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Abstract: In this study, we investigated the pharmacological effect of a water extract of Raphani
Semen (RSWE) on alcoholic fatty liver disease (AFLD) using ethanol-induced AFLD mice (the
NIAAA model) and palmitic acid (PA)-induced steatosis HepG2 cells. An RSWE supplement
improved serum and hepatic triglyceride (TG) levels of AFLD mice, as well as their liver histological
structure. To explore the molecular action of RSWE in the improvement of AFLD, we investigated
the effect of RSWE on four major pathways for lipid homeostasis in the liver: free fatty acid transport,
lipogenesis, lipolysis, and β-oxidation. Importantly, RSWE decreased the mRNA expression of de
novo lipogenesis-related genes, such as Srebf1, Cebpa, Pparg, and Lpin1, as well as the protein
levels of these factors, in the liver of AFLD mice. That these actions of RSWE affect lipogenesis was
confirmed using PA-induced steatosis HepG2 cells. Overall, our findings suggest that RSWE has the
potential for improvement of AFLD by inhibiting de novo lipogenesis.

Keywords: AFLD; Raphani Semen; lipogenesis; SREBF1; Lpin1

1. Introduction

Alcoholic fatty liver disease (AFLD), characterized by excessive fortification of triglyc-
erides in the liver, is one of the major causes of the wide spectrum of hepatic pathologies,
such as hepatitis, steatohepatitis, fibrosis cirrhosis, and hepatocellular carcinoma (HCC) [1].
The dysfunction of alcohol metabolism in the liver caused by chronic heavy drinking is
known to be a major cause of AFLD. However, because only about 20% of patients with
AFLD are verified to have high alcohol dependence, the precise mechanisms leading to
AFLD are still unclear [2]. Alcohol, but also age, gender, genetic background, nutritional
status, occupational hazards, and viral diseases especially Hepatitis C Virus (HCV) infec-
tions, have been suggested as potential risk factors of AFLD [3]. The effective treatment
strategies proposed for AFLD should be accompanied by additional treatment strategies,
as well as restrictions on alcohol consumption.

Lipid homeostasis in the liver is maintained by regulating de novo lipogenesis, oxi-
dation, and transport of fatty acids. In AFLD, ethanol-derived metabolites cause damage
ranging from lipid accumulation in hepatocytes to inflammation, fibrosis, and carcinogen-
esis [4]. When a body is alcohol-fed, triglyceride (TG) levels are elevated, and more free
fatty acids (FFA) are released into the circulatory system [5]. Excess circulating FFA can
be delivered to the liver. Fatty acids are either oxidized by mitochondrial β-oxidation or
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incorporated into TG, resulting in lipid accumulation in the liver [6]. Many factors mediate
lipid homeostasis in the liver by regulating de novo lipogenesis, oxidation, and transport
of fatty acids. Abundant evidence suggests that hepatic lipid metabolism is modulated by
critical regulators, such as sterol regulatory element binding proteins (SREBPs) and AMP-
activated protein kinase (AMPK) [7,8]. Excessive lipid accumulation in hepatocytes results
in massive death of these hepatocytes. The massive die-off triggers pro-inflammatory and
pro-fibrogenic responses that increase the risks of liver cancer [9]. Given that hepatocellular
lipid accumulation is the earliest sign of alcoholic liver disease, further study on the regula-
tion of lipid metabolism in hepatocytes could create opportunities for early therapeutic
intervention for those at risk of advanced disease [4].

Raphani Semen, the seeds of Raphanus sativus L., has been used as a medicinal herb
to improve gastrointestinal disorders, such as indigestion, inflammation, and diarrhea in
Korean Medicine [10]. Raphani Semen contains an extensive variety of pharmaceutically
active compounds [11]. In fact, advanced information about the pharmacological role
of Raphani Semen in relation to several gastrointestinal diseases has been revealed in a
variety of animal experiment models, e.g., ulcerative colitis, intestinal motility, and colon
cancer [12,13]. In addition, Raphani Semen and its active compounds have been shown
to have potential for antioxidant and anti-inflammatory activity [14,15]. Here, we report
on our investigation of whether Raphani Semen has a therapeutic effect on AFLD using
the National Institute on Alcohol Abuse and Alcoholism (NIAAA) mouse model and
PA-induced steatosis HepG2 cells, with a focus on the regulation of lipid metabolism.

2. Materials and Methods
2.1. Drugs and Reagents

Dulbecco’s modified Eagle’s medium (DMEM) with low glucose, penicillin–streptomycin,
and fetal bovine serum (FBS) were purchased from Gibco BRL (Grand Island, NY, USA).
Palmitic acid was purchased from Sigma-Aldrich (St. Louis, MO, USA). The Lieber-DeCarli
alcohol liquid diet was obtained from Bio-Serv (Frenchtown, NJ, USA). The antibodies of
C/EBPα, SREBP1, Lipin-1, p-IκBα, and NF-κB were purchased from Santa Cruz Biotechnology
(Dallas, TX, USA). GAPDH, β-actin, p-ACC, and PPARγ antibodies were purchased from Cell
Signaling Technology (Danvers, MA, USA). The antibodies of HSL, ATGL, and CPT1β were
obtained from Abcam plc. (Hills Road, Cambridge, UK).

2.2. Sample Preparation

Dried Raphani Semen was purchased at the Han Yak Jae Market (Seoul, Korea).
Extraction of Raphani Semen was performed based on its traditional use as a medicinal
herb. The water extract of Raphani Semen (RSWE) was obtained by extracting Raphani
Semen in hot water at 100 ◦C for 3 h, followed by filtering (Whatman, Kent, UK). After
being freeze-dried in a vacuum, the solid was dissolved in distilled water (20 mg/mL). The
extraction yield was 12.8% (g/g).

2.3. Ethical Statement

All animal experiments were performed in accordance with the ethical guidelines of
Kyung Hee University and approved by the Institutional Review Board of Kyung Hee
University (confirmation number: KHUASP (SE)-15-08).

