1. Introduction

Papillary thyroid carcinoma (PTC) is the most common thyroid cancer accounting for 80–85%
of all thyroid cancer cases. Although its incidence is gradually growing, the cancer-related mortality
rate is relatively stable, and PTC has a good prognosis with an average 5-year survival rate of above
90% [1]. However, above 50% of PTC case often have performed local lymph node metastasis and
approximately 10% of PTC cases represent aggressive metastatic neoplasm with distant metastases to
lungs or bones [2]. In addition to an increased rate of primary tumors, there has been also growing
incidence of regional and distant PTC metastases, which obviously increases the global need for
improving our understanding of pathogenesis process and identifying effective, targeted treatments.

The fundamental mechanism by which epithelial-derived tumor cells may become malignant
and obtain an invasive phenotype is the epithelial to mesenchymal transition (EMT). EMT is essential
to both physiological developmental processes, as well as metastatic cancer. Numerous studies
have demonstrated that this process is aberrantly activated during thyroid cancer development [3,4].
Moreover, it was discovered both in vitro and in vivo that thyroid tumour cells from PTCs and
anaplastic cancer (ATCs) may constitutively display an active EMT process when compared to normal
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thyrocytes. This results in the loss of cells’ polarity, decreased expression of particular epithelial
markers and increased expression of mesenchymal markers [5,6].

It is currently known that EMT may be initialized and maintained by various molecular factors,
including an inflammatory cytokine-transformation growth factor-β (TGF-β) [3]. Transforming growth
factor β (TGFβ) is one of the most abundant cytokines that regulates many biological processes such
as cell differentiation, apoptosis, proliferation, and other physiological and pathological conditions.
TGFβ1 is thought to be the primary isoform which is overexpressed in many tumor types and may
promote tumor invasion and metastasis through multiple Smad-independent or non-canonical signaling
pathways [7,8]. The TGFβ family of signaling molecules has been implicated in the upregulation of
key transcription factors such as Twist, Zeb or Snail-1 [8,9]. Importantly, it has been also discovered
that such transcription factors may initiate the EMT process itself [3,10].

Snail-1 belongs to a family of zinc-finger transcription factors and its primary function is the
repression of E-cadherin, which results in reduced cell adhesion and promotes migratory capacity [9,11].
In addition, Snail-1 activation induces fibrosis in various organs such as the kidneys, liver and lungs.
The pathological activation of Snail-1 probably contributes to organ fibrosis which may further lead to
chronic inflammation and cancer [12]. Snail-1 has been also recently implicated in the regulation of
drug resistance and the induction of the cancer stem cell (CSC) phenotype [9,13].

However, the induction of the EMT process in the context of cancer invasion remains Snail-1′s
most studied function. A large number of studies have found that metastatic tumors of the colon,
breast, ovary and prostate carcinomas overexpress the Snail-1 protein [9,14]. Its overexpression
is generally correlated with aggressiveness, lymph node metastases (LNM), tumor recurrence and
poor prognosis [15,16]. Our previous experiments concerning colon adenocarcinoma HT29 cells
also indicated that Snail-1 overexpression reduced cell adhesion and increased migratory properties,
which coincides with the above observations [17]. Furthermore, it was shown that Snail-1 may also
play a key role in cancer cell cytoskeleton reorganization, while a positive correlation between Snail-1
presence and Tubulin–β3, (TUBB3) (one of the main proteins building microtubules, a major component
of the eukaryotic cytoskeleton) upregulation in adenocarcinoma cell lines has been observed [18].
Although Snail-1 is not expressed in normal thyroid tissue, it was described to be overexpressed in
different thyroid cancer cell lines [19].

PTC oncogenesis is associated with the occurrence of the mutations within the B-type Raf kinase
gene–BRAF [20]. Although numerous different variants of BRAF mutations have been discovered
so far, over 90% are the BRAFV600E mutation. This genetic aberration influences and constantly
activates the mitogen-activated protein kinase (MAPK) signaling pathway and leads to uncontrolled
cell proliferation and differentiation [21]. Among other genetic alternations involving the MAPK
pathway (such as RET/PTC or RAS) BRAFV600E is present in more than 50% of PTC, but is rare in
follicular variants, and not found in follicular thyroid cancer. Therefore, BRAFV600E has been postulated
as a good prognostic marker to assist in risk stratification for patients with PTC [22].

