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Effect of gene polymorphisms on the mechanical
properties of human tendon structures
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Abstract

Recent studies showed that polymorphisms in alpha 1 chains of types I (COL1A1) and V (COL5A1) collagen, growth
and differentiation factor 5 (GDF5), and matrix metalloproteinase 3 (MMP3) genes were associated with injuries in
tendons and ligaments (e.g., September et al. (Br J Sports Med 43: 357–365 2009)). In the present study, we aimed
to investigate the effects of injury-associated polymorphisms within these four genes on the mechanical properties
of human tendon structures in vivo. One hundred Japanese males participated in this experiment. The mechanical
properties of tendon structures in knee extensors and plantar flexors were measured using ultrasonography. All
subjects were genotyped for COL1A1 rs1800012, COL5A1 rs12722, GDF5 rs143383, and MMP3 rs679620 single
nucleotide polymorphisms. For COL1A1, all subjects had a GG genotype. For COL5A1, maximal tendon elongation
and strain of individuals with a CC genotype were significantly greater than individuals with other genotypes
(combined TT and CT) for knee extensors, but not for plantar flexors. For GDF5 and MMP3, there were no
differences in the mechanical properties of tendon structures in knee extensors and plantar flexors among the
three genotypes. The present study demonstrated that subjects with a CC genotype of the COL5A1 gene had more
extensible tendon structures than those of subjects with other genotypes (combined TT and CT) for knee extensors,
but not for plantar flexors. The results presented in this study need to be confirmed in a larger cohort of subjects.
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Introduction
Recent studies showed that polymorphisms within alpha
1 chains of types I (COL1A1) and V (COL5A1) collagen,
growth and differentiation factor 5 (GDF5), and matrix
metalloproteinase 3 (MMP3) genes were associated with
tendon and/or ligament injuries (Posthumus et al.
2009a,b, 2010; Raleigh et al. 2009; September et al.
2009). On the other hand, the mechanical properties of
tendons and ligaments would be expected to be one of
the risk factors for these injuries. More recently, Collins
et al. (2009) and Brown et al. (2011) demonstrated that
the COL5A1 rs12722 single nucleotide polymorphism
was related to range of motion in the lower limb. Fur-
thermore, Kato et al. (2010) suggested that an increase
in range of motion due to static stretching was attribut-
able to a change in tendon, not muscle, stiffness. Consid-
ering these points, the mechanical properties, such as

maximal elongation and stiffness, of tendons and liga-
ments would be associated with gene polymorphisms
mentioned above.
For the last decade, several reports have used ultrason-

ography to investigate the relationship between tendon
properties and performances during stretch-shortening
cycle exercises (Kubo et al. 1999, 2000, 2011; Stafilidis
and Arampatzis, 2007). In addition, some previous stud-
ies have demonstrated the effects of resistance training
on the mechanical properties of human tendons in vivo
(Kongsgaard et al. 2007; Kubo et al. 2001, 2007, 2009;
Reeves et al. 2003). According to these previous findings,
we have no means of enhancing the extensibility of ten-
don structures, i.e., tendon properties change to be suit-
able for stretch-shortening cycle exercises, except for
bed rest (Kubo et al. 2004; Reeves et al. 2005) and
detraining (Kubo et al. 2010). Furthermore, cross-
sectional studies demonstrated that tendon structures
were more compliant in excellent sprinters compared to
inferior sprinters and untrained subjects for knee exten-
sors, but not for plantar flexors (Kubo et al. 2000, 2011;
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Stafilidis and Arampatzis, 2007). Accordingly, it has been
assumed that these compliant tendon structures in ex-
cellent sprinters are partly determined by genetic factors.
In particular, this tendency would be found more clearly
in knee extensors than in plantar flexors.
In the present study, we aimed to investigate the effects

of single nucleotide polymorphisms within COL1A1,
COL5A1, GDF5, and MMP3 genes previously shown to
be associated with tendon and/or ligament injuries
(Posthumus et al. 2009a,b, 2010; September et al.
2009) on the mechanical properties of human tendon
structures (outer tendon and aponeurosis) in vivo. In
addition, we also examined whether site-differences in
these relationships were found between knee extensors
and plantar flexors.

