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Abstract

Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle
down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for
biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular
division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to
simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that
start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the
time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build
two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the
synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose
an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are
utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed
algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is
significantly 3:25{116| faster in computing attractors for empirical experimental systems.
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Introduction

Biological networks contribute a mathematical analysis of

connections found in ecological, evolutionary, and physiological

studies, such as genetic regulatory networks [1]. Pursuit for the

nature of these networks is the central problem for biologists [2–4].

In the past decades, a wide variety of research has focused on

modeling genetic regulatory networks using Boolean networks and

search for their attractors [5–10]. Computing the attractors in the

Boolean networks is critical in understanding corresponding

genetic regulatory networks and coordinated cellular processes

such as cell cycle and cell differentiation in living organisms [6,11].

In classical Boolean networks (CBNs), all nodes update their values

at the same time called as synchronous Boolean network (SBNs).

However, a criticism of CBNs as models of genetic regulatory

networks is that genes do not update their values all simulta-

neously. To reflect this property of gene regulatory networks,

Harvey and Bossomaier defined asynchronous Boolean networks

(ABNs) where the random nodes were selected at each time and

updated [12]. Since that, depending on the different update

schemes, Boolean networks can be generally categorized into

synchronous Boolean networks [7–9] and asynchronous Boolean

networks [7,10,13,14]. For the same update schemes with different

priority of activator or inhibitor in genetic regulatory networks,

classical equations [15], prior inhibitor equations [10] and a

combination of these two [16] are three types of Boolean

translation functions. Therefore, given a Boolean network, there

will be 2|3 different methods to represent its Boolean translation

function.

In a synchronous Boolean network, all genes update their values

simultaneously at consecutive time points. Heidel et al. [17] and

Farrow et al. [18] have proposed a scalar equation approach to

compute attractors in SBNs. Based on the former, Zhao [19] has

proven that the way of computing attractors in SBNs is a NP-

complete problem. Dubrova et al. [20] have presented two tools -

BooleNet and Bns - to compute attractors of SBNs. By contrast, in

an asynchronous Boolean network, all genes update their values at

different time points. Because each interaction between two nodes

of a biological network follows distinct kinetics, it is generally

thought that ABNs more realistically represent biological net-

works. However, due to the complexity of ABNs, the algorithms

for computing network attractors are still mostly based on SBNs.

Previously, Garg et al. proposed a solution to compute the

attractors in both SBNs and one class of ABNs [10]. First, they

demonstrated that there were four types of attractors in a Boolean

network: self loop, simple loop, syn-complex loop [or simple loop (type2)],

and asyn-complex loop, shown as Fig. 1. The first two types (i.e. self

loop and simple loop) were shared by SBNs and ABNs. But the latter
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two types, the syn-complex loop and the asyn-complex loop, were

respectively found in SBNs and ABNs. Subsequently, they

developed a series of algorithms which could be applied to

compute the four types of attractors in a given Boolean network.

Based on Garg’s contribution, Ay F et al. [16] gave a faster method

to list the states of self loops and one outgoing edge. Both Garg et al. and

Ay et al. used the ROBDD data structure to support their

algorithms.

Here, we developed two algorithms to further improve the

computation of complex attractors in both SBNs and ABNs. First,

based on the works of Garg et al., and Ay et al., we show that

iterative computing can be used to accelerate the identification of

the attractors of SBNs. Second, we develop a method to compute

the asyn-complex loop (complex loop) using syn-complex loop, which

allows us to simplify the computation of attractors of complex

loops in ABNs. We have a software package to accomplish our two

algorithms which are used to locate attractors of Boolean dynamic

networks (for both SBNs and ABNs), with significantly reduced

time. The structure of this paper is organized as follows: Section 2

gives the methods to compute attractors and splits them into two

subsections. Section 2.1 presents iterative computing attractors’

theory and its algorithms for SBNs. Section 2.2 proves a novel

algorithm to locate attractors of ABNs from attractors of SBNs by

asynchronous Boolean translation functions (ABTF). Section 3

tests feasibility and efficiency of our algorithm by several classical

experimental benchmarks. Section 4 gives a conclusion and

description of the future work.