The tumorigenic role of BRAFV600E in PTC development was well documented before in BRAFV600E

transgenic mice models. Studies performed on rat thyroid cells overexpressing BRAFV600E suggested
that BRAFV600E is an initiator of tumorigenesis and is required for tumor progression in PTC [23].
A large number of clinical studies have demonstrated an association of BRAFV600E mutation with
aggressive clinicopathologic characteristics and high tumor recurrence, although the results are
controversial [24].What is important, it has also been shown that BRAFV600E plays a crucial role in
direct EMT induction. Baquero et al. have studied this phenomenon in thyroid cancer cells and
reported that BRAFV600E induces EMT through changes in Snail-1 and E-cadherin protein expression
levels, which in turn, increase cell migration and invasion [25]. The interaction of BRAFV600E and
Snail-1 has been observed also in other cancer types. Interestingly, Massoumi et al. have reported
that hyperactivation of the BRAFV600Emutant in melanoma cells resulted in Snail-1 overexpression
and increased their metastatic potential. Introducing mutated BRAF into primary melanocytes led
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to increased Snail-1 expression after malignant transformation, constitutively high ERK activity and
resulted in acquisition of a more aggressive cell phenotype [26].

An association has been suggested between BRAFV600E and TGFβ in aggressiveness induction of
PTCs. It has been shown in rat thyroid cells overexpressing BRAFV600E that this oncogene stimulates
TGFβ secretion, and both proteins exert the same effect on both E-cadherin expression and cell
invasion [27]. However, the above studies, based on animal or cell line models (mostly anaplastic
thyroid cancer model), may not fully represent the interactions between Snail-1 and BRAFV600E

mutation in PTC in vivo.
The aim of our study was to determine whether there is any correlation between Snail-1 and TGFβ1

gene expression and the existence of BRAFV600E mutation in patients with metastatic or non-metastatic
PTC. To our knowledge, this study is the first attempt assessing the expression of the above EMT
markers and the metastatic potential of PTC in paraffin slides containing human PTC collected
during surgery.

2. Materials and Methods

2.1. Patients

The study group was recruited from PTC patients diagnosed and recruited to the trial during
routine follow-up from 2012 at the Endocrinology Clinic of the Holy Cross Cancer Center (Kielce, Poland).
Thin-section paraffin-embedded slides of thyroid tissues were prepared by a Holycross Cancer Centre
pathologist at the time of diagnosis as decribed earlier [28,29]. One of our pathologists (J. K.) marked the
area containing primary tumour foci on one haematoxylin and eosin-stained slide (red line, Figure 1).
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Figure 1. Representative cancer foci images. Hematoxylin and eosin staining of 2 different papillary
thyroid carcinoma (PTC) samples-the primary tumour foci have been marked by pathologist (red line)
(A,C). The images (B,D) show magnification ×400.

A total of 61 PTC specimens were chosen for further analysis. All the study procedures were approved
by the Bioethical Committee at the Holy Cross Medical Chamber, Kielce (no. 2/2013). Patients provided
their written consent for molecular tests.The patient characteristics are described in Table 1.

The presence of the V600E mutation in the BRAF gene was evaluated by three genotyping
methods: allele-specific amplification PCR (ASA-PCR), qPCR, and Seq as described previously by
Kowalik et al. [29]. Within the 61 patients in this study, 30 samples were BRAFV600E positive and
31 BRAFV600E negative. Within 18 patients with lymph node metastasis–10 were BRAFV600E positive,
and 8 negative. Controls were obtained from surrounding normal tissue after pathologist supervision.
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Table 1. Characteristics of papillary thyroid cancer patients from whom PTC tissue has been collected.

Characteristics n %

Sex
Male 10 16.4

Female 51 83.6
Age (years)

>55 13 39.3
≤55 48 60.7

T classification
T1–T2 26 42.6
T3–T4 35 57.4

Lymph Node Metastasis
positive 18 29.5
negative 43 70.5

Distant Metastasis
positive 3 4.9
negative 58 95.1

BRAFV600E mutation
positive 30 49
negative 31 51

2.2. Molecular Methods

The pathologist marked the area containing PTC tumor cells on a hematoxylin and eosin-stained
slide. Then, 4 to 5 unstained slides were deparaffinized by soaking twice in xylene for 15 min, twice in
96% alcohol for 5 min and once in distilled water. Tissue was scraped from thepathologist-selected
area with a scalpel and transferred to a test tube for further RNA isolation.