Methods
Subjects
One hundred Japanese males (age: 22.0 ± 3.3 yrs, height:
172.6 ± 5.5 cm, body mass: 67.9 ± 10.4 kg, mean ± SD) par-
ticipated in this experiment. They were undergraduate and
graduate students of three universities. When data were
collected, subjects were involved in recreational sports ac-
tivity on average not more than twice per week or 1 hour
per week in the past 3 years. None of the subjects reported
any current or recent lower limb injuries in the 3 years be-
fore testing. Subjects were fully informed of the procedures
to be utilized as well as the purpose of this study. Written
informed consent was obtained from all subjects. This
study was approved by the office of the Department of
Sports Sciences, University of Tokyo, and complied with
their requirements for human experimentation.

Elongation and stiffness of tendon structures
Maximal voluntary isometric contraction (MVC) was
measured by means of specially designed dynamometers
(Applied Office, Tokyo, Japan) for knee extension and
plantar flexion, respectively. All measurements were
performed on the right lower limb. During each task,
subjects exerted isometric torque from zero (relax) to
MVC within 5 s. Torque signals were amplified and
sampled at 1 kHz using a 16-bit A/D converter
(PowerLab/16SP, AD Instruments, Australia). During the
knee extension task, the hips and back were held tightly
in the seat using adjustable lap belts. The right ankle
was firmly attached to the lever arm of the dynamom-
eter with a strap and fixed with the knee joint flexed at
an angle of 90 deg (full extension = 0 deg). During the
plantar flexion task, subjects lay prone on a test bench
and the waist and shoulders were secured by adjustable
lap belts and held in position. The ankle joint was set at
90 deg with the knee joint at full extension and the right
foot was securely strapped to a footplate connected to
the lever arm of the dynamometer.

Elongations in tendon structures (outer tendon and
aponeurosis) of knee extensors and plantar flexors were
assessed during isometric contractions. An ultrasonic
apparatus (SSD-6500, Aloka, Tokyo, Japan) with an elec-
tronic linear array probe (7.5-MHz wave frequency with
80 mm scanning length; UST 5047–5, Aloka) was used
to obtain longitudinal ultrasonic images of vastus
lateralis and medial gastrocnemius muscles by proce-
dures described previously (Kubo et al. 2007, 2009). Two
measured sites were selected for measurements: at 50%
of the distance between the greater trochanter and the
lateral epicondyle of the femur for vastus lateralis
muscle and at 30% of the distance between the popliteal
crease and the centre of the lateral malleolus for medial
gastrocnemius muscle. Ultrasonic images were recorded
on videotape at 30 Hz and synchronized with recordings
of a clock timer for subsequent analysis. The point at
which one fascicle was attached to the aponeurosis was
visualized on ultrasonic images. The displacement of this
point is considered to indicate lengthening of the deep
aponeurosis and distal tendon. To correct measurements
taken for tendon and aponeurosis elongation, additional
measurements were taken under passive conditions (Kubo
et al. 2007, 2009). For each subject, the displacement of
each site obtained from ultrasonic images could be
corrected for that attributed to joint rotation alone. In this
study, only values corrected for angular rotation were
reported. The tendon elongation value (L) was converted
to strain by the following equation (Kubo et al. 1999):

Strain (%) = L · TL-1 · 100

where TL is the length of the tendon structure at rest.
We measured the distance between the measurement
site for L and the insertion of the patella and Achilles
tendons (confirmed using ultrasonography).
Torque (TQ) measured during isometric contractions

was converted to muscle force (Fm) by the following
equation (Kubo et al. 2007, 2009):

