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Abstract
Parcellation of whole brain tractograms is a critical step to study brain white matter structures and connectivity patterns. The 
existing methods based on supervised classification of streamlines into predefined streamline bundle types are not designed 
to explore sub-bundle structures, and methods with manually designed features are expensive to compute streamline-wise 
similarities. To resolve these issues, we propose a novel atlas-free method that learns a latent space using a deep recurrent 
auto-encoder trained in an unsupervised manner. The method efficiently embeds any length of streamlines to fixed-size 
feature vectors, named streamline embedding, for tractogram parcellation using non-parametric clustering in the latent 
space. The method was evaluated on the ISMRM 2015 tractography challenge dataset with discrimination of major bundles 
using clustering algorithms and streamline querying based on similarity, as well as real tractograms of 102 subjects Human 
Connectome Project. The learnt latent streamline and bundle representations open the possibility of quantitative studies of 
arbitrary granularity of sub-bundle structures using generic data mining techniques.

Keywords  Streamline tractography · Streamline embedding · Streamline clustering · Diffusion MRI · Recurrent auto-
encoder

Introduction

Diffusion tractography is a post-processing technique that 
generates streamlines as a proxy to study the underlying 
white matter fiber networks. Diffusion-weighted imaging 
(DWI) is a magnetic resonance imaging (MRI) technique 
that measures the random motion of water molecules in bio-
logical tissues (Jones, 2010). In brain imaging, DWI is used 
to characterize the distribution and orientation of the under-
lying white matter pathways. DWI data provides quantitative 

diffusion measurements, including the apparent diffusion 
coefficient (ADC) and fractional anisotropy (FA), that can 
be further analysed to model the voxel-wise magnitude and 
orientation information. Current techniques include diffu-
sion tensor imaging (DTI) and spherical harmonics based 
methods (e.g. constrained spherical deconvolution (Tournier 
et al., 2008)) for high angular resolution diffusion imaging 
data (HARDI). Together with fiber tractography, DWI data 
enable investigation of brain network connectivity using 
three dimensional (3D) reconstruction of streamlines to 
represent white matter fibre pathways in the brain.

Streamlines consist of a series of 3D spatial positions that 
can be grouped into meaningful bundles using streamlining 
clustering or segmentation algorithms. Since manual stream-
line anatomical labelling is extremely time-consuming, many 
automated or semi-automated labelling solutions have been 
proposed to identify and label streamlines to pre-defined 
anatomical white matter fiber bundles, e.g. the corticospinal 
tract (CST) and corpus callosum (CC). The automated solu-
tions to the streamline labeling problem can be: (i) region-of-
interest (ROI) based filtering, i.e. the assignment of a stream-
line is determined by defining ROIs where the streamlines 
should pass, bypass and terminate (Cammoun et al., 2012; 
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Colon-Perez et al., 2016; Jones & Pierpaoli, 2005; Wakana 
et al., 2007; Wassermann et al., 2016; Yendiki et al., 2011); 
(ii) distance based methods that label a streamline to its spa-
tially closest reference streamline tract (Clayden et al., 2007; 
Corouge et al., 2004; Labra et al., 2017; Maddah et al., 2005); 
and (iii) classifier-based methods that learn a model from 
annotated streamline data to correspond to a streamline pre-
defined bundle class, with deep learning (DL) based clas-
sifiers with convolutional neural networks (CNNs) (Gupta 
et al., 2017, 2018; Ugurlu et al., 2018; Zhang et al., 2020) 
and graph convolutional networks(GCNs) (Liu et al., 2019) 
used for supervised learning. The ROI-based and distance-
based approaches require carefully defined ROIs and refer-
ence tracts, and are difficult to adapt to group studies, due to 
inter-subject variability and time consuming manual annota-
tion. The classifier based approaches require a large number 
of labeled streamlines to train the DL models, and are only 
limited to predict a fixed number of predefined streamline 
bundles according to the manual annotations for model train-
ing in the dataset.

Supervised learning approaches are limited to prede-
fined streamline bundle types and require a large number of 
annotated streamlines via manual or semi-automated annota-
tions. Conversely, unsupervised learning methods are able to 
cluster streamlines in various granularities without knowl-
edge of the labels. Early methods focused on the design of 
spatial distance functions. The mean closest point distance 
(Corouge et al., 2004) was widely used to compute a dis-
tance matrix of all the streamline pairs, i.e. inter-streamline 
distances, and conduct clustering algorithms to decom-
pose streamlines into plausible bundles, including spectral 
clustering (Ziyan et al., 2009) and hierarchical clustering 
(Jianu et al., 2009; Zhang et al., 2008). The method calcu-
lates the Euclidean distances of each point on a streamline 
to all points in another streamline. A more computational 
efficient approach, QuickBundles (Garyfallidis et al., 2012), 
uses the minimum average direct-flip (MDF) distance, and 
the element-wise distance measurements of two streamlines 
that are required to have the same length. The method does 
not handle different streamline lengths and spatially vari-
ous endpoints where streamlines belong to the same bundle 
types but have endpoints that are not apart from each other.