Methods

This section gives two methods to compute attractors in both

SBNs and ABNs. The first subsection presents iterative computing

attractors’ theory and its algorithms for SBNs. The second

subsection provides a novel algorithm to locate attractors of ABNs

from attractors of SBNs by asynchronous Boolean translation

functions.

Computing Attractors in Synchronous Boolean Networks
In a synchronous Boolean network, all nodes update their values

simultaneously at consecutive time points [18]. In another word, at

a given time t[N, each node has only one Boolean value: 1

(Active) or 0 (Inhibit) [19]. Then, the equation of a synchronous

Boolean network with n nodes is shown as Eq. 1 [19].

x1, tz1~f1(x1, t, x2, t, x3, t, :::, xn, t);

x2, tz1~f2(x1, t, x2, t, x3, t, :::, xn, t);

x3, tz1~f3(x1, t, x2, t, x3, t, :::, xn, t);

. . .

xn, tz1~fn(x1, t, x2, t, x3, t, :::, xn, t);

ð1Þ

where xi, t is a node in SBNs, fi represents the Boolean function of

node xi, t, (x1, t, x2, t, x3, t, :::, xn, t) is a state in S, S denotes the

universal set with 2n different states, xi, t[f0,1g, 1ƒiƒn. It can be

simplified as follows.

Xtz1~Fsyn(Xt); ð2Þ

where Xt~(x1, t, x2, t, x3, t, :::, xn, t), xi, t[f0,1g, 1ƒiƒn,

Fsyn~(f1, f2, f3, :::, fn) is the synchronous Boolean translation

function (SBTF) from f0,1gn
to f0,1gn

. Si is a subset of S.

FR(Si,Fsyn) is a set of forward reachable states, which are all the

states that can be reached from the states set Si by Fsyn.

BR(Si,Fsyn) is a set of backward reachable states, which are all the

states that can reach the states set Si by Fsyn. All the states in

FR(Si,Fsyn) or BR(Si,Fsyn) are different.

Definition 1. An Attractor [10]: It is the set of states SAtt such

that for all the states s[SAtt, their FR(s,Fsyn)~SAtt, shown as Fig. 1

(a),(b) and (c) in solid line boxes. Length(SAtt) represents state number of

attractor SAtt. Atts is the union set of all the different attractors SAtt, that is,

SAtt(Atts.

Figure 1. Attractors in Synchronous/Asynchronous Boolean Networks. Figure 1. Diagrams of four types of attractors in Boolean networks.
Attractors are outlined by slide boxes, and transient states by dashed boxes. (a) A self loop is a single state attractor. (b) A simple loop includes two or
more states: each state is connected with only another state, and any two adjacent states differ from each other by only one bit. (c) A syn-complex
loop is similar to simple loop, but any two adjacent states differ from each other by more than one bit. (d) A asyn-complex loop includes multiple
interlinked states: each state is connected with more than one states, and there is only one bit difference between any two adjacent states. In
Boolean networks, the self loop and simple loop can be identified in both synchronous Boolean networks and asynchronous Boolean networks. But
the syn-complex loop only exists in the synchronous Boolean networks, and the asyn-complex loop only exists in asynchronous Boolean networks.
doi:10.1371/journal.pone.0060593.g001
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Remark 1. Definition 1 defines an attractor of a synchronous Boolean

network. So similarly, we can define an attractor of an asynchronous Boolean

network, when using Fasyn instead of Fsyn, shown as Fig. 1(a),(b) and (d) in

solid line boxes. Fasyn represents an asynchronous Boolean translation function

which will be introduced in section. We also use Attssyn and Attsasyn to

represent all the attractors of a synchronous Boolean network and its

asynchronous Boolean network, respectively. If a state Xi is in an attractor, Xj

is one of its transient states, where Xj[fBR(Xi,F ){FR(Xi,F)g,
F[fFsyn,Fasyng, shown as Fig. 1 in dotted line boxes.