Fm = k · TQ · MA-1

where k is the relative contribution of physiological cross-
sectional area in each vastus lateralis muscle within knee
extensors and medial gastrocnemius muscle within plantar
flexors, and MA is the moment arm length in each quadri-
ceps femoris muscles at 90 deg and triceps surae muscle at
90 deg, which was estimated from the limb length of each
subject. In this study, Fm and L above 50% of MVC were
fitted to a linear regression equation, the slope of which
was adopted as stiffness (Kubo et al. 2007, 2009).
In a preliminary study, the repeatability of the tendon

properties measurement was investigated on 2 separate
days with 10 male among all subjects. The coefficient of
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variation was 5.8% for maximal strain and 6.3% for
stiffness.

DNA extraction and genotyping
Total DNA was isolated from saliva (2 ml) using Orangene
DNA (DNA Genotek, Ottawa, Ontario, Canada). Saliva
samples were stored at room temperature until total DNA
extraction. Genotypes of four polymorphisms {COL1A1
rs1800012 (G/T), COL5A1 rs12722 (T/C), GDF5 rs143383
(T/C), and MMP3 rs679620 (G/A)} were determined at
G&G Science (Fukushima, Japan) by a method that com-
bines PCR and sequence-specific oligonucleotide probes
with suspension array technology (Luminex, Austin, Texas,
USA). Primers and probes for genotyping are shown in
Table 1. Detailed genotyping methodology was described
previously (Itoh et al. 2005).

Statistics
Descriptive data are represented as the means ± SD. Any
significant differences in measured variables among the
three-genotype groups were tested by a one-way
ANOVA. When the overall F value was significant, a
Tukey’s honest significance post hoc test was used to de-
termine specific differences. The level of significance
was set at p<0.05.

Results
For COL1A1 rs1800012 (G/T), all subjects had a GG
genotype. For COL5A1 rs12722 (T/C), GDF5 rs143383
(T/C), and MMP3 rs679620 (G/A), there were no signifi-
cant differences in age, height, or body mass between
the three genotype groups of each single nucleotide
polymorphism (Table 2).
For COL5A1, the subjects of TT and CT genotypes

combined, since the number of subjects with a TT geno-
type was only two. In both knee extensors and plantar
flexors, there were no significant differences (p>0.05) in
the MVC values between COL5A1 (Table 3), GDF5
(Table 4), and MMP3 (Table 5) genotype groups. For
COL5A1, maximal tendon elongation and strain of indi-
viduals with a CC genotype were significantly greater
than individuals with other genotypes (combined TT

and CT) for knee extensors (p=0.012 for maximal elong-
ation, p=0.008 for maximal strain), but not for plantar
flexors (both p>0.05) (Table 3). Similarly, the stiffness of
individuals with a CC genotype was significantly lower
compared to other genotypes (combined TT and CT) in
knee extensors only (p=0.013). For GDF5 (Table 4) and
MMP3 (Table 5), there were no significant differences
(p>0.05) in the mechanical properties of tendon struc-
tures among the three genotype groups of each single
nucleotide polymorphism.

Discussion
The main finding of this study was that subjects with a
CC genotype of the COL5A1 gene had more extensible
tendon structures compared to subjects with other geno-
types (combined TT and CT) for knee extensors, but not
for plantar flexors. To our knowledge, this is the first
study to demonstrate the relationship between any
mechanical properties of tendon structures and a gene
polymorphism in vivo.
This study suggested the possibility that tendon struc-