The efficiency of streamline clustering can be improved 
using a feature space which encodes the streamlines into 
corresponding feature representations, termed streamline 
embedding. Measuring the distances between a stream-
line and the reference streamlines (i.e. the landmarks) can 
capture the relative position and shape information of a 
streamline. By selecting a predefined number of refer-
ence streamlines, a distance-based feature vector can be 
constructed with the same length. Olivetti et al. (2012) 
designed three different policies to select reference stream-
lines, and used a symmetric minimum average distance 

(Zhang et al., 2008) to encode each streamline to a feature 
vector. Bertò et al. (2021) selected reference landmarks 
from global and local perspectives, and considered the dis-
tances of the streamline endpoints to the global reference 
landmarks and the predefined ROIs. Lam and co-workers 
(Lam et al., 2018) also included curvature and torsion as 
features to represent a streamline. Cabeen et al. (2021) 
proposed an algorithmic way to select landmarks and rep-
resent each streamline with the sparse closest point trans-
form that concatenated the closest points on the streamline 
curve to form a feature vector. However, methods that rely 
on landmark selections assume all streamlines including 
the reference landmarks, have the same length and the 
embedding performance is related to the number of refer-
ence landmarks.

The shape and position of streamlines can be directly 
modelled by manually designing the feature scheme. Brun 
et al. (2004) captured the position, shape and connectiv-
ity information of streamlines by constructing a 9D vector 
consisting of the 3D mean vector and the lower triangular 
part of the covariance matrix of the streamline points. In 
the work from Maddah et al. (2006), the coefficients of the 
3D quintic B-spline were used as the feature vector repre-
sentation of a streamline. Batchelor et al. (2006) and Chung 
et al. (2010) used Fourier series as the basis function and 
the shape of streamlines were represented using a series of 
Fourier coefficients. This representation model was adopted 
by Wu et al. (2020) with dictionary prototypes learnt for 
each predefined bundle type and streamlines classified based 
on the minimized sparse coding residuals. In the work of 
FiberMap (Zhang et al., 2020), the sequential information 
of a streamline was converted to a 2D feature map by split-
ting the coordinates in the x, y and z axis as three channels, 
flipping and repeating the spatial coordinates. However, the 
FiberMap representations of streamlines lack a distance 
measurement definition so cannot be directly used for quan-
titative analysis, and the streamlines are assumed to have the 
same length. Nevertheless, the 2D feature map can be with 
2D CNN for supervised learning tasks.

Embedding or representation in a latent space is an effec-
tive and robust method for data-driven learning. A number 
of basis functions have been used to represent streamlines 
as combinations of the basis functions. Continuous basis 
functions can be learned with dictionary learning techniques 
and streamlines can be represented as a combination of dic-
tionaries, to encode streamlines as fixed-size coefficients that 
represent the feature vector (Alexandroni et al., 2017; Kumar 
et al., 2019). Similar to our previous work (Zhong et al., 
2020), Legarreta et al. (2021) used a 1D CNN-based auto-
encoder to learn a latent space to measure distances from 
the latent streamline representations to manually selected 
reference streamlines. However, convolutional neural net-
works do not capture the sequential nature of streamlines 
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and require fixed size inputs, which limits the ability of the 
neural network to handle variable streamline lengths.

In this paper, we extended our previous work (Zhong 
et al., 2020), and proposed and validated a novel recurrent 
neural network (RNN) to learn latent streamline representa-
tions. The key idea is motivated by the successful applica-
tions of sequential modelling in natural language process-
ing (NLP) where recurrent neural networks perform well 
on capturing long sequential information and are proven to 
effectively model latent features (Cho et al., 2014; Le & 
Mikolov, 2014; Mikolov et al., 2013a, b). This work uses a 
Long Short Term Memory (LSTM) RNN to auto-encode any 
length of streamlines into fixed-size latent vectors. Similari-
ties are measured in the latent space by simply computing 
the Euclidean distances between the streamlines. Compared 
to the existing methods, our method can handle streamlines 
of any length without resampling to ensure equal streamline 
lengths, and capture the sequential information of stream-
lines by the latent representation. Furthermore, we propose 
an effective way to construct group or streamline bundle 
embedding via averaging latent vectors. Embedding the 
streamlines and bundles enables clustering, querying, fil-
tering and downstream quantitative analysis of the white 
matter streamlines.

Methods

In this section, we present the proposed neural network 
architecture and training scheme, introduce the NN-based 
streamline embedding mechanism to convert any length of 
streamline to a multi-dimensional feature vector, show the 
effective way to obtain embedded streamline bundling from 
the streamline embedding, and describe the experiments and 
corresponding validation processes.

Recurrent Autoencoder

Long Short Term Memory (LSTM) is a type of recurrent 
neural network (RNN) unit that encodes sequential infor-
mation from variable length data samples (Hochreiter & 
Schmidhuber, 1997). It consists of several gates, and output 

a hidden state h and an output o . At each time step t  , the 
hidden state h(t) is updated by feeding the corresponding 
inputs and the state from the previous time step h(t − 1) , as

where x(t) is the input data of the current time step. 
Models with LSTM can learn to predict the next ele-
ment in a sequence, by fitting the probability distribution, 
p(xt|xt−1, xt−2, ..., x1) over a sequence. Therefore, LSTM has 
been widely used in areas where the data have a sequential 
temporal component, e.g. encoding video features (Bin et al., 
2018; Gao et al., 2017), natural language processing (Cho 
et al., 2014; Sundermeyer et al., 2012) and brain functional 
analysis (Oota et al., 2019).