RNA isolation has been performed using a High Pure FFPE RNA Isolation Kit (Roche, Switzerland),
according to the manufacturer’s protocol. The purity and integrity of total RNA was assessed by
an Agilent 2100 Bioanalyzer. The degradation rate of total RNA was determined using RIN values.
Only the samples with RIN > 7 were further analyzed. Total RNA was used in the first strand
cDNA synthesis with a Maxima First Strand cDNA Synthesis Kit for RT-qPCR with dsDNase
(Thermo Scientific, Waltham, MA, USA) according to manufacturer’s instructions. RT-qPCR was
performed on the ABI PRISM® 7500 Sequence Detection System (Applied Biosystem, CA, USA)
by using TaqMan Gene Expression Assays and TaqMan™ Fast Advanced Master Mix according to
the manufacturer’s specification. The Assays Identification numbers were: SNAI1-Hs00195591_m1;
TGFβ1-Hs00998133_m1; GAPDH Hs99999905_m1. Thermal cycler conditions were as follows: 2 min
at 50 ◦C, hold for 20 s at 95 ◦C, followed by two-step PCR for 40 cycles of 95 ◦C for 3 s followed by
60 ◦C for 30 s. Amplification reactions, in triplicate for each sample, were performed and the results
were normalized to the GAPDH gene expression level. An analysis of relative gene expression data
was performed, using the 2–∆∆CT method. The calibrator was prepared as mean gene expression
values for normal tissue from 12 patients.

2.3. Statistics

The statistical analysis was carried out using the Statistica 12 software (StatsoftPolska, Kraków,
Poland). A graphical representation of the results was prepared using the SigmaPlot 11 software
(Systat Software Inc., San Jose, CA, USA). The results are presented as the mean of three independent
experiments ± SD. The normality of the distribution was assessed using the Shapiro–Wilk test.
The Student’s t-test was used for normally distributed parameters. Chi-square tests and t-test were
used in the medical history analysis. In all the analyses, results were considered statistically significant
when p < 0.05.
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3. Results

3.1. Snail-1, but not TGFβ1 Expression is Correlated with Metastatic Phenotype in PTC

The EMT process may be induced both through transcription factors such as Snail-1 or growth
factor TGFβ1. Altered expression of those genes has been observed previously in thyroid cancer
cell line models [4,25]. We analyzed the expression of those two genes in 61 FFPE tissues from
PTC patients. A total of 18 PTC samples were representing metastases (18 lymph node, with three
distant—as described in Table 1)—described later as “Metastatic PTC”, and 43 PTC samples had
no diagnosed metastases (“Non-metastatic PTC”). RT-qPCR was performed using TaqMan Gene
Expression Assays. We observed a statistically significant (p < 0.001), more than 2.5-fold increase in
Snail-1 gene expression in metastatic PTC samples as compared to non-metastatic samples (Figure 2,
grey bars). The expression of the TGFβ1 gene in non-metastatic PTC patients was slightly higher,
however, no statistical significance for this tendency between the studied groups was noted.
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Figure 2. The expression of Snail-1 but not TGFβ1 was correlated with the metastatic phenotype in
PTC samples. The gene expression was evaluated by quantitative RT-qPCR in metastatic (n = 18) and
non-metastatic (n = 43) PTC groups. The relative mRNA level was normalized to GAPDH. The results
are presented as the mean of three independent experiments ± SD. ** p < 0.001.

3.2. The Presence of BRAFV600E Mutation Associates with Snail-1 Expression in PTC

As described before, Snail-1 protein expression may be regulated by BRAFV600E mutation in
human thyroid cancer cells [25]. Therefore, we divided our studied group into BRAFV600E positive
(30 patients) and BRAFV600E negative samples (31 patients). The presence of the V600E mutation
in BRAF gene was evaluated previously [14]. Snail-1 mRNA expression was significantly higher
(ca. 2-fold) in PTC with BRAFV600E mutation in comparison to BRAFV600E negative samples (p < 0.05)
(Figure 3). However, the expression TGFβ1 did not differ between those two groups.
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Figure 3. The expression of Snail-1 is correlated with the presence of B-type Raf kinase gene (BRAF)V600E

mutation in PTC samples. The gene expression was evaluated by quantitative RT-qPCR in BRAFV600E
(+) (n = 30) and BRAFV600E (−) (n = 31) PTC groups. The relative mRNA level was normalized to
GAPDH. The results are presented as the mean of three independent experiments ± SD. * p < 0.05.
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3.3. The Upregulation of Snail-1 in Metastatic PTC Samples is Dependent on BRAFV600E Mutation Status