tures of individuals with a COL5A1 rs12722 CC geno-
type were more extensible than individuals with other
genotypes (combined TT and CT). A previous study sug-
gested that the COL5A1 gene was associated with benign
joint hypermobility syndrome (Grahame, 1999). More
recently, Collins et al. (2009) and Brown et al. (2011)
reported that the COL5A1 rs12722 single nucleotide
polymorphism was associated with range of motion in
the lower limb. Several researchers have suggested
that the major factor contributing to range of motion,
i.e., flexibility, is the extensibility of muscles and ten-
dons (Jewell and Wilkie, 1958; Kato et al. 2010;
McHugh et al. 1998). Therefore, the present result
was supported by the findings of Brown et al. (2011)
and Collins et al. (2009). On the other hand,
Goncalves-Neto et al. (2002) and Satomi et al. (2008)
reported that damaged and pathological tendons
contained relatively higher proportion of collagen
type III and V, and these alterations were accompan-
ied by a reduction in type I collagen. According to
previous findings (Birk, 2001; Roulet et al. 2007), type

Table 1 PCR primers and probes used for genotyping

Gene
symbol

Polymorphism Sense primer Antisense primer Probe 1 Probe 2

COL1A1
rs1800012

G1245T
(intron1)

ATCAgCCgCTCCCATTCTC AgggAggAgAgAAgggAggTC CCTCATCCCgCCCCCATTCC TgCCCAgggAATgTgggCg

COL5A1
rs 12722

C/T (3’ UTR) gAATCACATgACCTAgCTgCAC gAgACCTATTCACgAACAggATg TCTgTCCACACCCACgCgCC ggCgCATgggTgTggACAgA

gdf5 rd
143383

-/C/T (5‘ UTR) AgCCTTATACAAgCCTCCTTC gTgCACCgTCTCCAgTCAg gAAAggAgAAAgCCgACCgC TgAAAggAgAAAgCCAA
CCgC

MMP3
rs679620

A198G
(Lys45Glu)

CCTAAAAACTATACTTATTCT
gTTAgAAATATCTAg

gATTTTTTTAACAACAggACC
ACTgTC

gACCTCAAAAAAgATgTg
AAACA

gACCTCgAAAAAgATgTg
AAAC
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V collagen expression levels are critical in determin-
ing fiber diameter and strength, although type V col-
lagen is a quantitatively minor fibril-forming collagen.
In addition, type V collagen gene expression can be,
at least in part, determined by polymorphisms within
the 3’-UTR of COL5A1 (Laguette et al. 2011). There-
fore, we may say that COL5A1 gene expression, and

by implication type V collagen production, is one of
the factors that determine the mechanical properties
of human tendon structures.
On the other hand, there were no differences in ten-

don properties in plantar flexors among the three geno-
types of COL5A1 (Table 3). This implied that the degree
of genetic effects on tendon properties is different be-
tween knee extensors and plantar flexors. Cross-
sectional studies demonstrated that tendon structures
were more compliant in excellent sprinters than that in
inferior sprinters and untrained subjects for knee exten-
sors, but not for plantar flexors (Kubo et al. 2000, 2011;
Stafilidis and Arampatzis, 2007). In addition, according
to longitudinal studies (e.g., Kubo et al. 2007), we have
no training protocol to enhance the extensibility of ten-
don structures. Considering these points, it has been as-
sumed that these compliant tendon structures for knee
extensors in excellent sprinters are partly determined by
genetic factors. In addition, our previous study showed
that age-associated muscle thickness loss in plantar
flexors was less than that in knee extensors (Kubo et al.
2003). The reasons for the differences in the declines in
muscle thickness with aging were unclear, but several
possibilities exist, i.e., postnatal and genetic factors. In
particular, these discrepancies may be due to differences
in the daily activity levels between knee extensors and
plantar flexors. Indeed, some previous studies indicated
that the relative activation level and exerted torque of
plantar flexors are higher than those of knee extensors
during normal walking (DeVita et al. 1996; Ericson et al.
1986). Considering these points, it seems reasonable to
suppose that the mechanical properties of tendon struc-
tures for plantar flexors are affected greatly by a postna-
tal factor.
In previous studies between gene polymorphisms and