2.4. Animal Experiments

Here, to induce the AFLD mice model, we chose the NIAAA model. The NIAAA
model is a simple mouse model of alcoholic liver injury induced by chronic ethanol feeding
(10 d ad libitum oral feeding with the ELD) plus single-binge ethanol feeding [16]. The
histological condition produced by ELD and 35% EtOH-feeding was observed in the AFLD
mice model.

Four-week-old male C57BL/6J mice were purchased from the Dae-Han Experimental
Animal Center (Dae-Han Biolink, Eumsung, Korea) and housed under a 12 h light/dark



Nutrients 2021, 13, 4448 3 of 13

cycle at a humidity of 70% and a constant temperature of 23 ± 2 ◦C. Voluntary liquid diet
(LD) and tube feeding through the control Lieber–DeCarli diet were applied for the first
five days. Afterward, for 10 days, the ethanol-fed groups (n = 4), the ethanol-fed and RSWE
(100 mg/kg/day)-fed group (n = 4) voluntarily ingested a 5% ethanol Lieber–DeCarli
(ELD) diet (Bio-Serv, NJ, USA), while the normal control group (n = 4) was fed a diet with
identical calories. After maintaining the ethanol liquid diet to induce a chronic AFLD
model, 30% EtOH was orally administered 9 h prior to sacrifice on the 11th day to induce
acute liver toxicity. Mice fed a standard laboratory diet (CJ Feed Co., Ltd., Seoul, Korea)
for 14 d were used as the normal control group. The animals were given free access to
food and tap water. The body and food intake were recorded every week. At the end of
this period, the animals were anesthetized under 30% CO2 asphyxiation, and serum was
separated immediately after blood collection. Tissue samples were collected, placed in a
tube, and stored at −80 ◦C.

2.5. Blood Serum Analysis

Serum TG, alanine transaminase (ALT), aspartate aminotransferase (AST), blood urea
nitrogen (BUN), and creatinine levels were analyzed using enzymatic colorimetric methods
at the Seoul Medical Science Institute (Seoul Clinical Laboratories, Seoul, Korea).

2.6. Cytokine Measurement

Hepatic cytokine levels were measured using Mouse IL-6 or TNF-α ELISA kit (In-
vitrogen, Waltham, MA, USA). The levels of IL-6 or TNF-α were confirmed based on the
manufacturer’s instructions.

2.7. Hepatic TG Measurement

Triglyceride contents were detected using the EZ-Triglyceride Quantification kit (DoGen
Bio, Seoul, Korea). These levels were confirmed based on the manufacturer’s instructions.

2.8. Hepatic FFA Measurement

Free fatty acid contents were detected using the EZ-Free Fatty Acid kit (DoGen Bio,
Seoul, Korea). These levels were confirmed based on the manufacturer’s instructions.

2.9. Hematoxylin and Eosin (H&E) Staining

H&E staining was performed as previously reported [17]. Briefly, the liver tissues were
fixed in 10% formalin and embedded in paraffin. According to a standard protocol, tissues
were cut into 4 µm sections. The sections were then stained with H&E. Microscopic exami-
nations were performed and photographs were taken under a regular light microscope.

2.10. Protein Extraction and Western Blot Analysis

Protein extraction and western blot analysis were performed as previously reported [18].
Briefly, protein extracts from homogenized liver or harvested HepG2 cells were lysed in
radioimmunoprecipitation assay (RIPA) buffer (Cell Signaling Technology, Danvers, MA,
USA) and the protein concentration was determined. The lysates were resolved by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis and transferred onto PVDF mem-
branes. The membranes were blocked and incubated with primary antibodies (1:1000),
followed by incubation with horseradish peroxidase-conjugated secondary antibodies
(1:10,000). The protein signals were detected using an EZ-Western Lumi Femto Kit (Do-
Genbio, Seoul, Korea).

2.11. RNA Isolation and Quantitative PCR (qPCR)

Total RNA was extracted using a GeneAllR RiboEx total RNA extraction kit (GeneAll
Biotechnology, Seoul, Korea). Newly synthesized complementary DNA (cDNA) from liver
or HepG2 cells was amplified using specific primers and the Fast SYBR Green PCR master
mix (Applied Biosystems, Foster City, CA, USA). mRNA expression was measured with a
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StepOnePlus qPCR System and StepOne Software v2.1 (Applied Biosystems, Foster City,
CA, USA). The primers used in the experiments are shown in Table 1.

Table 1. Primer sequences used for qPCR.

Genes Forward (5′ to 3′) Reverse (5′ to 3′)

m-Apob TTGGCAAACTGCATAGCATCC TCAAATTGGGACTCTCCTTTAGC
m-Atgl ATATCCCACTTTAGCTCCAGGG CAAGTTGTCTGAAATGCCGC
m-Cd36 ATGGGCTGTGATCGGAACTG GTCTTCCCAATAAGCATGTCTCC
m-Cebpa CAAGAACAGCAACGAGTACCG GTCACTGGTCAACTCCAGCAC
m-Chrebp CCAGCCTCAAGGTGAGCAAA CATGTCCCGCATCTGGTCA
m-Cpt1a CTCCGCCTGAGCCATGAAG CACCAGTGATGATGCCATTCT
m-Cpt1b GCACACCAGGCAGTAGCTTT CAGGAGTTGATTCCAGACAGGTA

m-Cyp2e1 CGTTGCCTTGCTTGTCTGGA AAGAAAGGAATTGGGAAAGGTCC
m-Fas TATCAAGGAGGCCCATTTTGC TGTTTCCACTTCTAAACCATGCT

m-Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
m-Hsl CTGAGATTGAGGTGCTGTCG CAAGGGAGGTGAGAGGGTAAC

m-Lpin1 CATGCTTCGGAAAGTCCTTCA GGTTATTCTTTGGCGTCAACCT
m-Ppara AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA
m-Pparg TTTTCAAGGGTGCCAGTTTC TTATTCATCAGGGAGGCCAG
m-Scd1 TTCTTGCGATACACTCTGGTGC CGGGATTGAATGTTCTTGTCGT

m-Srebf1 GCAGCCACCATCTAGCCTG GCAGCCACCATCTAGCCTG
h-APOB GCAGGCCGAAGCTGTTTTG GCACACGTTTCAGCCACTG
h-CEBPA TGTATACCCCTGGTGGGAGA TCATAACTCCGGTCCCTCTG
h-FABP4 ACTGGGCCAGGAATTTGACG CTCGTGGAAGTGACGCCTT

h-GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
h-PPARG TACTGTCGGTTTCAGAAATGCC GTCAGCGGACTCTGGATTCAG
h-SREBF1 ACAGTGACTTCCCTGGCCTAT ACAGTGACTTCCCTGGCCTAT

