
Citation: Song, X.-Y.; Meng, X.;

Xiao, B.-L.; Li, Y.-Y.; Ma, X.-X.;

Moosavi-Movahedi, A.A.; Hong, J.

MWCNTs-CTAB and HFs-Lac

Nanocomposite-Modified Glassy

Carbon Electrode for Rutin

Determination. Biosensors 2022, 12,

632. https://doi.org/10.3390/

bios12080632

Received: 21 July 2022

Accepted: 10 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

MWCNTs-CTAB and HFs-Lac Nanocomposite-Modified Glassy
Carbon Electrode for Rutin Determination
Xin-Yan Song 1,†, Xin Meng 1,†, Bao-Lin Xiao 1,† , Yang-Yang Li 1, Xin-Xin Ma 1, Ali Akbar Moosavi-Movahedi 2

and Jun Hong 1,*

1 School of Life Sciences, Henan University, Kaifeng 475000, China
2 Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614418, Iran
* Correspondence: hongjun@henu.edu.cn; Tel.: +86-137-8116-1597
† These authors contributed equally to this work.

Abstract: Rutin is a flavonoid glycoside compound, which is mainly transported via the blood cir-
culation system in the human body. The monitoring of the blood concentration of rutin is of great
significance in many fields such as pharmacology and pharmacokinetics. In this work, a biosensor based
on multi-walled carbon nanotubes (MWCNTs), cetyltrimethylammonium bromide (CTAB), hydroxyl
fullerenes (HFs), and laccase (Lac) nanocomposite-modified glassy carbon electrodes was constructed.
The modified materials were characterized with a transmission electron microscope (TEM), cyclic voltam-
mograms (CV), and electrochemical impedance spectroscopy (EIS). CTAB is used to disperse MWCNTs
and improve hydrophilicity and biocompatibility of MWCNTs, while the use of Lac can enhance the
oxidation of catechol structure in rutin, thus significantly improving the sensitivity and selectivity of
the modified electrode. Linear sweep voltammetry (LSV) studies showed that the determination linear
ranges of rutin were 0.1 µmol L−1 to 2 µmol L−1 and 2 µmol L−1 to 11 µmol L−1, with the determination
limits of 30 nmol L−1 and 95.5 nmol L−1, respectively. The proposed biosensor can be used to detect
rutin tablets and serum samples with high recovery, which indicates a good accuracy of this method,
and the results are consistent with those measured by the traditional ultra-high performance liquid
chromatography (UHPLC) method. Hence, this biosensor has potential practical application value in
rutin drug quality testing and clinical blood drug concentration monitoring.

Keywords: biosensor; laccase; hydroxyl fullerenes; multi-walled carbon nanotubes; rutin determination

1. Introduction

Rutin (3′,4′,5,7-tetrahydroxyflavone-3-rutinoside), also known as vitamin P and quercetin-
3-o-rutinoside, mainly exists in Sophora japonica, Calendula officinalis, and Amaranthus paniculatus
leaves. Rutin is a flavonoid glycoside compound with antioxidant, anti-inflammatory, an-
timicrobial, vascular protection, nerve protection, and other pharmacological activities [1–6].
Clinically, rutin has been used for the treatment of cardiovascular diseases, inflammatory
diseases, lung cancer, [7–9], etc. In the human body, rutin is transported mainly via the
blood circulation system, and can be absorbed directly through intestinal cells [10], so it is
very important to monitor the blood concentration of rutin and to investigate the quality of
the production of rutin. At present, the main methods of detecting rutin are high-pressure
liquid chromatography (HPLC) [11], chemiluminescence (CL) [12], capillary electrophoresis
(CE) [13], electrochemical method [14], etc. Among them, the electrochemical method has
attracted extensive attention because of its portability of equipment, simple experiment
process, low cost, high sensitivity, accuracy, and fast response [15,16]. A variety of materials
have been used to construct electrochemical sensors for rutin determination, such as Ir
NPs-IL-clay/PPO-Lac [17], AuNPs-CD-Lac [18], MWCNTs-IL-Gel [19], MIPIL/IL-GR [20],
Fe2.5Cr0.2Ce0.3O4-rGO [21], etc.