tendon injuries (Posthumus et al. 2009a,b, 2010; Raleigh
et al. 2009; September et al. 2009), South African and
Australian and Caucasian populations were investigated.
To date, no studies have investigated this theme in Japa-
nese populations. For all gene polymorphisms (COL1A1,
COL5A1, GDF5, and MMP3), the distribution of each
gene polymorphism in the present study was different
from previously reported distributions in Caucasian pop-
ulations (Posthumus et al. 2009a,b, 2010; Raleigh et al.
2009; September et al. 2009). We hypothesized that the
genotype of COL1A1 rs180002 single nucleotide poly-
morphism, in which more than one study previously
reported the relationship between gene polymorphism
and injuries (Posthumus et al. 2009a,b), is associated
with tendon mechanical properties. Unfortunately, the
genotype of this gene (rs180002) was the same among
subjects in the present study. Genotype distributions of
COL5A1, GDF5, and MMP3 polymorphisms were, how-
ever, similar to the distributions reported in public

Table 2 Age and physical characteristics of all subjects
according to genotypes of polymorphisms

Mean (SD)

COL1A1 rs1800012 GG GT TT p value

n 100 0 0

Age (yr) 22.0 (3.3) - - -

Height (cm) 172.6 (5.5) - - -

Body mass (kg) 67.9 (10.4) - - -

COL5A1 rs12722 TT CT CC p value

n 2 22 76

Age (yr) 21.0 (2.3) 22.1 (4.0) 22.1 (3.1) 0.894

Height (cm) 172.8 (2.4) 172.4 (4.8) 172.7 (5.8) 0.976

Body mass (kg) 66.1 (6.7) 70.2 (11.1) 67.4 (10.2) 0.771

GDF5 rs 143383 CC CT TT p value

n 8 35 57

Age (yr) 21.6 (2.6) 21.3 (2.8) 22.5 (3.6) 0.214

Height (cm) 170.7 (8.3) 173.0 (4.8) 172.7 (5.5) 0.573

Body mass (kg) 64.3 (13.4) 65.9 (9.1) 69.4 (10.6) 0.198

MMP3 rs679620 AA AG GG p value

n 10 40 50

Age (yr) 21.2 (2.1) 21.7 (2.6) 22.4 (3.9) 0.443

Height (cm) 174.6 (6.1) 171.8 (5.0) 173.1 (5.8) 0.339

Body mass (kg) 69.6 (14.1) 66.6 (9.0) 68.5 (10.9) 0.632

Table 3 Mechanical properties of tendon structures in
COL5A1 rs12722 genotype groups

Mean (SD)

TT + CT CC

n = 24 n = 76 p value

Knee extensors MVC (Nm) 191 (55) 189 (57) 0.822

Maximal
elongation (mm)

21.1 (5.4) 24.5 (5.4) 0.012

Maximal strain (%) 6.51 (1.58) 7.61 (1.62) 0.008

Stiffness (N mm-1) 78.2 (18.5) 66.2 (19.3) 0.013

Plantar flexors MVC (Nm) 129 (29) 126 (25) 0.612

Maximal
elongation (mm)

17.6 (3.6) 18.0 (3.7) 0.631

Maximal strain (%) 6.39 (1.56) 6.43 (1.33) 0.382

Stiffness (N mm-1) 33.5 (12.4) 35.7 (13.1) 0.493
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databases for Japanese populations (http://www.ncbi.
nlm.nih.gov/SNP).
In the present study, we must draw the attention to

the limitations and assumptions of the methodology
followed. Firstly, we measured the tendon elongation at
the one point of insertion of a fascicle into the aponeur-
osis. Two measured sites were selected for measure-
ments: at 50% of the thigh length for vastus lateralis
muscle and at 30% of the lower leg length for medial
gastrocnemius muscle. Therefore, we may say that these
measured sites were relatively same among all subjects.
Furthermore, our previous study demonstrated that
there was no difference in maximal strain of tendon
structures among the proximal, central, and distal sites
(Kubo et al. 2002). Therefore, we considered that this
point did not affect the main results of this study. Sec-
ondly, we must confirm that there was no difference in
activity level or loading history between the groups with
the different genotypes. The subjects in the present
study had engaged in recreational sports activity on aver-
age not more than twice per week or 1 hour per week in
the past 3 years. In addition, there were no differences
in MVC (Tables 3, 4 and 5) and muscle thickness (not
showing these data) among the genotype groups.