Apob: apolipoprotein B, Atgl: patatin-like phospholipase domain containing 2, Cd36: CD36 molecules, Cebpa: CCAAT enhancer binding
protein alpha, Chrebp: MLX interacting protein like, Cpt1a: carnitine palmitoyltransferase 1A, Cpt1b: carnitine palmitoyltransferase
1B, Cyp2e1: cytochrome P450 family 2 subfamily E member 1, Fas: fas cell surface death receptor, Gapdh: glyceraldehyde-3-phosphate
dehydrogenase, Hsl: hormone-sensitive lipase, Ppara: peroxisome proliferator activated receptor alpha, Pparg: peroxisome proliferator
activated receptor gamma, Scd1: stearoyl-Coenzyme A desaturase 1, Srebf1: sterol regulatory element binding transcription factor 1.

2.12. Immunofluorescence (IF) Assay

An IF assay was performed as previously reported [19]. For IF staining, liver tis-
sues were fixed with 4% paraformaldehyde in PBS for 15 min and permeabilized with
0.2% Triton X-100 (Sigma-Aldrich) for 10 min. Thereafter, nonspecific binding sites were
blocked using PBS with 1% bovine serum albumin (Calbiochem, San Diego, CA, USA).
After incubation with primary antibodies for either SREBP1 (1:200) or Lipin-1 (1:500), the
slides were incubated with Alexa Fluor 633 (1:500; Thermo Fisher Scientific) as secondary
antibody for SREBP1, or with Alexa Fluor 488 (1:500; Thermo Fisher Scientific) as secondary
antibody for Lipin-1. Fluorescence signals were measured by flow cytometry and imaged
with the EVOSR Cell Imaging System (Thermo Scientific, Carlsbad, CA, USA).

2.13. Cell Culture and PA-Induced Lipid Accumulation in HepG2 Cells

HepG2 cell culture was performed as previously described [18]. The cells were
cultured at 37 ◦C under 5% CO2 in DMEM with low glucose containing 10% FBS and
1% penicillin–streptomycin. To induce excessive lipid accumulation, HepG2 cells were
seeded at 5 × 105 cells/well in a 6-well culture plate and incubated for 24 h. On day 2,
they were pretreated with RSWE (250 or 500 µg/mL) for 30 min, and then 150 µM PA was
added to each well for 24 h. To prepare the PA, sodium palmitate was conjugated with a
culture medium containing 1% bovine serum albumin (BSA).

2.14. Cell Cytotoxicity

To assess the cytotoxicity of RSWE, HepG2 cells (2.5 × 103 cells/200 µL) were seeded
in 96-well microplates and treated with various concentrations of RSWE (0–1000 µg/mL).
After 24 h, the cells were incubated with 20 µL of WST-1 solution (Biomax Co., Ltd., Seoul,
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Korea) for 4 h at 37 ◦C under 5% CO2 and 95% air. The absorbance was measured at 440 nm
using a VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA, USA).

2.15. LDH Measurement

To assess the protective effect on the PA-induced LDH release of RSWE, HepG2
cells (2 × 104 cells/200 µL) were seeded in 96-well microplates and treated with various
concentrations of RSWE (0 to 500 µg/mL) or PA (150 µM). After 24 h, the cells were
incubated with 20 µL of LDH solution (DoGen Bio, Seoul, Korea) for 30 min at 37 ◦C
under 5% CO2 and 95% air. The absorbance was measured at 450 nm using a VERSAmax
microplate reader (Molecular Devices, Sunnyvale, CA, USA).

2.16. BODIPYTM Staining

For immunofluorescent staining of BODIPYTM (Thermo Scientific), HepG2 cells were
treated with RSWE or PA and stained with 2 µM BODIPYTM for 30 min at 37 ◦C, and
fluorescence was detected using the EVOSR Cell Imaging System (Thermo Scientific). For
flow cytometry analysis with BODIPYTM, BODIPYTM (green) fluorescence was measured
in the total event count (7 × 103 cell/50 uL).

2.17. Oil Red O Staining

The accumulation of intracellular lipid was measured using Oil Red O [20], of which
the working solution was prepared as described. The HepG2 cells were fixed with 10%
formalin and then stained for 1 h with a filtered Oil Red O solution. To quantify the
intracellular lipids, the stained lipid droplets were dissolved in 100% isopropanol (3 mL
per well). The extracted dye was transferred to a 96-well plate, and the absorbance was
read with a VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA, USA) at
500 nm.

2.18. Statistical Analysis

Data are expressed as the mean ± standard error of the mean (S.E.M.). Significant
differences between groups were determined using the Student’s t-test or one-way ANOVA
followed by post hoc Tukey’s multiple comparison tests. Statistical differences were
determined using a subsequent post hoc one-tailed Mann–Whitney U test and calculated
using Prism 8 (GraphPad Software, San Diego, CA, USA). The statistical significance of
differences was presented as one of the probability values: p < 0.05 and p < 0.01.