Because an attractor of a Boolean network is not known in

advance, a common way to address this problem is setting a

randomly chosen state as the initial state and exhaustively

searching the entire state space. This approach has been

successfully applied in several studies to compute the network

attractors using empirically derived biological networks. However,

the computational burden of this approach increases exponentially

with respect to the number and length of attractors. Thus, it limits

the application of this method for large biological networks.

Due to the recurrent nature of attractors, we reason that

iterative computing algorithms can be applied on the Boolean

translation functions of SBNs, like Xtzj~Xt. An important

implication is that identifying all attractors (Definition 1) does

not require the computation of the entire state space. This suggests

that we can use iterative computing to accelerate the identification

of attractors in a given Boolean network. In the following, we

present three theorems and their proof for iterative computation.

Incorporating these theorems, an algorithm is demonstrated to

compute attractors of SBNs.

Theorems of computing attractors using iterative

computing in synchronous boolean networks. According

to Eq. 2, it is easily inferred that Xtz3~Fsyn(Fsyn(Fsyn(Xt)))~

F3
syn(Xt), where F3

syn is synchronous Boolean translation function

Fsyn after iteratively computing Xt three times. Therefore, a

simplified form of iterative computational equations is described as

below.

Fj
syn(Xt)~Fj{1

syn (Xtz1)~ � � �~Xtzj , j[Nz; ð3Þ

where Fj
syn is Fsyn after j times iterative computing. Fj

syn can

compute the state Xt to state Xtzj directly instead of j iterative

computing steps by Fsyn. If state Xtzj is same with state Xt, that

means state Xt is in an attractor, which can be located as much as j

steps iterative computation.

Definition 2. Dj : it represents the states that will return to themselves

after j iterations, where j[Nz. This can be described by Eq. 4.

Dj~fXt[S D Fj
syn(Xt)~Xtg, j[Nz; ð4Þ

Definition 2 gives a simplified description of attractors, whose

states could return to themselves after finite iterations. A shallow

example can be supposed that, in a synchronous Boolean network,

there are two attractors with length of 1 and 3 respectively. D3 is

the sum of the two attractors. Because the attractor whose length is

1 could also return to itself after 3 iterations. This feature can be

proved by Theorem 1.

Theorem 1. For all SAtt(Attssyn, if Length(SAtt)~m, mDj (m

is a factor of j), then, Dj)SAtt.

Proof. Let j~m|n, m,n[Nz; VX[SAtt, Length(SAtt)~m;

Fm
syn(X )~X ;

Fj
syn(X )~Fm|(n{1)

syn (Fm
syn(X ))~Fm|(n{1)

syn (X )~ . . . ~Fm
syn(X )~X ;

X[Dj ;

Dj)SAtt:

According to Theorem 1, a set of attractors, whose length is j,

can be located after j steps of iterative computing, shown as Eq. 5.

fSAtt(Attssyn D Length(SAtt)~jg~Dj{
Pj{1

i~1

Di, i,j[Nz; ð5Þ

If a synchronous Boolean translation function Fsyn is same with

Fj
syn, that means all the states can return to themselves by less than

jz1 iterations. This is an important character to identify the

numerous attractors in the SBNs, which has been proved by

Theorem 2 and 3.

Theorem 2. Given a synchronous Boolean translation function Fsyn

with n nodes, after d iterations, if Dd~S, the period of this synchronous

Boolean network is d, where d[Nz.

Proof. We need to prove Fd
syn(Xt) ~ Fsyn(Xt);

Dd~S and Definition 2;

fXt(SDFd
syn(Xt)~Xtg~S;

Fd
syn(Xt)~Xt;

Xtzd~Fd
syn(Xt);

Xtzd ~ Xt;

Fsyn(Xtzd) ~ Fsyn(Xt);

Fd
syn(Xt) ~ Fsyn(Xt);

The period of this synchronous Boolean network is d.

Theorem 3. Given a synchronous translation function Fsyn with n

nodes, after d iterations, if Dd~S, all the states are in attractors.

Proof.