Nanomaterials applied in electrochemical devices offer properties that are impor-
tant in relation to the sensor interface at the molecular level [22]. Multi-walled carbon

Biosensors 2022, 12, 632. https://doi.org/10.3390/bios12080632 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios12080632
https://doi.org/10.3390/bios12080632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-4489-6238
https://orcid.org/0000-0001-6028-4103
https://doi.org/10.3390/bios12080632
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios12080632?type=check_update&version=2


Biosensors 2022, 12, 632 2 of 14

nanotubes (MWCNTs) have gained much attention because of their excellent properties,
such as a thermal, electrical, mechanical, and current-carrying capability [23,24]. However,
MWCNTs also have strong hydrophobicity and poor biocompatibility, therefore, in this
work, cetyltrimethylammonium bromide (CTAB) was introduced to enhance MWCNTs’
hydrophilicity and biocompatibility and because it is beneficial for the subsequent mod-
ification of other materials [25]. Fullerenes (C60) have attracted attention in the field of
sensors, due to their ability to enhance electrical conductivity, charge-transfer rates, and
photophysical properties [26]. In addition, C60 has been used in strain sensors, gas sensors,
electrochemical sensors, and optical sensors to detect organic molecules, biomolecules,
small molecular compounds, metal ions, [27–29] etc. Hydroxyl fullerenes (HFs) are derived
from a new material formed by the hydroxylation of C60; this structure can improve water
solubility [30], and significantly protect reactive oxygen species oxidative damage to DNA
and proteins [31]. Gao et al. reported HFs and glucose-oxidase-modified GCE to detect
glucose [32]. Hence, using HF-immobilized enzyme to detect substrate can both improve
the electrical signal and protect the enzyme. Furthermore, laccase (Lac) is a member of
the blue multi-copper-oxidase family, and the substrate is phenolic compounds. In the
presence of oxygen, phenolic compounds are oxidized to quinone compounds, and oxygen
is reduced to water [33,34]. Several applications of Lac biosensor have been reported
for the determination of catechol, hydroquinone, dopamine, chlorophene, and flavonoid
compounds in food, the environment, and drugs [35–42].

In this work, the mixture of MWCNTs-CTAB was first modified on a glassy carbon
electrode (GCE), and then the co-cultured mixture of HFs and Lac was added onto the
modified electrode and, due to chitosan (Chi), had the ability to form stable films on
surfaces [43]. Finally, a layer of Chi film was modified for electrode protection, so as to
construct a biosensor capable of detecting rutin. Here, Lac was introduced to improve the
selectivity and sensitivity of biosensors [44]. The reason for using MWCNTs and HFs was
not only that they have good electrical conductivity and a high specific surface area [45],
but also because HFs may protect the conformation and properties of proteins by forming
complexes with proteins [46]. The materials used for the modification were characterized
by transmission electron microscopy (TEM), cyclic voltammetry (CV), and electrochemical
impedance spectroscopy (EIS). Then, the testing condition and other influencing factors,
such as pH, determination time, proportion of modified material, and anti-interference
ability and stability, were studied. Moreover, the practical application of this modified
electrode was further evaluated in rutin quality testing and blood drug concentration
monitoring.

2. Materials and Methods
2.1. Reagents and Materials

Lac (Trametes versicolor) and rutin were purchased from Yuanye Biology Co., Ltd.
(Shanghai, China). MWCNTs were obtained from Shenzhen Nanotech Port Co., Ltd.
(Shenzhen, China). HFs were obtained from Bucky (Houston, TX, USA), and CTAB was
obtained from Shanghai chemical reagent procurement and supply station (Shanghai,
China). Chi (about 100 kDa, 90% deacetylated) was obtained from Sangon Biotech Co.,
Ltd. (Shanghai, China). Sodium dihydrogen phosphate (NaH2PO4·2H2O) and disodium
hydrogen phosphate (Na2HPO4·12H2O) were purchased from Sigma-Aldrich (Shanghai,
China). Rutin solution was prepared with ethanol as the solvent, and 50 mol L−1 phosphate-
buffered solution was used as a supporting electrolyte. All reagents were analytical-grade.
All water used was prepared in an 18 MΩ cm ultrapure water machine in this study.