3. Results
3.1. RSWE Attenuates Fatty Liver Phenotypes in AFLD Mice

To explore the effect of RSWE on AFLD, we used the NIAAA model. In brief, the mice
were randomly divided into three groups of four mice each, as follows: LD group (LD-fed),
AFLD group (ELD and 35% EtOH-fed), and RSWE group (ELD and 35% EtOH-fed with
RSWE 100 mg/kg, per oral). The detailed scheme is shown in Figure 1A. We first checked
the effect of RSWE on the AFLD phenotypes of the AFLD mice. Body weights and liver
weights of the AFLD group were significantly decreased compared to the LD group, but
RSWE treatment had no effect on the reduced body and liver weights (Figure 1B). The
levels of plasma parameters for liver or kidney injury were increased in the AFLD group
and were significantly decreased by RSWE treatment. Meanwhile, the decreased BUN
in the AFLD group was not restored by RSWE treatment (Figure 1C). The high levels of
pro-inflammatory mediators (TNF-a, IL-6, p-IκBα, and NF-κB), major pathological makers
of AFLD, were reduced by treatment with RSWE (Figures 1D and S1).
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Figure 1. The effect of RSWE on AFLD phenotypes in the C57BL/6J NIAAA mouse model. (A) The experimental procedure.
(B) Body weight and liver weight were measured. (C) Levels of ALT, AST, creatinine, and BUN in serum were measured.
(D) Levels of TNF-α and IL-6 in hepatic tissue were measured using ELISA kits. (E) Paraffin-embedded liver was stained
with H&E (magnification ×400, scale bar 75 µm). (F) TG and FFA levels of hepatic tissue were measured. (G) TG levels
of serum were measured. All data are expressed as the mean ± S.E.M. of data from three or more separate experiments.
Statistical differences were determined using a subsequent post hoc one-tailed Mann–Whitney U test. n.s. no significance,
# p < 0.05 vs. LD group and * p < 0.05, ** p < 0.01 vs. AFLD group. RSWE: Raphani Semen water extract, LD: liquid diet,
AFLD: alcoholic fatty liver disease, ALT: alanine transaminase, AST: aspartate transaminase, BUN: blood urea nitrogen, TG:
triglycerides, FFA: free fatty acid.
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As shown in Figure 1E, the hepatic tissues of AFLD mice displayed pathological
changes, such as larger lipid droplets, suggesting that alcohol-induced liver injury was
successfully established in the AFLD mice. RSWE treatment restored the histological
structure of the liver. In addition, the increased hepatic TG, FFA, and serum TG contents in
AFLD mice were decreased by RSWE treatment (Figure 1F,G). These findings suggest that
RSWE improves the alcohol-induced fatty liver phenotypes of mice.

3.2. RSWE Regulates De Novo Lipogenesis in the Liver of AFLD Mice

The factors related to fatty acid transport (hepatic lipid uptake/export), de novo
lipogenesis, and lipolysis/oxidation were confirmed in the hepatic tissues of AFLD mice
using qPCR analysis. Most of the hepatic lipid metabolism-related genes changed under
exposure to alcohol, but lipogenesis-related genes were only controlled by RSWE treatment.
In detail, RSWE treatment reduced lipogenesis-related genes, such as Srebf1, Fas, Cebpa,
Pparg, Lpin1, and Acc, but had no effect on fatty acid transport factors (Cd36), lipolysis
factors (Atgl and Hsl), or β-oxidation factors (Cpt1a, Ppara, and Cyp2e1) (Figures 2A and S3).
Regulation by RSWE of lipogenic factors was also confirmed at the protein level in the
hepatic tissue of AFLD mice. As shown in Figure 2B,C, RSWE treatment decreased the
levels of lipogenesis-related proteins that included PPARγ, C/EBPα, SREBP1, and Lipin-
1. This was confirmed through cytological analysis using immunofluorescence staining
(Figure 2D,E). Interestingly, RSWE treatment enhanced the protein levels of HSL and
CPT1β in the liver of AFLD mice (Figure S2). These results suggest that RSWE operates to
reduce lipogenesis-associated factors during the development and progression of ALFD.

3.3. RSWE Inhibits Lipid Accumulation in PA-Induced Steatosis HepG2 Cells

We observed that RSWE attenuates lipogenesis in the liver of AFLD mice. To confirm
the inhibitory effect of RSWE on lipogenesis in fatty liver, we used the PA-induced steatosis
HepG2 cell model for in vitro studies. The cytotoxicity of RSWE was first measured in
HepG2 cells. The cells were treated with RSWE (125–1000 µg/mL), and then the WST-1 as-
say was performed. RSWE showed cytotoxicity at 1000 µg/mL of concentration in HepG2
cells (Figure 3A). Cytotoxicity of RSWE treated with PA was also confirmed. When the cells
were treated with RSWE (125–1000 µg/mL) in PA (150 µM)-treated HepG2 cells, treatment
with 125, 250, and 500 µg/mL of RSWE significantly increased cell viability (Figure 3B).
Thus, we chose two concentrations (250 and 500 µg/mL) for further experiments. In addi-
tion, to investigate the inhibition effect on PA-induced LDH releases of RSWE, we treated
HepG2 cells with PA or RWSE (125, 250 and 500 µg/mL). RSWE treatment significantly
reduced LDH releases in the supernatant compared to PA-treated HepG2 cells (Figure 3C).
Next, TG accumulation was measured using BODIPYTM and Oil Red O staining. The
intensity of BODIPYTM was measured by a fluorescent microscope and flow cytometry,
and RSWE treatment (250 and 500 µg/mL) was shown to reduce intracellular TG levels in
PA-treated HepG2 cells (Figure 3D–F). In Oil Red O staining, RSWE treatment (500 µg/mL)
significantly decreased lipid accumulation in PA-treated HepG2 cells (Figure 3G,H). Fur-
thermore, qPCR results also showed that the expression of lipogenesis-associated genes,
including PPARG, CEBPA, SREBF1, APOB, and FABP4, significantly decreased in RSWE
(250 or 500 µg/mL)- and PA-treated HepG2 cells (Figure 3I). The protein levels of PPARγ
and C/EBPα were also confirmed (Figure 3J).