Dd~S

VX[S, Fd
syn(X )~X ;

Compute Attractors of Boolean Networks
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FR(Dd,Fsyn)~S, BR(Dd,Fsyn)~S;

Attssyn~Dd~S:

An improved algorithm to compute attractors in

synchronous boolean networks. Combining iterative com-

puting (Theorem 1, 2, 3 and Eq. 5) and the ROBDD data

structure, we have developed Algorithm 1 to compute attractors in

SBNs. The input of Algorithm 1 is the synchronous Boolean

translation function Fsyn; its output is states of attractors (Attssyn)

and number of all attractors (Atts num). Specifically, Algorithm 1

starts with an initializing part, which initializes all the necessary

variables. This is followed by a resolving part, which computes and

deletes redundant attractors in a network. The resolving part

further contains four components. The first component (Lines 12–

13) will continue the next iterative computing and delete the

visited attractors based on Theorem 1 and Eq. 5. The second

component (Lines 15–20) judges whether synchronous Boolean

translation functions are periodic or not, which has been proved

by Theorem 2 and 3. The third component (Lines 22–27) verifies

whether there will be a new attractor generated after one iteration.

That is, if existing a new attractor, Algorithm 1 will add it into

attractors (Attssyn). Meanwhile, it will also update the attractors’

number (Att num) and continue the next iteration. If not,

Algorithm 1 will go to the next iterative computing. The last

component (Lines 11, 29) contains the fix-point condition. When

satisfying this condition, it will output attractors and number of

attractors. For more detailed information, please read the

Algorithms 1.

In the initializing part, j is the times of iterations. w is an empty

set. Attssyn and Att num are the attractors and number of

attractors, respectively. total set is the fix-point condition to judge

whether the algorithm can be terminated or not. Dj represents the

states that will return to themselves after j iterations by

synchronous Boolean translation function Fsyn. Attssyn, total set

and Dj are ROBDD data structures. In the main resolving part,

Dj :size() represents state number of Dj . BR(Dj ,Fsyn) are all the

states that can reach to Dj by synchronous Boolean translation

function Fsyn.

Algorithm 1 is different with Garg et al., which randomly picks

up a state from state space and computes its forward reachable

states to get an attractor. If you want to find out the attractors

whose length is j, it needs to exhaustively search the state space.

However, our algorithm can easily compute the same attractors in

j times iterative computing.

Computing Attractors in Asynchronous Boolean
Networks

As mentioned earlier, SBNs and ABNs differ in nodes updating

schemes of Boolean translation functions. Instead of updating

values of all the nodes simultaneously, ABNs only allow some of

the nodes to update their values at a time point. For this reason,

the computing of attractors in ABNs is more time consuming.

Especially, it needs more intermediate steps when there are more

than one bit different between two states.

Analysis of attractors in asynchronous boolean

networks. It is essential to give a simple description of types

of attractors. As represented in Fig. 1, there are four types of

attractors, self loop, simple loop, syn-complex loop and asyn-complex loop in

both SBNs and ABNs. A self loop is a single state attractor, shown in

Fig.1 (a). A simple loop includes two or more states, where every

state is connected with only another state, and any two adjacent

states differ from each other by only one bit, shown in Fig.1 (b). A

syn-complex loop is similar to simple loop, but any two adjacent states

differ from each other by more than one bit, shown in Fig.1 (c). A

asyn-complex loop includes multiple interlinked states: every state is

connected with more than one states, and there is only one bit

different between any two adjacent states, shown in Fig.1 (d). Fig. 1

(a)(b)(c) and Fig. 1 (a)(b)(d) stand for the different types of attractors

in SBNs and ABNs, respectively.

According to the properties of self loops and simple loops, they can

easily be identified in SBNs, which also are same in ABNs.

Interestingly, a closer examination of the structure of the syn-

complex loops and asyn-complex loops suggests that every asyn-complex

loop contains one syn-complex loop or some transient states. This

suggests that it is possible to use syn-complex loop to easily locate the

states in asyn-complex_loop by asynchronous Boolean translation

functions.

Algorithm 1: Iterative Computing Attractors
on Synchronous Boolean Translation
Function.