2.2. Apparatus and Measurements

All electrochemical measurements were carried out on a CHI660E electrochemical
workstation (CH Instrument, Austin, TX, USA) at 25 ◦C. A GCE 3 mm in diameter, a
Ag/AgCl-saturated electrode, and a platinum wire were used as the working electrode,
reference electrode, and counter electrode, respectively. CV and linear sweep voltammetry
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(LSV) were carried out in 50 mmol L−1 pH 4 phosphate-buffered solution with a scan rate
of 0.1 V s−1. Electrochemical impedance spectroscopy (EIS) was carried out in 0.1 M KCl
solution containing 5 mmol L−1 [Fe(CN)6]3−/4− in the frequency range from 102 to 106 Hz.

Currently, HPLC is generally used to determine rutin content in drugs and blood.
Hence, HPLC was used as a comparative technique with the electrochemical method. Rutin
tablets samples were detected using ultra-high-pressure liquid chromatograph (UHPLC)
(1290 Infinity II, Agilent, Santa Clara, CA, USA) using the standard addition method.
Separation was achieved using an Eclipse Plus C18 column (Agilent, Santa Clara, CA, USA)
(2.7 µm, 4.6 × 100 mm); the mobile phase was methanol and water (65:35, v/v) at a flow
rate of 0.2 mL min−1. The injection volume of the sample was 10 µL, and the UV detector
wavelength was set at 360 nm [47].

TEM (JEM-2100, JEOL, Tokyo, Japan) images of MWCNTs, MWCNTs-CTAB, HFs, and
HFs-Lac were taken at 200 KV [48]. The spectroscopic study of laccase catalyzing rutin was
carried out on an ultraviolet and visible spectrophotometer (UV-vis spectrophotometer)
(Evolution 220, Thermo, Shanghai, China).

2.3. Preparation of Modified Electrode

Ahead of modification, the surface of a GCE was mechanically polished with slurry of
alumina powder with the particle sizes of 1, 0.3, and 0.05 µm, respectively. Then, the GCE
was ultrasonicated in 75% ethanol and ultrapure water for 10 min. Afterwards, the GCE
was placed in a drying tower.

Preparation of Chi solution: 50 mg of chitosan was added to 10 mL of ultra-pure water
containing 1% acetic acid solution (v/v = 1:1), stirred until completely dissolved, and the
pH was adjusted to 5–6 with the NaOH solution.

MWCNTs (2 mg mL−1) were ultrasonically dispersed in CTAB (2 mg mL−1), and 2 µL of
the mixture of the MWCNTs-CTAB dispersive turbid liquid was dropped on the prepared
GCE and dried at room temperature for 20 min. HFs (2 mg mL−1) and Lac (5 mg mL−1)
were co-cultured at 4 ◦C for 1 h. Then, 2 µL of HFs-Lac co-culture solution was added on
the electrode and dried at 4 ◦C overnight. At the end, in order to prevent the modified
materials from falling off the electrode surface, 1.5 µL of Chi solution was dropped on the
GCE, dried, and stored at 4 ◦C (Figure 1).
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2.4. Preparation of Samples