Due to the temporal memorization property, LSTM units 
are successfully used in encoder-decoder neural networks 
to map an input sequence to a target sequence, which is 
commonly known as the Seq2Seq auto-encoder network 
(Sutskever et al., 2014). The encoder transforms the input 
sequence into a fixed-length latent vector, by feeding each 
element of an input sequence one by one and updating the 
hidden states where the last hidden state is considered to 
contain the summarized information of the entire input 
sequence. On the other hand, the decoder takes the sum-
mary vector from the encoder and generates elements 
sequentially. During training, encoder-decoder networks are 
trained in an end-to-end manner, while the trained encoder 
and decoder can be used independently or together dur-
ing inference. The encoder can be used to embed an input 
sequence into a latent vector alone.

Network Architecture and Training

As shown in Fig. 1, a LSTM-based seq2seq auto-encoder 
was used to embed the streamlines into a fixed length latent 
representation. The encoder received the first half of each 
streamline and output a feature vector; and the decoder was 
trained to predict the second half of the same streamline 
during the training. The encoder and decoder networks both 
contained a single layer of LSTM, with 128 hidden dimen-
sions. A seq2seq model with 1-layer LSTM encoder and 

h(t) = LSTM(h(t − 1), x(t))

Fig. 1   LSTM-based auto-
encoder architecture. The first 
half of the streamline was fed 
into the encoder of the network 
sequentially and the hidden state 
of the encoder was passed to the 
decoder. The decoder learned 
to point-by-point predict the 
second half of the streamline
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1-layer LSTM decoder had 136,579 trainable parameters in 
total. We used Adam optimizer to minimize the loss (i.e. 
Mean Square Loss) between the predicted and the ground 
truth, using a learning rate of 1e-3 and a batch size of 128.

For each training iteration, the input sequence (i.e. the 
first half of a streamline) was appended with a special token, 
(0,0,0) to indicate the end of the sequence and the same 
token was appended to the start of the output sequence (i.e. 
the second half of the same streamline). The training sam-
ples in a batch were padded with zeros to match the length 
of the longest streamline in the batch. The LSTM hidden 
and cell states computed from the encoder were passed to 
the decoder. During decoding, a special token was fed, with 
value, (0,0,0) to indicate the start of the decoding process, 
then the decoding loop predicted the next position itera-
tively. No teacher forcing technique was used, meaning that 
the input to predict the next position during decoding was 
the LSTM output from the previous decoding step. The loss 
was computed by aggregating the individual losses between 
each predicted position of the second half streamline and 
the ground truth. A gradient clip of 1.0 was used to prevent  
gradient explosion, and the training samples were ran- 

domly shuffled between each epoch. Besides, each training 
streamline had 50% chance of reversing the sequence on  
the fly during training, to encode the streamlines from both  
directions.

Streamline Embedding

After the model was trained, the encoder was used to 
embed the streamlines into fixed-length latent vectors, i.e. 
the streamline length was converted into the corresponding  
latent representation as shown in Fig. 2. The length of the 
latent representation could be configured during model 
training, by setting the hidden dimension in the LSTM cell, 
in this case, we used a 128 hidden dimension which resulted 
in the latent vector to be the length of 128. A larger latent 
dimension, e.g. 256 or 512, leads to a larger parameter 
space for the auto-encoder, and consequently more com-
putational resources during training and inference. On the 
other hand, a small latent space, e.g. 32 or 64, requires less 
computing power, but it is prone to errors if the model is 
under-fitted.

Fig. 2   Training and validation workflow. During training, the whole brain streamlines were used to train the auto-encoder. After trained, only the 
encoder part was used for embedding any length of streamlines into their fixed-size latent vectors
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When training the model with augmented streamlines by 
randomly reversing their sequence orders, the latent vector 
was made up of two parts: the encoding of the first half 
of the streamline and the encoding of the second half with 
reversed order. By averaging the vectors of the two half 
streamlines, it resulted in a full latent vector with the same 
dimension as the LSTM hidden dimension. Alternatively, 
the two parts could be concatenated to form the full latent 
vector that contained bi-directional information and was 
twice the length of the LSTM hidden dimension.

Streamline Bundle Embedding

The embedding of each streamline bundle can be formed 
to represent streamline groups, by averaging the latent rep-
resentations of the streamlines in the bundle or group. The 
bundle embedding, B was defined as the explicit average of 
the streamline embeddings, S, that belonged to that bundle, 
i.e.

where n is the number of streamlines in a bundle. In this 
way, the embedded bundle had the same vector length as the 
streamlines, which enabled similarity measurements to be 
computed between the streamline and bundles.

Similarity Measurement and Streamline Clustering

The similarity between two streamlines can be directly 
measured by calculating the Euclidean distance of their 
corresponding high-dimensional latent vectors. Similar to 
the application in NLP where semantically similar words, 
sentences or paragraphs are closer to each other, the auto-
encoded streamlines have the property that anatomically 
similar streamlines are located closer in the latent space. 
Hence, the streamline-wise similarity can be calculated 
using the Euclidean distance metric, which has the com-
puting complexity of O(n). The complexity is only depend-
ent on the length of the latent vector which is customiz-
able when training the auto-encoder, and a smaller hidden 
dimension can be used, for example 32 or 64, to reduce the 
distance metric computation.