Function: Iterate Compute Attractors SBTF (Fsyn) will
compute all the attractors of SBTF iteratively;
Input: The synchronous Boolean translation function Fsyn;
Output: All attractors (Attssyn) and number of attractors
(Att num);
1 begin
2//Initializing part
3 begin
4 int j/1; j is times of iteration
5 int Att num/0; //Att num is the number of attractors
6 set Attssyn/w; Attssyn is a set of attractors
7 set total set/S; total set is a set of unvisited states
8 set D0/w; Initialize D0 as empty set
9 end
10 //Main resolving part
11 while total set=w do
12 Dj/jz1/fXt(SDFj/jz1

syn (Xt)~Xtg;One iterative
computing

13 Dj/Dj{
Pj{1

i~1 Di; //Delete the visited attractors
as Theorem 1 & Eq. 5

14 //This part is equivalence with Theorem 2 and 3
15 if(Djz

Xj{1

i~1
Di~S)then

16 report attractors Dj and its number Dj :size()=j
17 Att num/Att numzDj :size()= j; //Update the

value of
18 Attssyn/S; //All states are in attractors by

Theorem 2 and 3
19 break; Exit the while loop
20 end
21 //If existing unvisited attractors, record them
22 if(Dj=w) then
23 report attractors Dj and its number Dj :size()=j
24 Att num/Att numzDj :size()= j; //Update the

value of Att num
25 Attssyn/AttssynzDj ; //Add the new attractors

into Attssyn

26 total set/total set{BR(Dj ,Fsyn); //total set
deletes the states can reach Dj

27 end.
28 end.
29 return Attssyn, Att num;
30 end.

Compute Attractors of Boolean Networks
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One example is shown in Fig. 2, here i=m, m=n, i=n,

i,m,n[Nz. Fig. 2(a) is an asynchronous attractor, where the

current state and its next states are different by one bit. Suppose

that the ith bit of the state s1 and s2 is different. If i~m, it means

that state s1 and s3 are the same. The situation is also true for i and

n. If state s3 and s4 are different at the nth bit, then state s2 and s5

must differ at the nth bit. Otherwise, state s4 cannot reach state s5

by changing one bit. When state s5 and s6 differ at the nth bit, state

s6 and s1 will be different at the ith bit, and vice versa. Fig. 2(b)

shows the corresponding synchronous attractor to Fig. 2(a). The

difference is that state s2 and s4 differ in the mth and bits

simultaneously. Other relations are the same except for state s3.

Therefore, an asyn-complex_loop contains one syn-complex loop or

some transient states. That means we can use syn-complex loop to easily

locate the states in asyn-complex_loop by asynchronous Boolean

translation function Fasyn.

An algorithm to compute attractors in asynchronous

boolean networks. An important implication of the above

analysis is that the attractors of the ABNs can be derived from the

attractors of the SBNs using synchronous and asynchronous

Boolean translation functions. Therefore, we use attractors

computed by Algorithm 1 in SBNs as the basis input for the

new algorithm (Algorithm 2) to compute attractors of ABNs.

Specifically, Algorithm 2 can be divided into three parts:

initializing part (Lines 3–6), main resolving part (Lines 8–41) and

checking unvisited states part (Lines 44–52). The initializing part

also initializes all necessary variables in Algorithm 2. The main

resolving part also can be split into five components. The first

component (Lines 11–15) means sk is a self loop. The second

component (Lines 18–21) means FR(s,Fsyn) is a simple loop. The

third component (Lines 24–29) means FR(s,Fasyn) is an unvisited

asyn-complex loop and FR(s,Fsyn) is an unvisited syn-complex loop. The

forth component (Lines 32–34) means FR(s,Fasyn) is a visited asyn-

complex loop and FR(s,Fsyn) is an unvisited syn-complex loop. The fifth

component (Lines 37–40) means FR(s,Fasyn) is the set of transient

states and FR(s,Fsyn) is an unvisited syn-complex loop. After the main

resolving part, if there exists unvisited states, Algorithm 2 will go to

the checking unvisited states part. This part will check the

unvisited states and report the left asyn-complex loops. For more

detailed information, please read the Algorithms 2.