Chi/HFs-Lac/MWCNTs-CTAB/GCE was used to determine rutin content in rutin
tablets samples and serum samples. The preparation of rutin tablets samples was carried
out as follows: rutin tablets were purchased from a pharmacy, the tablets were sonicated to
dissolve in ethanol, and then the solution was centrifuged at 5000 r min−1 for 10 min after
standing at room temperature for 1 h, and the supernatant was taken for electrochemical
and UHPLC analyses. The preparation of rutin serum samples was performed as follows:
Mouse blood was centrifuged at 3000 r min−1 for 10 min and the serum supernatant was
obtained; then, the rutin solution was added to the serum and diluted for electrochemical
analysis. Next, 1 mL of methanol was added to the serum sample of rutin (100 µL), then
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vortex-mixed for about 1 min, and left to stand at 4 ◦C for 10 min. After centrifugation at
12,000 r min−1, the supernatant was taken and blow-dried with nitrogen in water at 40 ◦C.
Finally, the samples were redissolved in methanol for UHPLC analysis [49].

3. Results and Discussion
3.1. Characteristics of Modified Materials

The TEM images of MWCNTs, MWCNTs-CTAB, HFs, and HFs-Lac are shown in
Figure 2A–D, respectively. The MWCNTs mixed with CTAB in Figure 2B showed better
dispersion than MWCNTs alone in Figure 2A. Figure 2C shows that the particle of HFs was
about 15 nm, which might have been due to the dispersion of HFs in water and aggregation
during dying. After HFs and Lac were cultured, Lac seemed to be wrapped by HFs, as
shown in Figure 2D, which might have been conducive to the catalytic ability of Lac and
the electrical conductivity of HFs.
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The impedances of the electrodes modified with different materials were studied using
the EIS method. The EIS diagrams of GCE, Chi/MWCNTs/GCE, Chi/MWCNTs-CTAB/GCE,
Chi/HFs/MWCNTs-CTAB/GCE, and Chi/HFs-Lac/MWCNTs-CTAB/GCE are shown in
Figure 3, respectively. The EIS curve consists of a semicircular part representing electron
transfer resistance (Rct) and a liner part representing the adsorption process. The smaller
semicircle diameter balances with the smaller Rct value of the electrode, which means
that there is a faster electron transfer rate [50]. The impedance data were fitted with
Randle’s equivalent circuit in Figure 3 (inset). The Rct of Chi/MWCNTs-CTAB/GCE (97 Ω)
was lower than the Rct of Chi/MWCNTs/GCE (117 Ω) and GCE (132 Ω), indicating that
the MWCNTs had good conductivity, and the dispersion of CTAB might have helped to
improve its effective electron transmission area. The Rct of Chi/HFs/MWCNTs-CTAB/GCE
decreased to 87 Ω; this is an indication that the HFs might have improved electron transfer
on the electrode surface. However, the Rct of Chi/HFs-Lac/MWCNTs-CTAB/GCE was
increased to 95 Ω, which might have been due to Lac hindering the electron transport.
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Figure 3. EIS of different nanometer-material-modified GCE: GCE (a); Chi/MWCNTs/GCE (b);
Chi/MWCNTs-CTAB/GCE (c); Chi/HFs/MWCNTs-CTAB/GCE (d); and Chi/HFs-Lac/MWCNTs-
CTAB/GCE (e), with a frequency range from 102 to 106 Hz in 0.1 M KCl solution containing 5 mmol
L−1 [Fe(CN)6] 3−/4−. (Inset: Randle’s equivalent circuit. Rs: solution resistance; Rct: electron transfer
resistance; Cdl: double-layer capacitance).

Figure 4A shows the CVs of GCE, Chi/MWCNTs/GCE, Chi/MWCNTs-CTAB/GCE,
Chi/HFs/MWCNTs-CTAB/GCE, and Chi/HFs-Lac/MWCNTs-CTAB/GCE in 5 µmol L−1