3.4. RSWE Regulates SREBP1 and Lipin-1 in PA-Induced Steatosis HepG2 Cells

Just as for the in vivo results, RSWE also inhibited SREBP1 and Lipin-1, major factors
contributing to the de novo lipogenesis pathway. From western blot and IF staining
analyses, we confirmed that 250 and 500 µg/mL of RSWE decreased SREBP1 and Lipin-1
proteins in PA-treated HepG2 cells. In particular, 500 µg/mL of RSWE decreased the levels
of SREBP1 and Lipin-1 proteins by 0.45 ± 0.25-fold and 0.33 ± 0.23-fold, respectively,
compared to PA-treated HepG2 cells (Figure 4A,D). Likewise, the expression of SREBP1
and Lipin-1 decreased RSWE concentrations of 250 and 500 µg/mL (Figure 4B,C,E). Overall,
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these findings showed that RSWE can inhibit lipogenesis-related factors, including SREBP1
and Lipin-1, suggesting that RSWE has potential as a candidate agent for AFLD treatment.

Figure 2. The inhibitory effect of RSWE on lipogenesis in the liver of a C57BL/6J NIAAA mouse
model. (A) mRNA expression of lipid metabolism-related genes in the liver was analyzed using qPCR.
(B,C) Protein levels of PPARγ, C/EBPα, SREBP1, and Lipin-1 were analyzed using western blot
analysis. GAPDH was used as a loading control. (D,E) SREBP1 (green), Lipin-1 (red), and nuclei (blue)
were detected in hepatic tissue using IF staining (magnification ×400, scale bar 75 µm). Fluorescence
intensity was quantified using ImageJ software. All data are expressed as the mean ± S.E.M. of data
from three or more separate experiments. Statistical differences were determined using a subsequent
post hoc one-tailed Mann–Whitney U test. # p < 0.05 vs. LD group and * p < 0.05 vs. AFLD group.
RSWE: Raphani Semen water extract, LD: liquid diet, AFLD: alcoholic fatty liver disease.
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Figure 3. The effect of RSWE on lipid accumulation in PA-treated HepG2 cells. (A) Cytotoxicity
and (B) cell viability of RSWE with or without PA on HepG2 hepatocytes was measured with a
WST-1 assay. (C) LDH release was measured using an LDH assay kit. (D–F) Intracellular TG levels
were analyzed using BODIPYTM staining. (G,H) Lipid accumulation was measured using Oil Red
O staining. (I) mRNA expression of lipogenesis-related genes, including PPARG, CEBPA, SREBF1,
APOB, and FABP4, in HepG2 hepatocytes was analyzed using qPCR. (J) Protein levels of PPARγ
and C/EBPα were analyzed using western blot analysis. GAPDH was used as a loading control. All
data are expressed as the mean ± S.E.M. of data from three or more separate experiments. Statistical
differences were determined using a subsequent post hoc one-tailed Mann–Whitney U test. # p < 0.05
vs. PBS-treated HepG2 cells and * p < 0.05 and ** p < 0.01 vs. PA-treated HepG2 cells. RSWE: Raphani
Semen water extract, PA: palmitic acid.
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Figure 4. The regulatory effect of RSWE on SREBP1 and Lipin-1 expression in PA-treated HepG2
cells. (A) SREBP1 protein was analyzed using western blot analysis. (B) SREBP1 (green), actin (red)
and nuclei (blue) were detected in HepG2 hepatocytes using IF staining (magnification ×400, scale
bar 75 µm). (C) The rates of co-localization of SREBP1 (green) and DAPI (Blue) were calculated by
flow cytometry. (D) Lipin-1 protein was analyzed by western blot analysis. GAPDH was used as
a loading control. (E) Lipin-1 (red) and nuclei (blue) were detected in HepG2 hepatocytes using IF
staining (magnification ×400, scale bar 75 µm). All data are expressed as the mean ± S.E.M. of data
from three or more separate experiments. Statistical differences were determined using a subsequent
post hoc one-tailed Mann–Whitney U test. # p < 0.05 vs. PA-treated HepG2 cells and * p < 0.05 and
** p < 0.01 vs. PA-treated HepG2 cells. RSWE: Raphani Semen water extract, PA: palmitic acid.

4. Discussion

Alcohol exposure is one of the potential causes of a wide spectrum of hepatic patholo-
gies, including alcoholic fatty liver disease [21]. The degree of damage to the alcoholic
fatty liver varies depending on the amount of alcohol consumed and the frequency of



Nutrients 2021, 13, 4448 11 of 13

drinking [22]. Alcoholic fatty liver disease may progress to hepatitis, and in severe cases
cirrhosis can occur. The amount of alcohol and the frequency of alcohol consumption act as
important factors in the degree of alcoholic liver damage [23]. Characterized by histological
lesions, including liver steatosis, or even cirrhosis in severe cases, any form of AFLD can
lead to end-stage liver diseases, according to long-term studies of biopsy specimens and
patient outcomes [24]. The current standard treatment for alcoholic hepatitis is based on
steroids [25]. Liver transplantation treatment may be performed for non-targeted liver
cirrhosis patients who are willing to abstain from drinking. However, effective and safe
therapeutic options are still limited for AFLD. In fact, the application of propylthiouracil,
colchicine, antioxidants, and phosphatidylcholine have been reported as drug treatments
for AFLD, but their therapeutic effects have not proven very successful [26]. Recently,
natural products and isolated compounds with relatively few side-effects have been found
to have beneficial effects on AFLD. This suggests that these may be considered to have
potential for development as substitute therapeutic agents [27]. Therefore, the present
study was conducted to evaluate the beneficial action of RSWE, which has been used as a
medicinal herb for treatment of AFLD.