Therefore, we considered that there was no difference in
activity level or loading history among the genotype
groups. Thirdly, the present study was performed on a
small sample size. Nevertheless, the present results
showed that tendon structures in knee extensors of sub-
jects with a CC genotype of the COL5A1 gene were
more extensible than those with the other genotypes. In
a future study, the results presented in this study need
to be confirmed in a larger cohort of subjects.
In conclusion, the present study demonstrated that the

COL5A1 rs12722 genotype, but none of the three other
variants investigated, was associated with the mechanical
properties of human tendon structures in vivo. In knee
extensors only, the tendon structures of subjects with a
CC genotype of the COL5A1 gene were more extensible
than those with the other genotypes (combined TT and
CT). In a future study, these conclusions await add-
itional data for clarification in a larger cohort of subjects.
Furthermore, according to predictive genomics DNA
profiling for athletic performance, knowledge of genetic
suitability in respect to physical function (e.g., speed, en-
durance) may be useful for the selection of appropriate
sporting event (Kambouris et al. 2012). Therefore, it is
possible that the extensibility of tendon structures,

Table 4 Mechanical properties of tendon structures in GDF5 rs143383 genotype groups

Mean (SD)

CC CT TT

n = 8 n = 35 n = 57 p value

Knee extensors MVC (Nm) 163 (65) 192 (59) 192 (53) 0.476

Maximal elongation (mm) 23.0 (6.6) 24.7 (6.3) 23.2 (4.9) 0.333

Maximal strain (%) 7.39 (2.08) 7.67 (1.90) 7.16 (1.44) 0.294

Stiffness (N mm-1) 62.8 (29.9) 68.7 (18.8) 72.7 (21.8) 0.594

Plantar flexors MVC (Nm) 119 (34) 219 (28) 127 (24) 0.652

Maximal elongation (mm) 17.8 (5.2) 18.0 (3.2) 17.9 (3.7) 0.989

Maximal strain (%) 6.54 (1.76) 6.51 (1.24) 6.35 (1.41) 0.857

Stiffness (N mm-1) 32.2 (11.2) 33.3 (12.4) 36.6 (13.5) 0.424

Table 5 Mechanical properties of tendon structures in MMP3 rs679620

Mean (SD)

AA AG GG

n = 10 n = 40 n = 50 p value

Knee extensors MVC (Nm) 203 (53) 193 (55) 184 (58) 0.621

Maximal elongatin (mm) 24.8 (4.5) 23.1 (6.2) 24.0 (5.2) 0.656

Maximal strain (%) 7.53 (1.32) 7.16 (1.84) 7.49 (1.58) 0.641

Stiffness (N mm-1) 67.8 (119) 73.2 (23.0) 68.6 (21.8) 0.580

Plantar flexors MVC (Nm) 126 (31) 128 (28) 126 (24) 0.947

Maximal elongatin (mm) 18.3 (2.8) 17.4 (3.9) 18.3 (3.6) 0.516

Maximal strain (%) 6.55 (0.98) 6.29 (1.55) 6.51 (1.30) 0.743

Stiffness (N mm-1) 36.8 (17.3) 36.1 (12.5) 34.2 (12.7) 0.752
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related to the performances during stretch-shortening
cycle exercises, may be predicted by the genotype of the
COL5A1 gene. Further studies are needed to examine
whether compliant tendons in excellent sprinters are
caused by a genetic factor.
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