Furthermore, we aimed to evaluate the role of BRAFV600E mutation on the expression of Snail-1
and TGFβ1 within metastatic PTC samples. Among 18 PTC patients with lymph node metastasis–10
samples harboured BRAFV600E mutation (described later as “Metastatic- BRAF V600E (+)”), and 8 were
BRAFV600E negative (“Metastatic–BRAF V600E (−)”). Among 43 PTC patients with no diagnosed
metastases—20 were BRAFV600E positive (“Non-metastatic–BRAF V600E (+)”), and 23 BRAFV600E
negative (“Non-metastatic–BRAF V600E (−)”).

Snail-1 expression level was nearly 3-fold higher in metastatic PTC that harbored the BRAFV600E

mutation when compared to the metastatic but BRAFV600E negative group (p < 0.05) (Figure 4A,
grey bars). Interestingly, the expression level of the Snail-1 gene in metastatic but BRAFV600E negative
PTC samples (Figure 4A) remained on a similar level as in the non-metastatic PTC patients, regardless of
BRAFV600E mutation status (Figure 4B).
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Figure 4. The upregulation of Snail-1 in metastatic PTC samples is dependent on BRAFV600E mutation
status. The gene expression was evaluated by quantitative RT-qPCR in both BRAF V600E (+) (n = 10)
and BRAF V600E (−) metastatic (n = 8) (A) and non-metastatic BRAF V600E (+) (n = 20) and BRAF
V600E (−) (n = 23) PTC groups (B). The relative mRNA level was normalized to GAPDH. The results
are presented as the mean of three independent experiments ± SD. * p < 0.05.

On the other hand, in both metastatic and non-metastatic PTC groups: BRAF V600E (+) or (−)
(Figure 4A,B, white bars), no significant differences in TGFβ1 gene expression levels were found
(Student’s t-test, p > 0.05 in each case).

Table 2 summarizes some vital clinical features of the studied metastatic and non-metastatic PTC
patient groups. Statistical analysis showed no significant statistical correlation between BRAFV600E

mutation status in PTC tissue and gender, age at diagnosis, or T-classification of the primary tumor.
However, it was observed that significantly more samples of non-metastatic PTC tumors with T3–T4
classification harbored the BRAFV600E mutation. Furthermore, it can be observed that more patients
with non-metastatic and BRAFV600E negative PTC had been diagnosed as less advanced T1–T2 tumor
stage (p = 0.0002). Nevertheless, due to the limited number of patients in the studied groups evaluation
of such analysis requires further research.
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Table 2. Clinical features of metastatic and non-metastatic PTC tumors with or without BRAFV600E

mutation, ** p < 0.001.

Clinical Features

Metastatic Tumors Non-Metastatic Tumors

BRAFV600E

Positive (n = 10)
BRAFV600E

Negative (n = 8)
p-Value BRAFV600E

Positive (n = 20)
BRAFV600E

Negative (n = 23)
p-Value

Gender
Male 4/10 (40%) 1/8 (12.5%) 0.120 2/20 (10%) 3/23 (13%) 0.400

Female 6/10 (60%) 7/8 (87.5%) 18/20 (90%) 20/23 (87%)
Age at Diagnosis

(years)
Mean ±SD 54 ± 14 49 ± 15 0.506 55 ± 12 47 ± 15 0.050
≤55 6/10 (60%) 5/8 (62.5%) 0.501 10/20(50%) 17/23 (74%) 0.110
>55 4/10 (40%) 3/8 (37.5%) 10/20 (50%) 6/23 (26%)

T Classification
T1–T2 2/10 (20%) 3/8 (37.5%) 0.200 7/20 (35%) 18/23 (78%) 0.0002 **
T3–T4 8/10 (80%) 5/8 (62.5%) 13/20 (65%) 5/23 (22%)

4. Discussion

PTC is the most common of all thyroid cancers, with a gradually growing incidence.
The majority of PTC cases generally present good prognosis with conventional therapies.
Nevertheless, approximately 10% of PTC cases progress to more aggressive forms associated with local
invasion, distant metastases and poorer clinical outcome [1,2]. Despite metastasis remaining the key
cause of failure in cancer treatment and mortality, its molecular mechanisms remain poorly examined.