rutin, respectively. The bare GCE (curve a) had only a weak oxygen reduction peak, while
the Chi/MWCNTs (curve c) and Chi/MWCNTs-CTAB (curve b) modified GCEs showed ob-
vious redox peaks. After modification of the Chi/MWCNTs-CTAB/GCE with HFs (curve d),
strong reduction signals were displayed at 0.473 V and 0.455 V, respectively. The Chi/HFs-
Lac/MWCNTs-CTAB/GCE (curve e) showed the strongest oxidation peak and reduc-
tion peak at 0.478 V and 0.445 V, respectively, with a difference potential (∆E) of 0.033 V
(∆E > 59/n mV, n = 2). The anodic peak current (Ipa) and cathodic peak current (Ipc)
were 4.69 µA, 4.34 µA, respectively, with a peak current ratio (Ipa/Ipc) of about 1. There-
fore, the Chi/HFs-Lac/MWCNTs-CTAB/GCE electrochemical process was quasi-reversible.
Compared with Chi/MWCNTs/GCE, Chi/MWCNTs-CTAB/GCE had a larger electroactive
surface area. At the same time, the HFs-Lac structure was more conducive to improving the
catalytic performance of Lac, which made up for its low electrical conductivity to a certain
extent. Figure 4B shows CVs of Chi/HFs-Lac/MWCNTs-CTAB/GCE in the absence (curve a)
and presence (curve b) of 5 µmol L−1 rutin in phosphate-buffered solution. The results further
indicate that the redox peaks were caused by rutin.
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Figure 4. (A) CVs of different nanometer-material-modified GCEs in 50 mmol L−1 pH 4 phosphate-
buffered solution containing 5 µmol L−1 rutin: GCE (a), Chi/MWCNTs/GCE (b), Chi/MWCNTs-
CTAB/GCE (c), Chi/HFs/MWCNTs-CTAB (d), Chi/Lac/HFs/MWCNTs-CTAB (e). (B) CVs of
Chi/Lac/HFs/MWCNTs-CTAB in 50 mmol L−1 pH 4 phosphate-buffered solution in the absence (a)
and presence (b) of 5 µmol L−1 rutin.
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3.2. Effects of Scan Rates

CVs of Chi/HFs-Lac/MWCNTs-CTAB/GCE in 5 µmol L−1 rutin at different scan rates
(ν) are shown in Figure 5A, and the relationship between scan rates (0.01 V s−1–2 V s−1)
and peak current is shown in Figure 5B. The regression equations were Ipc = 0.036 ν + 1.243
(R2 = 0.9965) and Ipa = −0.036 ν − 1.668 (R2 = 0.995). In Figure 5C, the absolute slopes
value of log I vs. log ν were close to 1, so these indicate that the electrochemical behavior of
rutin on the electrode surface is an adsorption-controlled process [16], which is the same as
in other reports [51,52]. This phenomenon suggests that the determination of rutin should
start from a low concentration, or the adsorbed rutin in the blank phosphate-buffered
solution should be removed after detecting a high concentration of rutin. In addition,
according to Equation (1) and the slope of the peak current (Ip) versus the scan rate (ν)
(Figure 5B), the number (n) of electron transfer in the electrode reaction was 2, which is
same result as the previous report [53,54].

Ip =
nFQν

4RT
(1)

Here, F, Q, R, and T represent the Faraday constant, the quantity of the electric charge, and
the gas constant and temperature, respectively.
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3.3. Effects of pH Values

Figure 6A shows the CVs of Chi/HFs-Lac/MWCNTs-CTAB/GCE in phosphate-
buffered solution containing 5 µmol L−1 rutin at different pH values. Figure 6B shows that
the cathodic peak current increased with a pH value from 2 to 4, but the current decreased
with a pH value higher than 4. It was also reported that the optimum pH range of Lac



Biosensors 2022, 12, 632 7 of 14

catalytic activity was 3–4 [55]; therefore, the pH 4 phosphate-buffered solution was selected
as the test solution. Furthermore, the formal potential was linearly related to pH with the
equation of E◦′ = −0.0607 pH + 0.645 (R2 = 0.998). The slope value was −60.7 mV pH−1,
which was close to the Nernst’s value of 59.2 mV pH−1, indicating that the number of
electrons and protons was the same in this reaction (Figure 6C). The pKa value of rutin is
6.17 ± 0.4, while the pH values studied in this work were from 2 to 6, so rutin was still
protonated.