Similarly, bundle-wise distance and similarity can be 
measured and any streamline can be classified to defined 
bundles by the sorted distances. As explained in “Streamline 
Bundle Embedding”, streamline bundle embedding can be 
represented as the average of all or a subset of the embedded 
streamlines. The similarity between different bundles can 
be calculated with the Euclidean distance and the distance 
between a streamline and a bundle can be computed using 
their corresponding embedded vectors. In this way, if the 

B =
1

n

∑n

i=1
Si

bundles are determined, any streamlines can be easily clas-
sified to the bundle types by simply measuring the distances.

The latent embedding enables streamline clustering with 
any clustering algorithm in an unsupervised manner. Each 
streamline is embedded to a feature vector using the trained 
encoder, and can be treated as delimited data where each row 
represents a streamline and columns are the latent features. 
Since the embedding part is a separate step, any cluster-
ing algorithms can be used to segment the streamlines into 
groups. In our work, the k-means algorithm was used to 
cluster streamlines into anatomically plausible groups.

Dataset

The first the dataset used in the study was from the ISMRM 
2015 Tractography Challenge (Maier-Hein et al., 2015) 
which contained 25 predefined types of streamlines in the 
TCK format. There were in total 200,432 streamlines avail-
able in the dataset, which covered 25 different types, such 
as corpus callosum (CC), left and right superior cerebel-
lar peduncle (SCP). The streamlines were further split into 
training (80%) and validation (20%) datasets. The model 
with the minimal loss value was selected for the subsequent 
experiments, where all of the streamlines were used.

The proposed method was also trained and validated on 
the tractgram dataset generated from Human Connectome 
Project (HCP) young adult dataset (Van Essen et al., 2013), 
and the dataset contained segmentations of 72 white matter 
tracts generated from 105 subjects (Wasserthal et al., 2018), 
where 102 subjects were used for this work. In the experi-
ments, the subject with HCP ID of 861,456 was randomly 
chosen for training, while the other 101 subjects were used 
for testing the generalization of the learnt model.

Experiments and Validation

To validate the latent representations that capture useful 
information about the streamlines, several streamline clus-
tering experiments were conducted. Streamlines were clus-
tered in the latent space, using the basic K-means algorithm, 
and assigned to k clusters where k was customizable. In 
our work, the experiments included: (i) segment symmetric 
bundles, e.g. left and right SCP, left and right ICP, anterior 
and posterior commissures, and tests whether the model can 
separate left/right or anterior/posterior counterparts; (ii) 
dimension reduction of latent vectors into 2D using t-SNE 
algorithm and visual check that the features were separable 
even in lower dimension; (iii) decomposition of the bundles 
on the left hemisphere (excluding CC, fornix and middle 
cerebellar peduncle (MCP)) into ten clusters and validation 
that the clustered streamlines could be mapped back to the 
ground truth bundle types; (iv) query and filtering of stream-
lines based on distance measurements; and (v) validation 
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of the streamline classification accuracy by sorting of the 
distances in the latent space. The clustered streamlines were 
further converted back and stored as TCK files for visualiza-
tion and subsequent processing tasks.

Further experiments were completed on a non-synthetic 
dataset for validating the performance of the method and 
examining the generalization of the learnt model. Tracto-
grams of 102 subjects from HCP dataset were used, where 
data from one subject was used as the training data while 
the other 101 subjects were kept for testing. In this case, 
the model was scaled up with 2 layers of LSTMs for both 
encoder and decoder, and the hidden states output from 
the second LSTM layer in the encoder were used to form 
the latent vectors. After the model was trained, 72 bundle 
embeddings were computed on the tractograms of the single 
subject data, by averaging all the streamlines embeddings 
belonging to each bundle type. During validation, stream-
lines from all the testing subjects were embedded as latent 
vectors, and classified as the bundle type that was closest to 
one of the 72 bundle embedding vectors. The classification 
results were examined by comparing with their ground truth 
types in the dataset.

The classification accuracy was assessed by computing 
the top-k metrics, which were defined as the percentage of 
correctly assigned streamlines based on the Euclidean dis-
tances to the embedded bundles. The top-1, top-3 and top-5 

were recorded to examine the performance of the learnt 
latent representation model.

The model and training process were implemented using 
Python 3.7 and pytorch (version 1.9.1). The tract files were 
loaded and processed with nibabel (version 3.1.0). The 
k-means clustering and TSNE dimension reduction were 
performed using sklearn (version 0.23.2) and numpy (ver-
sion 1.19.5). The training and validation were performed on 
both a 32-thread CPU (Intel(R) Xeon(R) CPU E5-2630 v3 
@ 2.40 GHz) and GPU (Nvidia Quadro P5000). The GPU 
has 2560 CUDA cores and 16 GB on-chip memory, and 
the CUDA version 10.2 was used with the driver version 
of 440.82.