In the present study, RSWE reduced the number of lipid droplets and cracks in the
livers of AFLD mice. In particular, RSWE decreased the representative phenotypes of
alcohol-induced fatty liver disease, which include increases in hepatic and serum TG levels
in AFLD mice. Elevated FA synthesis is a common phenomenon observed in chronic
alcohol drinkers [28]. The liver releases some of these fatty acids into the blood in the form
of very low-density lipoproteins (VLDLs) [29]. However, when this continues and when
the rate of TG synthesis in the liver exceeds the rate of VLDL release, the liver starts to
accumulate lipids [30]. Moreover, RSWE also reduced the serum levels of TG, ALT, AST,
and creatinine. However, the BUN was not changed. ALT and AST are the most frequently
used biomarkers to evaluate liver function. From these results, it appeared to us that RSWE
had anti-AFLD activity in the AFLD mice model.

Alcoholic fatty liver disease develops through four major mechanisms. First, alcohol
increases FA synthesis and lipogenesis [28]. Second, alcohol promotes the mobilization of
FAs and lipids from adipose tissue and the intestine to the liver [31]. Third, alcohol inhibits
FA β-oxidation via the inactivation of PPARα and downstream β-oxidation genes via the
elevation of acetaldehyde, adenosine, and cytochrome P450 2E1 (CYP2E1) [32]. Lastly,
alcohol inhibits CPT1 activity [33]. To confirm the way in which RSWE inhibits AFLD, we
measured mRNA levels of lipid metabolism-associated factors in fatty livers, including
lipogenesis, FA transport, β-oxidation, and lipolysis in the livers of AFLD mice. RSWE
significantly regulates mRNA expression levels of lipogenesis-associated genes, such as
Srebf1, Pparg, Fas, ApoB, and Cpt1b. RSWE also reduces the protein expression levels of
SREBP1, Lipin-1, PPARγ, and C/EBPα. In particular, SREBP1 and Lipin-1 are important
transcriptional regulators in de novo lipogenesis [34]. SREBP1 is transferred from the
endoplasmic reticulum to the Golgi apparatus by insulin stimulation, processed, and then
transferred to the nucleus to induce a group of genes involved in cholesterol and fatty acid
synthesis [35]. Lipin-1 also has dual functions in lipid metabolism. In hepatocytes of AFLD,
alcohol increases the expression of Lipin-1 through AMPK-SREBP1 signaling [36]. Lipin-1
acts as a co-activator of PPARα in the liver and is involved in fatty acid oxidation [37].
PPARγ and C/EBPα in the liver induce the adipogenic program to store fatty acids in lipid
droplets, as observed in adipocytes [38]. Our results show that RSWE alleviates AFLD
through the regulation of lipogenesis-related factors.

In conclusion, our findings suggest the novel finding that RSWE improves AFLD in
PA-induced steatosis HepG2 cells and ethanol-induced AFLD mice through the inhibition
of lipogenesis. However, our findings have limitations because information about the
chemical profiling of RSWE and its efficacy for AFLD treatment is excluded. We only
focused on the pharmacological effects of RSWE; further investigation is required to confirm
the underlying mechanism and to find the active compounds of RSWE. Nevertheless, the
outcome of the study presented here indicates an effective therapeutic approach for the
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treatment of fatty liver disease. We also propose that a better understanding of RSWE could
open up possibilities for regulating lipogenesis in patients with AFLD and AFLD-related
metabolic diseases using new drugs or even dietary supplementation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nu13124448/s1, Figure S1: Effect of RSWE on p-IκBα and NF-κB in liver of C57BL/6J NIAAA
mouse model, Figure S2: Effect of RSWE on ATGL, HSL, and CPT1β in liver of C57BL/6J NIAAA
mouse model, Figure S3: Effect of RSWE on ACC in liver of C57BL/6J NIAAA mouse model.

Author Contributions: Conceptualization, W.Y.P., G.S., J.H.N., J.J.K., T.K. and J.-Y.U.; data curation,
W.Y.P., G.S., J.H.N., J.J.K. and S.H.; writing—review and editing, W.Y.P., G.S., J.H.N., J.J.K., T.K., J.P.
and J.-Y.U.; visualization, W.Y.P., G.S., J.H.N., J.J.K., T.K., J.P. and J.-Y.U.; supervision, J.-Y.U. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from Kyung Hee University in 2018 (KHU-20181051),
the Kyung Hee University 2020 University Innovation Project (Ministry of Education of the Republic
of Korea) (KHU-20201401), and the National Research Foundation of Korea (NRF-2020R1C1C1009721
and NRF-2021R1A2C2010460).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Kyung Hee University and approved by the Institutional Review Board of Kyung Hee
University (confirmation number: KHUASP (SE)-15-08).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in insert article or
Supplementary Materials here.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fan, H.; Shen, Y.; Ren, Y.; Mou, Q.; Lin, T.; Zhu, L.; Ren, T. Combined intake of blueberry juice and probiotics ameliorate

mitochondrial dysfunction by activating SIRT1 in alcoholic fatty liver disease. Nutr. Metab. 2021, 18, 50. [CrossRef] [PubMed]
2. Bellentani, S.; Saccoccio, G.; Masutti, F.; Giacca, M.; Miglioli, L.; Monzoni, A.; Tiribelli, C. Risk factors for alcoholic liver disease.

Addict. Biol. 2000, 5, 261–268. [CrossRef]
3. Wang, W.-J.; Xiao, P.; Xu, H.-Q.; Niu, J.-Q.; Gao, Y.-H. Growing burden of alcoholic liver disease in China: A review. World J.