Biosensors 2022, 12, x FOR PEER REVIEW 7 of 14 
 

3.3. Effects of pH Values 
Figure 6A shows the CVs of Chi/HFs-Lac/MWCNTs-CTAB/GCE in phosphate-buff-

ered solution containing 5 µmol L−1 rutin at different pH values. Figure 6B shows that the 
cathodic peak current increased with a pH value from 2 to 4, but the current decreased 
with a pH value higher than 4. It was also reported that the optimum pH range of Lac 
catalytic activity was 3–4 [55]; therefore, the pH 4 phosphate-buffered solution was se-
lected as the test solution. Furthermore, the formal potential was linearly related to pH 
with the equation of E°′ = −0.0607 pH + 0.645 (R2 = 0.998). The slope value was −60.7 mV 
pH−1, which was close to the Nernst’s value of 59.2 mV pH−1, indicating that the number 
of electrons and protons was the same in this reaction (Figure 6C). The pKa value of rutin 
is 6.17 ± 0.4, while the pH values studied in this work were from 2 to 6, so rutin was still 
protonated. 

 

 
Figure 6. (A) The CVs of Chi/HFs−Lac/MWCNTs−CTAB/GCE in 50 mmol L−1 phosphate-buffered 
solution at different pH values containing 5 µmol L−1 rutin. (B) Plot of cathodic peak current versus 
pH value. (C) Plot of formal potential versus pH value. 

3.4. Optimization of Experimental Conditions 
In order to optimize the performance of Chi/HFs-Lac/MWCNTs-CTAB/GCE, the de-

termination time and ratio of modified materials were investigated. From 1 to 10 min, the 
cathodic peak current increased with time, and after 10 min, the current was basically 
stable (Figure 7A). Therefore, rutin was tested at 10 min. The optimal ratios of MWCNTs 
to CTAB and HFs to Lac were studied. As seen in Figure 7B,C, the cathodic peak signal 
was strongest when the ratio of MWCNTs to CTAB was 15:1 (v/v), and that of HFs to Lac 
was 1:1 (v/v). Thus, these optimal ratios were used for electrode modification. 

  

Figure 6. (A) The CVs of Chi/HFs-Lac/MWCNTs-CTAB/GCE in 50 mmol L−1 phosphate-buffered
solution at different pH values containing 5 µmol L−1 rutin. (B) Plot of cathodic peak current versus
pH value. (C) Plot of formal potential versus pH value.

3.4. Optimization of Experimental Conditions

In order to optimize the performance of Chi/HFs-Lac/MWCNTs-CTAB/GCE, the
determination time and ratio of modified materials were investigated. From 1 to 10 min,
the cathodic peak current increased with time, and after 10 min, the current was basically
stable (Figure 7A). Therefore, rutin was tested at 10 min. The optimal ratios of MWCNTs to
CTAB and HFs to Lac were studied. As seen in Figure 7B,C, the cathodic peak signal was
strongest when the ratio of MWCNTs to CTAB was 15:1 (v/v), and that of HFs to Lac was
1:1 (v/v). Thus, these optimal ratios were used for electrode modification.
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3.5. Calibration Plot of Rutin

The LSV method was used to determine rutin under optimal conditions (Figure 8A).
The plot of cathodic peak current versus rutin in the concentration range of 0.05 µmol L−1–
20 µmol L−1 is shown in Figure 8B. The linear range of Chi/HFs-Lac/MWCNTs-CTAB/GCE
response to rutin was divided into two parts: 0.1 µmol L−1–2 µmol L−1 and 2 µmol L−1

to 11 µmol L−1, with regression equations of I (µA) = 6.888CRutin (µmol L−1) − 1.061 and
I (µA) = 2.827CRutin (µmol L−1) + 7.643, respectively (Figure 8C), and the limit of detec-
tion(LOD) was 30 nmol L−1 and 95.5 nmol L−1 (Equation (2), which is better than that
previously reported [17,18]). The sensitivities of the biosensor were 6.88 µA µM−1 and
2.82 µA µM−1, respectively, which were better than those without Lac modification, which
demonstrated the catalytic activity of the Lac-modified electrode. Table 1 shows a compari-
son between this work and the performance of earlier reported rutin sensors. It can be seen
that the improved modified biosensor in this work had good performance.