Results

The model converged after training for typically two 
epochs, without pre-training from other types of trac-
togram data. Each iteration to train a 1-layer seq2seq 
model took 0.919 (± 0.201) seconds on CPU and 0.089 
(± 0.016) seconds on GPU respectively. Training the 
2-layer seq2seq model needed 1.637 (± 0.380) seconds 
on CPU and 0.107 (± 0.014) seconds on GPU. There were 
significant speedups when using the GPU to train models. 
The best performing model with the lowest loss on the 

(a) (b) (c)

(d)

(e) (f) (g)

(h)

Fig. 3   Streamline clustering of CA/CP and left/right CST, and their 
t-SNE 2D feature distributions. a-c Visual inspection of the cluster-
ing results for CA and CP; d  the t-SNE 2D projection of the latent 
vectors of all streamlines in CA and CP showing a clearly separation; 

e–g clustering results of the left and right CST; and h the t-SNE 2D 
projection of the latent vectors of all streamlines for the left and right 
CST
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validation data was chosen for reporting the results. In the 
inference phase, only the encoder was used for embedding 
streamlines.

Streamline Clustering

The latent features can distinguish spatially symmetric 
structures with non-parametric clustering algorithms. As 
shown in Figs. 3a–c, e–g and 4, the streamline bundles that 
have symmetric parts (left and right), e.g. uncinate fas-
ciculus (UF), inferior longitudinal fasciculus (ILF), pari-
eto-occipital pontine tract (POPT), superior longitudinal 
fasciculus (SLF), corticospinal tract (CST), optic radia-
tion (OR) and cingulum were perfectly clustered, while 
the results for the fronto-pontine tracts (FPT) were correct 
with minor errors. However, the left and right components 
of the inferior cerebellar peduncle (ICP) and superior cer-
ebellar peduncle (SCP) were not separated. Figure 3d and 
h show the feature distributions of the anterior commis-
sure (CA) and posterior commissure (CP) and the left/
right CST after dimension reduction from 128 to 2. These 
bundles were clearly separable indicating that the learned 
latent representations captured the necessary spatial infor-
mation of the streamlines.

A more challenging task was decomposition of the 
streamlines in the entire left hemisphere into meaningful 
bundles. In this case, the corpus callosum (CC), fornix 
and middle cerebellar peduncle (MCP) were excluded. 

As shown in Fig. 5, after clustering into ten classes, the 
model produced major bundles with minor errors, includ-
ing for the UF, CST, OR, SLF and cingulum. Some of the 
bundles overlapped, including the SCP and ICP, POPT 
and FPT, and ILF and OR. Figure 6 shows the 2D feature 
embedding of the ten bundles (i.e. 72,944 streamlines) 
from the left hemisphere after dimension reduction with 
t-distributed stochastic neighbor embedding (t-SNE) (Van 
der Maaten & Hinton, 2008). The original feature vectors 
of 128 dimensions were reduced to two dimensions for 
visualization purposes. Interestingly, streamlines of the 
same bundle type were visualized closer to each other and 
formed separable clusters, even in a two dimensional space 
representation. There were some major clusters, e.g. the 
left ILF bundle, the left UF bundle and the left Cingulum 
bundle, while some small disjointed samples spreaded 
away from the corresponding large clusters, which were 
due to either embedding errors or anomalous streamlines 
in the dataset. Furthermore, it was clear that there was an 
overlap between the left ILF bundle and the left OR bundle 
in the 2D visualization, because they were geometrically 
similar and the model might not perform well in these 
complicated cases.

Streamline Classification

Using the synthetic dataset we measured the classification 
accuracy based on the sorted Euclidean distances between 
the streamlines and the 25 bundles. The results were reported 

Fig. 4   Streamline clustering for 
left/right symmetric bundles. 
The symmetric bundles are 
embedded into latent represen-
tations and clustered into two 
groups. UF, ILF, POPT, SLF, 
CST and OR are perfectly clus-
tered, while the ICP, cingulum 
and SCP failed to discriminate 
between symmetric parts
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for the top-1, top-3 and top-5, i.e. the correct label in the k 
nearest, where k = {1, 3, 5} . The overall top-1, top-3 and 
top-5 accuracy were 81.1%, 97.0% and 98.7%, i.e. around 
81% of the time, the nearest bundle type is the correct type. 

The details of the classification accuracy for each bundle 
type can be seen in Table 1. Seven out of 25 bundles had 
classification accuracy of > 98% and mostly > 99%, includ-
ing for the left and right SLF, UF, and ICP and for the left 
CST. However, the accuracy was poorer for the bundles in 
the top-1 metric, e.g. CC (54%), fornix (61%), left POPT 
(55%), left SCP (43%), right FPT (55%) and left cingulum 
(69%). For the top-3 metric all of the bundle types, excluding 
the CC and left FPT, achieved > 90% accuracy and twelve 
bundle types (out of 25) had a top-3 metric beyond 99%.