Metastatic process is associated with change of phenotype due to the epithelial–mesenchymal
transition (EMT), an essential physiological mechanism in embryonic development and tissue repair.
However, EMT may also contribute to the progression of disease, such as organ fibrosis or cancer [3].
This process results from the induction of transcription factors that change gene expression, therefore
promoting the loss of cell–cell adhesion, modifying cytoskeletal dynamics and leading to a change from
epithelial morphology and physiology to the mesenchymal phenotype. EMT can be induced by various
signaling pathways, for example mediated by transforming growth factor β (TGFβ), Wnt–β-catenin,
Notch, Hedgehog receptor tyrosine kinases (RTK) [4,5].

The role of TGFβ in cancer is complex: this pathway may function both in tumor suppression and
in tumor promotion. TGFβ also functions as a tumor suppressor in early tumor development. In a
number of human cancers, TGFβ inhibits cell cycle progression, increases apoptosis, and suppresses the
expression of growth factors, cytokines, and chemokines. The function of TGFβ as a tumor suppressor
or a tumor promoter depends on the context and stage of tumor progression. Its shift to a pro-metastatic
role at later tumor stages has been shown to be mediated by various signaling pathways [7,10].

The thyroid gland expresses the TGFβ1 gene mRNA and synthesizes the protein, which under
physiologic conditions regulates thyroid growth and function. Interestingly, it was concluded that the
alterations in the signaling pathway of TGFβ1 are not the same in tumors from different species [7].
It seems it is not entirely possible to apply the results obtained in animal or cell culture studies to
normal or pathological human thyroid tissue. It should be noted that using a single experimental
research model usually entails some limitations. For example, employing exclusively tissue material
collected from patients, may lead to a somehow less comprehensive scientific reasoning.

The studies of the expression of TGFβ1 performed before in human PTC revealed that,
when compared to the central areas, the peripheral invasive areas of the tumors had increased
expression of TGFβ1, NFkβ, and CDC42 as well as showing a decrease in cell–cell adhesion proteins.
Moreover, these regions presented also an overexpression of vimentin, a characteristic marker of
EMT. The authors concluded that these changes might be related to increased tumor invasiveness and
suggest an important role of TGFβ as inductor of EMT and metastasis [5,7]. Other studies of Brace et al.
have shown that TGFβ1, but not TGFβ2, is significantly increased in PTC compared to benign thyroid
nodules and therefore may serve as a potential diagnostic marker [30].
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However, in our studies, no statistically significant differences were found in TGFβ1 gene
expression in BRAF V600E (+) and BRAF V600E (−) PTC groups, as well as in PTC metastatic samples
with known BRAFV600E mutation status. Possibly, this may result from the fact that TGFβ has
been found overexpressed locally in the invasive front of cancer cells, also in different cancer types,
for example in the breast cancer [31]. Moreover, in ovarian cancer Wang et al. have demonstrated
that the expression of TGF-β1 is not associated with lymphatic metastasis [32]. Moreover, it has been
discovered that BRAFV600E increases exclusively TGFβ1 secretion through the MEK/ERK pathway in
thyroid tumour cells [27]. The observations of Riesco-Eizaguirre et al. have led to the concept that
the action of TGFβ in PTC is very important locally as a modulator of the tumor microenvironment,
however, the total TGFβ1 expression may not be altered [33].

It has been widely described that the TGFβ cascade also induces the expression of Snail-1-a zinc
finger transcription factor, the main E-cadherin repressor and one of the most potent EMT inducers [34].
Snail-1 was found to be overexpressed in the invasive fronts of several human tumors derived from
epithelial cells [4,14] and proved to play a key role in PTC, as well. Although Snail-1 is not expressed in
normal thyroid tissue, histopathological analyses have proved that the expression of Snail-1 protein was
mainly located in the cytoplasm and nuclei of PTC cells [19]. The overexpression of this gene and the
upregulated protein level have been discovered in numerous cancer types such as ovarian and breast
carcinomas, melanomas, oral squamous carcinomas, human thyroid carcinomas and their metastases.
In the context of thyroid cancers, the effects of Snail-1 interactions have not been thoroughly studied or
understood. It has been suggested that Snail-1 expression, together with TGFβ1, is associated with
lymph node metastasis in PTC and may be a potential biomarker of tumor diagnosis and prognosis in
PTC [8].