Furthermore, in the initializing part, s is a state, w is an empty

set, asyn state set is a set of recording unvisited states by Fasyn, S

is the universal set. In the main resolving part and checking

unvisited part, pick up one state(Attssyn) represents picking up

anyone state from attractors Attssyn of SBNs. FR(s,Fsyn) and

FR(s,Fasyn) are the reachable states from s by synchronous

Boolean translation function Fsyn and asynchronous Boolean

translation function Fasyn, respectively. BR(s,Fasyn) is the reach-

able states to s by asynchronous Boolean translation function

Algorithm 2: Compute and classify Four Types
Attractors.

Function. Compute Attractors() computes and classfies
attractors as four types, shown in Fig. 1;

Input. Attractors of SBN(Attssyn), SBTF(Fsyn) and ABTF(Fasyn);
Output. Four types attractors (a)(b)(c)(d) of SBTF and

ABTF shown as Fig. 1;
1 begin
2 // Initializing part
3 begin
4 set s/w; // s is a state
5 set asyn state set/S; / asyn state set is a

set of unvisited states by Fasyn

6 end
7 // Main resolving part
8 while (Attssyn=w) do
9 s/pick up one state(Attssyn); // s is any one

state in Attssyn

10 // s is a self loop, shown as Fig. 1(a)
11 if (s ~ self loop) then
12 report s is a self loop state
13 Attssyn/Attssyn{s; // Delete s from Attssyn

14 asyn state set/asyn state set{BR
(s,Fasyn); // Delete reachable states to s

15 end
16 //FR(s,Fsyn) is a simple loop, shown as Fig. 1(b)
17 eles if (FR(s, Fsyn) ~ simple loop) then
18 report FR(s, Fsyn) is the simple loop then
19 Attssyn/Attssyn{FR(s,Fsyn); // Delete the

simple loop from Attssyn

20 asyn state set/asyn state set{BR
(s,Fasyn); //Delete reachable states to s

21 end
22 // FR(s,Fasyn) is an unvisited asyn-complex

loop, shown as Fig. 1(d)
23 eles if (FR(s,Fasyn)(BR(s,Fasyn)) AND

(FR(s,Fasyn)(asyn state set) then
24 Print FR(s,Fasyn) is a asyn-complex loop
25 // FR(s,Fsyn) is a syn-complex loop,

shown as Fig. 1(c)
26 Print FR(s,Fsyn) is a syn-complex loop
27 Attssyn/Attssyn{FR(s,Fsyn); // Delete the

syn-complex loop from Attssyn

28 asyn state set/asyn state set{BR
(s,Fasyn); // Delete reachable states to s

29 end
30 // (FR(s,Fasyn) is an visited asyn-complex loop
31 eles if (FR(s,Fasyn)(BR(s,Fasyn)) AND

(FR(s,Fasyn) 6(asyn state set) then
32 report FR(s,Fsyn) is a syn-complex loop
33 Attssyn/Attssyn{FR(s,Fsyn); // Delete the

syn-complex loop from Attssyn

34 end
35 // (FR(s,Fasyn) are the transient states
36 else
37 report FR(s,Fsyn) is a syn-complex loop
38 Attssyn/Attssyn{FR(s,Fsyn); // Delete the

syn-complex loop from Attssyn

39 asyn state set/asyn state set{BR
(s,Fasyn); // Delete reachable states to s

40 end
41 end
42 // Checking unvisited states
43 while (asyn state set=w) do

44 s/pick up one state(asyn state set); // s is a
state in asyn state set

45 if (FR(s,Fasyn)(BR(s,Fasyn))then
46 report FR(s,Fasyn) is a asyn-complex loop;
47 asyn state set/asyn state set{BR

(s,Fasyn); // Delete reachable states to s
48 end.
49 else.
50 asyn state set/asyn state set{BR

(s,Fasyn); // Delete reachable states to s.
51 end.
52 end.
53 end.

Compute Attractors of Boolean Networks
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Fasyn. We note that, our approach of identifying attractors is totaly

different with Gary et al. and Ay et al. It is more efficient to compute

the asyn-complex loop because it can easily locate the states in

Attsasyn.