Streamline Querying

The results of querying similar streamlines based on dif-
ferent distance thresholds is shown in Fig. 7. A streamline 
was randomly selected from the whole brain tractograms 
and treated as the seeding streamline. In Fig. 7, the seeding 
streamline was from the right CST bundle. By measuring 
the distances between the seeding streamline and all other 
streamlines in the tractogram enables streamlines to be que-
ried within different distance ranges. In this case, small dis-
tance thresholds, e.g. 0.125 and 0.25 led to small streamline 
bundles which were highly similar to the seeding streamline 
and were a subset of the right CST bundle. Increasing the 
distance thresholds resulted in the inclusion of more stream-
lines, with a threshold of 0.75 including the entire right CST 
bundle. Larger thresholds did not query additional stream-
lines since there were no streamlines within the distance 
range of 0.75 and 1. In practice, much smaller step sizes 

Fig. 5   Decomposition of the left hemisphere and the clustered bun-
dles. All the streamlines in the left hemisphere were converted into 
latent vectors and clustered into ten groups. Most of the streamline 
bundles can be extracted, while some groups contain parts from two 
bundles

Fig. 6   t-SNE 2D feature 
distributions of the ten selected 
bundles on the left hemisphere. 
The original feature vectors 
are 128 dimensions, and the 
dimensions are reduced to 2D 
by using t-SNE. Visual inspec-
tion of the feature distributions 
indicates that the streamlines 
from the same bundle types are 
closer to each other
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can be used to progressively explore the sub-structure of the 
white matter bundles.

Quantitatively, selecting the threshold can be guided by 
the distance measurements between the seeding streamline 
to the embedded bundles. In Fig. 8, it shows the streamline-
bundle distances calculated for the same seeding streamline 
used in Fig. 7. The distance between the seeding stream-
line and the bundle embedding of the right CST was 0.719, 
consistent with the observation that the threshold of 0.75 
returns the streamlines from the entire right CST bundle. 
The distance to the second closest bundle type, the right UF 
bundle was 1.95. Hence, any threshold selection below that 
value did not include streamlines from other bundle types.

Bundle‑Wise Distance Analysis

Group-wise similarity between the embedded bundles can 
be analyzed by the distance matrix. Figure 9 shows the dis-
tances between the 25 predefined bundles in the synthetic 
dataset, using bundle embedding. Symmetric bundles, such 
as left and right ICP were closer to each other in the latent 
space, and the same property was observed for SCP and the 
cingulum indicating that the shape information was encoded 
by the neural network. SCP and ICP bundles were closer to 
each other, as part of the streamlines have similar spatial 
properties. Groups of bundles are spatially closer to each 
other in the top-left part of the distance matrix, including 
the CA, CC, CP, left and right CST, left and right cingulum, 
left and right FPT and the fornix.

Hierarchical Streamline Clustering and Streamline 
Filtering

Figure 10 shows a hierarchical dissection of the streamlines 
in the corpus callosum using non-parametric clustering of 
the streamline embedding. It is similar to a binary tree and 
each non-leaf node is clustered into two groups. It can be 
seen that the dissection was along the anterior and posterior 
direction and the iterative process segmented the CC bundle 
into two, four and eight clusters on level 1, 2 and 3 respec-
tively. In this case, we used two clusters for each non-leaf 
node although any number of clusters can be set, and differ-
ent numbers of clusters can be used for non-leaf nodes on the 
same level. For example, on level 1, the first sub-bundle can 
be further segmented into three sub-parts, while the second 
sub-bundle can be segmented into four sub-parts.

Clustering of streamline embedding can be used to iden-
tify and remove false streamlines. In Fig. 10, the first sub-
bundle on level 2 was further segmented into two parts (i.e. 

Table 1   Top K accuracy 
(out of 25) based on distance 
measurements for each bundle 
type

Bundle Top1 Top3 Top5 Bundle Top1 Top3 Top5

OR_left 0.8875 0.9998 0.9998 CST_left 0.9979 0.9982 0.9982
MCP 0.9447 0.9999 0.9999 SLF_left 0.9989 0.9995 0.9995
FPT_left 0.6982 0.9652 0.9710 SCP_right 0.7699 0.9878 0.9994
Fornix 0.6197 0.8932 0.9862 FPT_right 0.5571 0.8254 0.9146
UF_right 0.9976 0.9981 0.9997 Cingulum_right 0.8730 0.9836 0.9949
CC 0.5440 0.8598 0.9290 Cingulum_left 0.6906 0.9450 0.9710
ILF_right 0.7613 0.9851 0.9934 CST_right 0.9629 0.9773 0.9979
POPT_left 0.5522 0.9706 0.9848 UF_left 0.9919 0.9919 1.0000
ILF_left 0.7310 0.9982 1.0000 CA 0.9002 0.9954 1.0000
POPT_right 0.8140 0.9152 0.9380 SLF_right 0.9977 0.9999 1.0000
ICP_right 0.9997 0.9997 0.9997 CP 0.7452 0.9781 0.9973
SCP_left 0.4368 0.9733 1.0000 ICP_left 0.9879 1.0000 1.0000
OR_right 0.8090 0.9999 0.9999

Fig. 7   Query similar streamlines by various distances. A streamline 
is randomly selected from left CST and used as the seeding stream-
line to query similar streamlines based on various distance thresholds. 
Use of a smaller threshold results in sub-bundles that are very similar 
to the seeding streamline, while a larger threshold leads to the extrac-
tion of the entire left CST bundle
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the sub-bundle 1 and 2 on level 3), with the streamlines in 
the second sub-bundle on level 3 identified as false con-
nections (in this case, the streamlines seeded from cortical 
region in the left hemisphere, had a sharp turn in the past in 
the right hemisphere and ended in the seeding region). This 
finding highlights that the proposed technique can filter false 
streamlines generated in the tractography process as embed-
ded streamline are spatially separable in the latent space.