LOD = 3 S0/S (2)

Here, S0 and S represent the standard deviation measured under blank solution and
the slope of the linear range curve, respectively.
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Table 1. Comparison of the performances of electrochemical sensors for determination of Rutin.

Working Electrode Liner Range
(µmol L−1)

LOD
(nmol L−1)

Sensitivity
(µA µM−1 ) Reference

Lac/GCE 0.1–0.7
0.7–1.3 – 5.85

2.47 [14]

Ir NPs-IL-clay/PPO-Lac/CPE 0.0917–3.1 30.9 4.26 [17]
AuNPs-CD-Lac/CPE 0.3–2.97 170 4.51 [18]

MWCNTs-IL-Gel/GCE 0.072–6 20 3.666 [19]
MIPIL/IL-GR 0.03–1 10 0.183 [20]

Fe2.5Cr0.2Ce0.3O4-rGO/GCE 0.075–12 52 2.988 [21]

Chi-Lac-TPP-CPE 0.599–3.92
5.82–13.1

0.0623
0.712

3.195
0.77 [34]

MWCNTs-CD-Fe3O4/GCE 0.02–10 16.4 1.24 [51]
Gr/GNR 0.032–0.1 7.86 - [56]

MIP/AuNPs-MoS2-
GN/GCE 0.01–45 4 1.146 [57]

Chi/HFs-Lac/MWCNTs-
CTAB/GCE

0.1–2
2–11

30
95.5

6.888
2.827 This work

Lac: laccase; Ir NPs: iridium nanoparticles; IL: ionic liquid; PPO: polyphenol oxidase; CPE: carbon paste electrode;
AuNPs: gold nanoparticles; CD: β-cyclodextrin; MIP: molecularly imprinted polymer; rGO: reduced graphene oxide;
TPP: tripolyphosphate; Fe3O4 NPs: Fe3O4 nanoparticles; Gr: graphite; GNR: graphene nanoribbon; GN: graphene.
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3.6. Anti-Interference Ability and Stability of Biosensor

The storage stability of the biosensor was evaluated using the LSV method in phosphate-
buffered solution containing 5 µmol L−1 rutin (Figure 9A). The cathodic peak current
showed little change when the biosensor was stored at 4 ◦C for 10 days. After 20 and
30 days of storage, the peak signal decreased by 15% and 19%, respectively. The anti-
interference ability of the biosensor was studied by observing whether the electroactive
species changed the cathodic peak current using the LSV method. In Figure 9B, interfering
substances in 500-fold concentrations of rutin (250 µmol L−1), including ethanol, glucose
(Glu), ascorbic acid (Vit C), glycine (Gly), and uric acid (UA), elicited only weak current
responses. Both additions of 0.5 µmol L−1 rutin caused a strong current signal and a
cathodic peak appeared, so this biosensor had a great anti-interference performance. Due
to the different concentrations of interfering substances and rutin samples, the cathodic
peak current could not accurately describe the anti-interference capability of this biosensor.
Here, we introduced an interference factor (IF) (Equation (3)) to more intuitionally investi-
gate the anti-interference ability of the biosensor. The lower the IF value, the stronger the
anti-interference ability of the biosensor. The results are shown in Table 2.