Results and Discussion

We have implemented our methodology in a software package

called geneFAtt, which is based on a ROBDD data structure named

BuDDy [21]. In this package, there are two parts, source code and

benchmark. The source code part implements functions of

Algorithm 1 (iterative computing attractors in synchronous

Boolean networks) and Algorithm 2 (computing and classifying

attractors as four types of synchronous Boolean networks and

asynchronous Boolean networks). Algorithm 1 computes the

attractors of SBNs, which are then used as the input of Algorithm

2 to classify the attractors of ABNs. Because the self loop (Fig. 1(a))

and simple loop (Fig. 1(b)) of SBNs are same with its corresponding

type of attractors of ABNs, respectively. We can easily use syn-

complex loops (Fig. 1(c)) to locate the asyn-complex loops (Fig. 1(d)) by

the asynchronous Boolean translation functions. The benchmark

part includes five biological networks, Mammalian Cell [7], T-helper

[22], Dendritic Cell [10], T-cell Receptor [23], and Protein-ex [17]. We

ran geneFAtt and genYsis [10] with the five synchronous/asynchro-

nous biological models and have compared their running results.

As shown in Table 1, the first four biological networks,

Mammalian Cell [7], T-helper [22], Dendritic Cell [10] and T-cell

Receptor [23] have been studied in [10]. Protein-ex is an extended

case from Heidel et al. [17]. It also represents a kind of biological

networks that all the states are in attractors. Because we adopt to

the same methods of modeling the SBNs and ABNs to setup the

synchronous and asynchronous Boolean translation functions

refereed to Garg et al. Meanwhile, using the same inputs, geneFAtt

can obtain the same attractors as those by genYsis [10] shown in

Table 1, which suggests that our algorithms are valid for the

analysis of biological networks.

With the same validity, geneFAtt shows more efficient and

feasible compared to genYsis. Table 2 gives the running time and

running time efficiency ratio (RTER, Eq. 6) of the five biological

networks which have been produced by the two procedures genYsis

and geneFAtt. T1 and T2 represent the running time on every

biological network of the two procedures genYsis and geneFAtt,

respectively. All experiments are performed on an IntelH CoreTM

CPU 4300 1.80 GHz with 2GB memory and a Ubuntu 9.04

Linux server. Importantly, we note that the running time of

geneFAtt is much more shorter than genYsis [10]. Specifically,

compared with genYsis, geneFAtt improves the running time of

Mammalian Cell [7], T-helper [22], Dendritic Cell [10], T-cell Receptor

[23], and Protein-ex [17] by 3.25, 8.19, 116.00, 23.48, and 77.05

times, respectively. Remarkable, geneFAtt improves the running

time of the Dendritic Cell ([10]) gene network by a striking 116.00

times.

RTER~
T1{T2

T2
; ð6Þ

Table 1. Characters of Five Different Biological Networks.

Benchmark Attractors’ Number

Self Loop Simple Loop Syn-complex Loop Asyn-complex Loop

Mammalian Cell 1 0 1 1

T-helper 3 0 0 0

Dendritic Cell 0 1 0 0

T-cell Receptor 1 0 9 7

Protein-ex 2 0 4114 0

doi:10.1371/journal.pone.0060593.t001

Figure 2. An Asynchronous Attractor to Synchronous Attractor. Figure 2. Diagrams of an attractor in asynchronous (a) and synchronous (b)
Boolean networks. Each state is represented by a circle, and is designated as Sn . The variable i represents that the ith bit of the state s1 and s2 is

different, which is also same as m and n. The numbers ½m,n� indicate that state s2 and s4 differ by the mth and nth bits respectively. The (i,n) and (n,i)

represents when state s5 and s6o differ at the nth bit, state s6 and s1 will be different at the ith bit, and vice versa. The difference between the two
representations (i.e. synchronous versus asynchronous) of the attractor is that s2 and s4 differ in the mth and nth bits, m=n, m,n[Nz. That means we
can use syn-complex loop to easily locate the states in asyn-complex_loop by asynchronous Boolean translation function Fasyn.
doi:10.1371/journal.pone.0060593.g002
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Conclusions
This paper has addressed a method to compute attractors in