Model Generalization Validation on Large Scale 
Non‑synthetic Data

The validation results on tractograms from HCP dataset 
shows that the model learnt from the training data and the 
bundle embedding generated from the single training sub-
ject can be generalized to a large population without the 
need of extra processing steps. We measured the top1, top3 
and top3 classification accuracies for each bundle type over 
all the 101 testing subjects. A 2-layer LSTM network for 
both encoder and encoder were used to increase the model 
capability. Overall, the proposed method achieved an 
average top-1 accuracy of 0.591(± 0.243) over all the bun-
dles on the 101 testing subjects, 0.853 (± 0.153) of top-3 
and 0.923 (± 0.111) of top-5, compared to top-1, 0.780 
(± 0.120), top-3, 0.953 (± 0.070) and top-5, 0.980(± 0.041) 
on the training subject. In Fig. 11, it shows the accuracy 
distributions for all the bundles across all the testing sub-
jects. There were 19 out of 72 bundles that had an aver-
age top-1 accuracy beyond 80%, and 9 bundles achieved 

accuracy above 90%. Particularly, the top-1 accuracies for 
MCP, the right Inferior occipito-frontal fascicle (IFO) and 
the right CST were 99.9% (± 0.001), 94.8%(± 0.055) and 
93.5%(± 0.43). In terms of the top-3 measurement, clas-
sification accuracies were above 80% for 53 bundles and 
above 90% for 33 bundles. Furthemore, there were 54 and 
64 bundles out of all the 72 bundles having top-5 accura-
cies above 80% and 90% respectively.

Inference Throughput

To measure the inference time of the proposed methods, 
10,000 streamlines were randomly sampled from the HCP 
tractogram dataset, and were used to measure the time 
of embedding them into latent vectors using 1-layer and 
2-layer LSTM encoders. For each test case, 20 runs were 
conducted and the means and standard deviations were 
calculated and shown in Table 2. It can be seen that the 
model running on the CPU, can process 10,000 stream-
lines uni-directionally within 0.6 s using 1 layer of LSTM 
and 0.72 s for encoding streamlines from two directions. 
Doubling the number of LSTM layers in the model on 
the CPU took twice as long. On the other hand, using the 
GPU achieved roughly 20 × speedup, and completed the 
same uni-directional tasks within 0.026 s and 0.053 s using 
1-layer and 2-layer LSTM encoders. Besides, it was worth 
mentioning that the inference times for encoding stream-
lines from bi-directions were very similar for models with 
1 or 2 LSTM layers.

Fig. 8   Sorted embedding dis-
tances of a randomly sampled 
streamline
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Discussion

We present a recurrent neural network to encode streamlines 
with variable lengths into fixed-size latent vector representa-
tions and quantify similarities by measuring the Euclidean 
distance between the streamlines. Streamline bundles were 
represented as the average of the streamline latent vectors. 
With both embedded streamlines and bundles in the same 
vector length, the method enables quantitative analysis of 
streamlines at any granularity of streamline bundles. We 
validated the method using the ISMRM 2015 tractogra-
phy challenge dataset and tractograms data generated from 
102 subjects in HCP dataset, and showed that embedding 

streamlines to a learnable latent space enables efficient simi-
larity measurement and streamline clustering.

The method is flexible such that any streamline length 
can be embedded into a latent vector of variable size. Exist-
ing methods generally resample streamlines to ensure they 
have the same length as required for streamline-wise dis-
tance measurements (Garyfallidis et al., 2012) and as inputs 
into neural networks for classification (Colon-Perez et al., 
2016; Liu et al., 2019). CNN-based auto-encoders suffer 
from the same length limitation due to the fixed input size 
of CNN (Lam et al., 2018). However, the resampling pro-
cess results in the loss of detailed information of the stream-
line and treats long and short streamlines differently. Our 

Fig. 9   Bundle-wise distance matrix. Each bundle is represented by its bundle embedding which is the average of all the streamlines in this bun-
dle. The bundle-wise distance matrix is constructed by computed the pairwise distances among all the bundle types
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RNN-based method naturally supports variable lengths of 
sequence input without the need to truncate or resample the 
original streamlines. Unlike manually designed features 
(Yendiki et al., 2011; Bertò et al., 2021), the latent space 
dimension in the proposed framework can be customized by 
adjusting the RNN hidden dimension. RNN networks with 
larger hidden dimension, i.e. higher dimension of the latent 
space, will have better capability of representing longer and 
more complex streamline structures, model larger numbers 
of streamlines, while smaller latent spaces require less com-
putation. Hence, the size of the latent vectors is flexible and 
can be tailored in a case-by-case manner. In our work, a 128 
dimension latent space was used, which was effective for 
modelling the streamlines in the ISMRM 2015 tractography 
dataset.