Interestingly, Baquero et al. have discovered that Snail-1 expression may also be regulated by
BRAFV600E—the most common mutation found in PTCs [25]. In the thyroid carcinoma cell model,
BRAFV600E induced EMT via changes in Snail-1 and E-cadherin protein expression levels, which in
turn increased the migration and invasiveness of these cells. Moreover, inhibition of BRAFV600E

significantly decreased invasion of thyroid cancer cells, tumor volume and metastases in a mouse
model of anaplastic thyroid carcinoma [25,27].

In our studies, it was observed that BRAFV600E mutation was present in significantly more cases
of non-metastatic aggressive tumors (with T3–T4 classification). However, due to the limited number
of patients in the studied groups, such statistics should be evaluated with some perspective.

Most clinical research has demonstrated an association between BRAFV600E mutation status,
aggressive clinicopathologic characteristics of PTC and high tumor recurrence, although the results
remain controversial [24]. Contradictory results from other groups have stressed that, although
BRAFV600E mutation may show very high prevalence of the BRAF mutation in PTC in the population,
the presence of the mutation itself was not statistically associated with a metastasis, patient age,
completeness of resection, local invasion or tumor size score. Although BRAFV600E analysis may have
some value in distinguishing malignant and benign thyroid tumors, it is currently believed that alone
it is not a good predictor of more the aggressive clinical course of PTC [28].

Therefore, we have aimed to evaluate if Snail-1 and TGFβ1 genes expression correlate with one
another in human PTC tissue samples or whether they are related to BRAFV600E mutation status or LNM
tumor staging. We demonstrate that Snail-1 gene expression is significantly increased in metastatic PTC
patients group (based on LNM scale) in comparison to non-metastatic samples. Moreover, we show
that Snail-1 elevated expression also correlates with BRAFV600E positive status. Our results clearly
correspond with the data obtained by Baquero et al. on the cellular model [25]. On the contrary,
Mitchell et al., utilizing immunohistochemical techniques, suggested that Snail-1 protein expression
did not correlate with BRAF status and E-cadherin expression in PTC [35]. Such discrepancies may
result from different molecular techniques, or the relatively small number of studied patient samples.
It must be also emphasized that Snail-1 protein is relatively unstable, and in the cytoplasm, it may be
prone to proteasomal degradation, with a half-life of only twenty-five minutes. GSK3β is a Snail kinase
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can bind to and phosphorylate this transcription factor, facilitating its degradation. Phosphorylation
determines Snail-1′s subcellular location, as GSK-3β-mediated phosphorylation induces Snail-1 export
to the cytoplasm [9,36]. Therefore, every study concerning Snail-1 protein expression should also
consider its localization.

Interestingly, for the first time using human PTC tissue model, our findings reveal that Snail-1
gene expression was significantly higher exclusively in metastatic PTC that harbored the BRAFV600E

mutation, but not in metastatic BRAFV600E-negative PTC tissue. In contrast, we did not observe
such differences in Snail-1 gene expression in non-metastatic PTC patients, regardless of BRAFV600E

mutation status. This may suggest that in cells altered by metastatic processes, such as EMT, BRAFV600E

mutation facilitates the mechanism of Snail-1 overexpression. It has previously been proposed that
BRAFV600E can increase Snail-1 expression both at transcriptional level and via GSK3β inhibition [27].
However, the mechanism of transcription regulation in the presence of BRAF mutation remains to be
further elucidated.

Despite some limitations of our study resulting from the relatively small sample size due to the
selection of metastasizing PTC cases, caused by only one mutation of individual gene (BRAFV600E),
the presented data confirm that BRAFV600E participates in mechanisms involved in the increase in
Snail-1 expression in metastatic PTC. Possibly, the interplay between BRAFV600E and Snail-1 may play
a key role in the thyroid gland neoplastic transformation and cancer cell invasiveness. The further
elucidation of the mutual interactions between Snail-1 and BRAFV600E mutation in PTC in vivo may
shed new light on the issue of metastatic thyroid cancer development. Better understanding of its
complexity would help to identify specific targets for modern molecular therapies and develop more
accurate diagnostic strategies.
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