Gastroenterol. 2019, 25, 1445. [CrossRef]
4. Hyun, J.; Han, J.; Lee, C.; Yoon, M.; Jung, Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int. J. Mol. Sci. 2021,

22, 5717. [CrossRef] [PubMed]
5. Zhang, Y.; Ge, S.; Yang, Z.; Li, Z.; Gong, X.; Zhang, Q.; Dong, W.; Dong, C. Disturbance of di-(2-ethylhexyl) phthalate in hepatic

lipid metabolism in rats fed with high fat diet. Food Chem. Toxicol. 2020, 146, 111848. [CrossRef]
6. Rai, P.; Kumar, M.; Sharma, G.; Barak, P.; Das, S.; Kamat, S.S.; Mallik, R. Kinesin-dependent mechanism for controlling triglyceride

secretion from the liver. Proc. Natl. Acad. Sci. USA 2017, 114, 12958–12963. [CrossRef]
7. Brown, M.S.; Goldstein, J.L. The SREBP Pathway: Regulation of Cholesterol Metabolism by Proteolysis of a Membrane-Bound

Transcription Factor. Cell 1997, 89, 331–340. [CrossRef]
8. O’Neill, H.M.; Holloway, G.P.; Steinberg, G.R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis:

Implications for obesity. Mol. Cell. Endocrinol. 2013, 366, 135–151. [CrossRef]
9. Malhi, H.; Guicciardi, M.E.; Gores, G.J. Hepatocyte death: A clear and present danger. Physiol. Rev. 2010, 90, 1165–1194. [CrossRef]
10. Choi, K.-C.; Cho, S.-W.; Kook, S.-H.; Chun, S.-R.; Bhattarai, G.; Poudel, S.B.; Kim, M.-K.; Lee, K.-Y.; Lee, J.-C. Intestinal anti-

inflammatory activity of the seeds of Raphanus sativus L. in experimental ulcerative colitis models. J. Ethnopharmacol. 2016, 179,
55–65. [CrossRef]

11. Sham, T.T.; Yuen, A.C.; Ng, Y.F.; Chan, C.O.; Mok, D.K.; Chan, S.W. A review of the phytochemistry and pharmacological activities
of raphani semen. Evid. -Based Complementary Altern. Med. 2013, 2013, 636194. [CrossRef]

12. Yang, G.; Bai, C.; Liu, T.; He, J.; Gu, X. The effect of Raphanus sativus L. seeds on regulation of intestinal motility in rats consuming
a high-calorie diet. Biomed. Pharmacother. 2021, 140, 111705. [CrossRef]

13. Barillari, J.; Iori, R.; Papi, A.; Orlandi, M.; Bartolini, G.; Gabbanini, S.; Pedulli, G.F.; Valgimigli, L. Kaiware Daikon (Raphanus
sativus L.) extract: A naturally multipotent chemopreventive agent. J. Agric. Food Chem. 2008, 56, 7823–7830. [CrossRef]

14. Kook, S.-H.; Choi, K.-C.; Lee, Y.-H.; Cho, H.-K.; Lee, J.-C. Raphanus sativus L. seeds prevent LPS-stimulated inflammatory
response through negative regulation of the p38 MAPK-NF-κB pathway. Int. Immunopharmacol. 2014, 23, 726–734. [CrossRef]

https://www.mdpi.com/article/10.3390/nu13124448/s1
https://www.mdpi.com/article/10.3390/nu13124448/s1
http://doi.org/10.1186/s12986-021-00554-3
http://www.ncbi.nlm.nih.gov/pubmed/33971886
http://doi.org/10.1111/j.1369-1600.2000.tb00190.x
http://doi.org/10.3748/wjg.v25.i12.1445
http://doi.org/10.3390/ijms22115717
http://www.ncbi.nlm.nih.gov/pubmed/34071962
http://doi.org/10.1016/j.fct.2020.111848
http://doi.org/10.1073/pnas.1713292114
http://doi.org/10.1016/S0092-8674(00)80213-5
http://doi.org/10.1016/j.mce.2012.06.019
http://doi.org/10.1152/physrev.00061.2009
http://doi.org/10.1016/j.jep.2015.12.045
http://doi.org/10.1155/2013/636194
http://doi.org/10.1016/j.biopha.2021.111705
http://doi.org/10.1021/jf8011213
http://doi.org/10.1016/j.intimp.2014.11.001


Nutrients 2021, 13, 4448 13 of 13

15. Kim, K.H.; Moon, E.; Kim, S.Y.; Choi, S.U.; Lee, J.H.; Lee, K.R. 4-Methylthio-butanyl derivatives from the seeds of Raphanus
sativus and their biological evaluation on anti-inflammatory and antitumor activities. J. Ethnopharmacol. 2014, 151, 503–508.
[CrossRef]

16. Bertola, A.; Mathews, S.; Ki, S.H.; Wang, H.; Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat.
Protoc. 2013, 8, 627–637. [CrossRef]

17. Park, W.Y.; Choe, S.K.; Park, J.; Um, J.Y. Black Raspberry (Rubus coreanus Miquel) Promotes Browning of Preadipocytes and
Inguinal White Adipose Tissue in Cold-Induced Mice. Nutrients 2019, 11, 2194. [CrossRef]

18. Jung, Y.; Park, J.; Kim, H.L.; Sim, J.E.; Youn, D.H.; Kang, J.; Lim, S.; Jeong, M.Y.; Yang, W.M.; Lee, S.G.; et al. Vanillic acid
attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J. 2018, 32, 1388–1402.
[CrossRef]

19. Park, J.; Cho, S.Y.; Kang, J.; Park, W.Y.; Lee, S.; Jung, Y.; Kang, M.W.; Kwak, H.J.; Um, J.Y. Vanillic Acid Improves Comorbidity
of Cancer and Obesity through STAT3 Regulation in High-Fat-Diet-Induced Obese and B16BL6 Melanoma-Injected Mice.
Biomolecules 2020, 10, 1098. [CrossRef]

20. Park, W.Y.; Park, J.; Ahn, K.S.; Kwak, H.J.; Um, J.Y. Ellagic acid induces beige remodeling of white adipose tissue by controlling
mitochondrial dynamics and SIRT3. FASEB J. 2021, 35, e21548. [CrossRef]

21. Sakhuja, P. Pathology of alcoholic liver disease, can it be differentiated from nonalcoholic steatohepatitis? World J. Gastroenterol.
WJG 2014, 20, 16474. [CrossRef] [PubMed]

22. Osna, N.A.; Donohue, T.M., Jr.; Kharbanda, K.K. Alcoholic liver disease: Pathogenesis and current management. Alcohol Res.
Curr. Rev. 2017, 38, 147.