Sequential information is important when encoding 
streamlines into latent representations. A streamline is 
essentially a sequence of 3D spatial points that represent 
its location and shape in the brain. Treating a streamline as 

a collection of points may lose its sequential information 
during embedding. Both distance-based and even recent 
deep learning methods that are based on CNN networks fail 
to capture the sequential components. CNN network archi-
tectures are designed to be translationally invariant, and do 
not view the streamlines as an ordered sequence but instead 
process it, for the case of auto-encoding streamlines, as a 1D 
image with three channels. CNNs are sensitive to stream-
line segment patterns but ignore positions in the streamlines. 
Unlike CNNs, RNNs not only treat sequences naturally but 
provide a better representation capability for long sequences, 
i.e. streamlines with long length. Adding position encoding 
techniques to CNNs may compensate for the weakness of 
dealing with sequential data, similar to recently introduced 
techniques such as the Transformer architecture that could 
potentially be used for encoding sequential data types with 
attention mechanisms (Wolf et al., 2020). However, such 
approaches are not the focus of the current paper and will 
be explored in future work.

Fig. 10   Hierarchical dissection of streamlines in the corpus callosum 
using streamline embedding clustering. On each level, the sub-bundles 
are further clustered into two groups iteratively. On level 3, the CC bun-

dle can be dissected into eight sub-bundles along the anterior–posterior 
direction. Among the sub-bundles on level 3, the second leaf sub-bundles 
are identified as false streamlines
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Fig. 11   Classification accuracy 
distributions of top-1, top-3 and 
top-5 measurements on all the 
72 bundle types for the 101 test-
ing subjects

Table 2   Inference time in 
seconds for embedding 10,000 
streamlines with 1 and 2 LSTM 
layer(s) encoder on CPU and 
GPU

1 LSTM Layer Encoder 2 LSTM Layers Encoder

Uni-directional Bi-directional Uni-directional Bi-directional

CPU (Intel Xeon 
E5-2630)

0.588 (± 0.029) 0.722 (± 0.018) 1.209 (± 0.046) 1.344 (± 0.041)

GPU (Nvidia 
Quadro P5000)

0.026 (± 0.002) 0.144 (± 0.001) 0.053(± 0.001) 0.146(± 0.001)
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The latent space learnt with RNN auto-encoding pro-
vides an efficient way to form streamline bundle repre-
sentations using data-driven clustering algorithms. Any 
granularities of the streamline bundle can be represented 
using the average of the embedded streamlines in the bun-
dle in a computationally efficient manner. Distances can be 
measured between streamlines and also between a stream-
line and a bundle, since they are in the same closed latent 
space. The framework represents each streamline and bun-
dle as tabular data, opening the possibility of analysis with 
generic data mining algorithms (e.g. anomaly detection) 
capable of dealing with high dimensional data. Bundle 
embedding can also be used to identify group-level land-
marks (Gori et al., 2016) and create a multi-subject atlas 
(Guevara et al., 2012) in a data-driven and unsupervised 
manner. Finally, using the trained decoder the embedded 
bundle can be projected back to the 3D space for visual 
inspection purposes.

Of crucial importance is whether the streamline groups 
or bundles generated from clustering algorithms in a latent 
space are anatomically plausible. We validated the stream-
line groups obtained using k-means clustering on the left 
brain hemisphere and manually examined each group, iden-
tified their similarity to the ground truth bundle types and 
found that the major bundles were extracted with minimal 
bias. Our motivation was not to re-discover well defined 
bundles, but rather to explore smaller structures, stream-
line filtering and hierarchical dissection. Qualitatively, the 
method requires a human expert to visually inspect the iden-
tified sub-bundle structures and determine their anatomical 
validity. The framework provides a data-driven streamline 
parcellation tool to study sub-bundle structure as an alter-
native to traditional cortical atlas based methods (Bullmore 
& Sporns, 2009; Sporns et al., 2005). Quantitatively, the 
method has the potential to be used with graph theory analy-
sis over populations (Bassett & Bullmore, 2017; Yeh et al., 
2016) to study connectivity patterns at various granularities 
of streamline parcellation.

The performance of the method can be improved by 
encoding streamlines from both directions and further vali-
dated using both simulated and non-synthetic datasets. In 
the current work, the encoding was initiated from one direc-
tion or both directions using uni-directional LSTM modules 
whereas bidirectional LSTM (biLSTM) views of streamline 
in the auto-encoding process may improve the robustness 
of the embedding model. Alternatively, the effectiveness 
of using the Transformer architecture could be explored to 
learn a latent space to represent streamlines. Also, due to 
the population variation, improving model generalization 
is another future research direction. Furthermore, other 
clustering methods can also be used as a replacement for 
the k-means clustering algorithm in this case to validate the 
representation accuracy of the proposed embedding method.

Conclusion

In this work, we proposed a novel recurrent neural network 
auto-encoder to embed any length of white matter stream-
lines and at any level of bundle granularity, to a fixed-size 
latent representation for parcellation of whole-brain tracto-
grams. The embedding process preserves the position, shape 
and sequential information of the streamline and bundle. The 
method was validated on both synthetic dataset and tracto-
grams from the HCP project, and it was effective to distin-
guish symmetric bundle structures, produce bundle groups 
with clustering algorithms, and achieved good classification 
accuracy based on distance measurements on an annotated 
dataset. The method can be applied to query streamlines 
according to similarity, hierarchically dissect streamline 
bundles for studying sub-structures, and identify and remove 
biased streamlines. The method enables the possibility of 
quantitative distance analysis using data mining and unsu-
pervised learning techniques.
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