SBNs and ABNs. We have developed a new iterative computing

algorithm to identify the attractors Attssyn of SBNs. Meanwhile,

another computing and classifying algorithm has been proposed to

locate the attractors of ABNs rapidly. Our approaches give a

significant acceleration of computing and locating attractors in

biological networks. It is a big challenge that how to identify

attractors in the large biological networks. Based on above

research, it is expected that we can find a pathway to resolve

this problem from the modeling methods of biological networks.
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7. Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a

generic boolean model for the control of the mammalian cell cycle.
Bioinformatics 22: e124.

8. Remy E, Ruet P, Mendoza L, Thieffry D, Chaouiya C (2006) From logical

regulatory graphs to standard petri nets: dynamical roles and functionality of
feedback circuits. Transactions on Computational Systems Biology VII : 56–72.

9. Naldi A, Thieffry D, Chaouiya C (2007) Decision diagrams for the
representation and analysis of logical models of genetic networks. In:

Proceedings of the 2007 international conference on Computational methods
in systems biology. Springer-Verlag, 233–247.

10. Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous

versus asynchronous modeling of gene regulatory networks. Bioinformatics 24:
1917.

11. Davidich M, Bornholdt S (2008) Boolean network model predicts cell cycle
sequence of fission yeast. PLoS One 3: e1672.

12. Harvey I, Bossomaier T (1997) Time out of joint: Attractors in asynchronous

random boolean networks. In: Proceedings of the Fourth European Conference
on Artificial Life. MIT Press, Cambridge, 67–75.

13. Devloo Vea (2003) Identification of all steady states in large biological systems by

logical anslysis. Bull Math Biol : 1025–1051.

14. Thomas R (1991) Regulatory networks seen as asynchronous automata: a logical

description. Journal of Theoretical Biology 153: 1–23.

15. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is

robustly designed. Proceedings of the National Academy of Sciences of the

United States of America 101: 4781.

16. Ay F, Xu F, Kahveci T (2009) Scalable steady state analysis of boolean biological

regulatory networks. PloS one 4: e7992.

17. Heidel J, Maloney J, Farrow C, Rogers J (2003) Finding cycles in synchronous

boolean networks with applications to biochemical systems. International

Journal of Bifurcation and Chaos in Applied Sciences and Engineering 13:

535–552.

18. Farrow C, Heidel J, Maloney J, Rogers J (2004) Scalar equations for

synchronous boolean networks with biological applications. IEEE Transactions

on Neural Networks 15: 348–354.

19. Zhao Q (2005) A remark on ‘‘scalar equations for synchronous boolean networks

with biological applications by C. Farrow, J. Heidel, J. Maloney, and J. Rogers’’.

IEEE Transactions on Neural Networks 16: 1715–1716.

20. Dubrova E, Teslenko M, Martinelli A (2005) Kauffman networks: Analysis and

applications. In: Proceedings of the 2005 IEEE/ACM International conference

on Computer-aided design. IEEE Computer Society, 479–484.

21. Lind-Nielsen J (2000). Bdd package buddy, v. 1.9, august 2000, http://www.itu.

dk/research/buddy/index.html.

22. Luis M, Ioannis X (2006) A method for the generation of standardized

qualitative dynamical systems of regulatory networks. Theoretical Biology and

Medical Modelling 3.

23. Klamt S, Saez-Rodriguez J, Lindquist J, Simeoni L, Gilles E (2006) A

methodology for the structural and functional analysis of signaling and

regulatory networks. BMC bioinformatics 7: 56.

Table 2. Performance Comparison between genYsis [10] and
geneFAtt.

Benchmark Time (sec) RTER

genYsis [10] geneFAtt

Mammalian Cell 0.102 0.024 3.256

T-helper 0.193 0.021 8.196

Dendritic Cell 0.351 0.003 116.006

T-cell Receptor 330.643 13.506 23.486

Protein-ex 86.162 1.104 77.056

doi:10.1371/journal.pone.0060593.t002

Compute Attractors of Boolean Networks

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e60593