IF = S interference/Srutin × 100% (3)

Here, Sinterference and Srutin represent the sensitivity of interfering substances and
sensitivity of rutin, respectively.
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bands at 354 nm and 254 nm are cinnamoyl chromophore and benzoyl chromophore of 
rutin, respectively [58]. It can be seen that the absorption peak of the cinnamoyl structure 
at 354 nm decreased with the reaction time, indicating that the catechol of this structure 
was oxidized. Lac catalyzed the oxidation of rutin to the corresponding o-quinone with 
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Figure 9. (A) Storage stability of Chi/HFs-Lac/MWCNTs-CTAB/GCE in 50 mmol L−1 pH 4 phosphate-
buffered solution containing 5 µmol L−1 rutin. (The biosensor has stored at 4 ◦C for 0, 10, 20, 30 days.)
(B) Anti-interference ability of Chi/HFs-Lac/MWCNTs-CTAB/GCE in 50 mmol L−1 pH 4 phosphate-
buffered solution containing 250 µmol L−1 different interfering substance (ethanol, Glu, Vit C, Gly, UA)
and 0.5 µmol L−1 rutin.

Table 2. The IF values of different interfering substances.

Interfering
Substance Ethanol Glu Vit C Gly UA

IF (%) 0.03 0.01 0.03 0.03 0.02

To further verify the specificity of this biosensor, spectra of laccase-catalyzed rutin
were studied. Continuous spectral scans from 200 nm to 700 nm of Lac and the rutin
reaction system using UV-vis spectrophotometer are shown in Figure 10. The absorption
bands at 354 nm and 254 nm are cinnamoyl chromophore and benzoyl chromophore of
rutin, respectively [58]. It can be seen that the absorption peak of the cinnamoyl structure
at 354 nm decreased with the reaction time, indicating that the catechol of this structure
was oxidized. Lac catalyzed the oxidation of rutin to the corresponding o-quinone with the
concomitant reduction of molecular oxygen to water; the corresponding o-quinone served
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as the two electrons’ acceptor, and was reduced back to rutin on the surface of the biosensor
(Figure 11).
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Figure 11. Schematic diagram of rutin catalyzed by Lac on the biosensor surface.

3.7. Determination of Rutin in Tablets and Serum

Rutin tablets and serum samples were determined using the proposed biosensor. The
results of electrochemistry and UHPLC methods used to determine rutin tablets samples
with different concentrations are shown in Table 3. In addition, the electrochemistry method
was used to determine different concentrations of rutin in serum samples. The results show
that the biosensor had a good recovery (Table 4). Statistical analysis showed that the f-test
value was lower than the critical value of F (Fcritical = 5.05), while the t-test value was lower
than the critical value of t (tcritical = 2.57), indicating that the biosensor is comparable to
the traditional UHPLC method. Therefore, the improved modified biosensor has potential
practical application value in rutin drug quality determination and clinical blood drug
concentration monitoring.

Table 3. Rutin tablet sample determinations using UHPLC and electrochemical methods.

Concentration
(µmol L−1)

Biosensor
(µmol L−1)

Recovery
(%) RSD (%) UHPLC

(µmol L−1)
Recovery

(%)

1 0.98 98 1.14 0.98 98
5 4.84 96.8 2.76 4.91 98.2
10 9.86 98.6 2.37 9.83 98.3

F = 1.01 (Fcritical = 5.05); t = 2.19 (tcritical = 2.57).
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Table 4. Rutin serum sample determinations using electrochemical method.

Concentration
(µmol L−1)

Biosensor
(µmol L−1)

Recovery
(%) RSD (%) UHPLC

(µmol L−1)
Recovery

(%)

0.5 0.472 94.4 2.69 0.515 103
1 1.03 103 2.14 1.15 115

2.5 2.44 97.7 1.88 2.64 105
F = 1.48 (Fcritical = 5.05); t = 1.6 (tcritical = 2.57).

4. Conclusions

The Chi/HFs-Lac/MWCNTs-CTAB/GCE biosensor was prepared for the determina-
tion of rutin with a wide determination linear range, low detection limit, high accuracy,
good anti-interference ability, and strong stability. The biosensor had the same accuracy as
traditional methods such as UHPLC in determining rutin and can be applied to the field of
drug quality determination. Moreover, the biosensor had a good recovery for detecting
rutin serum samples using the standard addition method; so the biosensor has potential
practical application value in blood drug concentration monitoring.
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