23. Choe, S.Y.; Seo, Y.; Bang, C.Y.; Woo, S.H.; Kang, M. Protective effects of Gymnaster koraiensis extract on ethanol-induced fatty
liver in rats. Adv. Tradit. Med. 2020, 20, 461–469. [CrossRef]

24. Yeh, M.M.; Brunt, E.M. Pathological features of fatty liver disease. Gastroenterology 2014, 147, 754–764. [CrossRef]
25. Saberi, B.; Dadabhai, A.S.; Jang, Y.Y.; Gurakar, A.; Mezey, E. Current Management of Alcoholic Hepatitis and Future Therapies. J.

Clin. Transl. Hepatol. 2016, 4, 113–122. [CrossRef]
26. Kim, M.S.; Ong, M.; Qu, X. Optimal management for alcoholic liver disease: Conventional medications, natural therapy or

combination? World J. Gastroenterol. 2016, 22, 8–23. [CrossRef]
27. Peng, C.; Stewart, A.G.; Woodman, O.L.; Ritchie, R.H.; Qin, C.X. Non-alcoholic steatohepatitis: A review of its mechanism,

models and medical treatments. Front. Pharmacol. 2020, 11, 1864. [CrossRef] [PubMed]
28. Cederbaum, A.I. Alcohol metabolism. Clin. Liver Dis. 2012, 16, 667–685. [CrossRef]
29. Choi, S.H.; Ginsberg, H.N. Increased very low density lipoprotein (VLDL) secretion, hepatic steatosis, and insulin resistance.

Trends Endocrinol. Metab. 2011, 22, 353–363. [CrossRef]
30. Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and

Lipoproteins in Atherosclerosis. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K.,
Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA. Copyright ©
2000–2021; MDText.com, Inc.: South Dartmouth, MA, USA, 2000.

31. Jeon, S.; Carr, R. Alcohol effects on hepatic lipid metabolism. J. Lipid Res. 2020, 61, 470–479. [CrossRef]
32. Lu, Y.; Zhuge, J.; Wang, X.; Bai, J.; Cederbaum, A.I. Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice.

Hepatology 2008, 47, 1483–1494. [CrossRef] [PubMed]
33. Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H.

Alcoholic liver disease. Nat. Rev. Dis. Primers 2018, 4, 16. [CrossRef] [PubMed]
34. DeBose-Boyd, R.A.; Ye, J. SREBPs in lipid metabolism, insulin signaling, and beyond. Trends Biochem. Sci. 2018, 43, 358–368.

[CrossRef]
35. Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in

the liver. J. Clin. Investig. 2002, 109, 1125–1131. [CrossRef]
36. Bi, L.; Jiang, Z.; Zhou, J. The role of lipin-1 in the pathogenesis of alcoholic fatty liver. Alcohol Alcohol. 2015, 50, 146–151. [CrossRef]

[PubMed]
37. Csaki, L.S.; Reue, K. Lipins: Multifunctional lipid metabolism proteins. Annu. Rev. Nutr. 2010, 30, 257–272. [CrossRef]
38. Lee, Y.K.; Park, J.E.; Lee, M.; Hardwick, J.P. Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2.

Liver Res. 2018, 2, 209–215. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jep.2013.11.003
http://doi.org/10.1038/nprot.2013.032
http://doi.org/10.3390/nu11092164
http://doi.org/10.1096/fj.201700231RR
http://doi.org/10.3390/biom10081098
http://doi.org/10.1096/fj.202002491R
http://doi.org/10.3748/wjg.v20.i44.16474
http://www.ncbi.nlm.nih.gov/pubmed/25469015
http://doi.org/10.1007/s13596-020-00433-x
http://doi.org/10.1053/j.gastro.2014.07.056
http://doi.org/10.14218/jcth.2016.00006
http://doi.org/10.3748/wjg.v22.i1.8
http://doi.org/10.3389/fphar.2020.603926
http://www.ncbi.nlm.nih.gov/pubmed/33343375
http://doi.org/10.1016/j.cld.2012.08.002
http://doi.org/10.1016/j.tem.2011.04.007
http://doi.org/10.1194/jlr.R119000547
http://doi.org/10.1002/hep.22222
http://www.ncbi.nlm.nih.gov/pubmed/18393316
http://doi.org/10.1038/s41572-018-0014-7
http://www.ncbi.nlm.nih.gov/pubmed/30115921
http://doi.org/10.1016/j.tibs.2018.01.005
http://doi.org/10.1172/JCI0215593
http://doi.org/10.1093/alcalc/agu102
http://www.ncbi.nlm.nih.gov/pubmed/25595739
http://doi.org/10.1146/annurev.nutr.012809.104729
http://doi.org/10.1016/j.livres.2018.12.001
http://www.ncbi.nlm.nih.gov/pubmed/31245168

	Introduction 
	Materials and Methods 
	Drugs and Reagents 
	Sample Preparation 
	Ethical Statement 
	Animal Experiments 
	Blood Serum Analysis 
	Cytokine Measurement 
	Hepatic TG Measurement 
	Hepatic FFA Measurement 
	Hematoxylin and Eosin (H&E) Staining 
	Protein Extraction and Western Blot Analysis 
	RNA Isolation and Quantitative PCR (qPCR) 
	Immunofluorescence (IF) Assay 
	Cell Culture and PA-Induced Lipid Accumulation in HepG2 Cells 
	Cell Cytotoxicity 
	LDH Measurement 
	BODIPYTM Staining 
	Oil Red O Staining 
	Statistical Analysis 

	Results 
	RSWE Attenuates Fatty Liver Phenotypes in AFLD Mice 
	RSWE Regulates De Novo Lipogenesis in the Liver of AFLD Mice 
	RSWE Inhibits Lipid Accumulation in PA-Induced Steatosis HepG2 Cells 
	RSWE Regulates SREBP1 and Lipin-1 in PA-Induced Steatosis HepG2 Cells 

	Discussion 
	References

