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ABSTRACT High-throughput sequencing has facilitated discovery in microbiome
science, but distinguishing true discoveries from spurious signals can be challenging.
The Statistical Diversity Lab develops rigorous statistical methods and statistical soft-
ware for the analysis of microbiome and biodiversity data. Developing statistical
methods that produce valid P values requires thoughtful modeling and careful vali-
dation, but careful statistical analysis reduces the risk of false discoveries and in-
creases scientific understanding.
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The ever-increasing amount of data about microbial communities should be leading
to an increasing understanding of the role of the microbiome in human and

environmental health. However, the increasing amount and dimension of microbiome
data may be drowning us in “significant” but irreproducible findings. Statistical models
are a natural framework for dealing with uncertainty and variation and, when used
correctly, have the potential to distinguish spurious signals from strong evidence (1–3).
Unfortunately, it is substantially more difficult to develop a valid statistical hypothesis
test than it is to develop a procedure that produces P values. My research group
develops rigorous statistical methods, including valid and powerful hypothesis tests,
and predictive models with high (but not overstated) accuracy and precision. Correctly
identifying the microbial features that discriminate healthy and diseased microbiomes
allows the scientific community to pursue promising avenues of research without
becoming sidetracked by spurious correlations.

WHY BOTHER WITH RIGOROUS STATISTICS?

To illustrate my philosophy of statistics, I want you to think about the last micro-
biome investigation that you performed (or read about). If you were able to repeat your
experiment infinitely many times and with perfect precision, you could perform any
quantitative analysis you wish and know that you got the correct answer. You could
know if a particular gene in a particular genome conferred disease risk, or the average
effect of the concentration of a strain on a functional trait of the environment.
Statisticians call this type of data a census: perfect sampling of the entire population.
Of course, we are never able to collect a microbial census, and our precision is limited
by our measurement tools, such as sequencing machines. My approach to microbiome
statistics involves using your finite amount of imprecise data to estimate the parameter
that you would care about if you had infinite data and perfect precision. Critically, my
approach always involves estimating the uncertainty in the parameter estimate, or the
expected error rate of a prediction. By combining estimates with uncertainties, we can
understand the strength of collected data to support a hypothesis.

Unfortunately, microbiologists frequently analyze their data as if they were census
data (4, 5). Census data (to first approximation) do not require statistical modeling: any
summary of the data is correct. An example of analyzing microbiome data as if they
were census data is the analysis of Shannon diversity, which measures community
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evenness and richness. Plugging in the observed relative abundances to calculate
Shannon diversity neglects to correct for bias due to undersampling, and microbiolo-
gists typically do not report error bars on their estimates of Shannon diversity (6). We
developed a method to estimate �- and �-diversity and their uncertainties in reference
7. The example of Shannon diversity highlights that there are common microbiome
data analyses that do not consider that the data are incomplete. Other common
statistical errors in microbiome data analysis include P value hacking, not understand-
ing the assumptions and limitations of the data analyses employed, not investigating
the robustness of findings to preprocessing parameters, and performing statistical
inference on a data-driven subset of parameters (e.g., doing statistical inference or
quoting P values only for genes that have the largest observed effect size).

WHAT IS A VALID HYPOTHESIS TEST?

A valid hypothesis test produces correct P values. P values are ubiquitous in the
microbiome literature for testing the hypothesis that there is a null result. A standard
hypothesis test evaluates if the data conflict with the null hypothesis. If they do, we
reject the null hypothesis in favor of the alternative that there is a nonnull result. This
parallels our legal system: innocent (null) until proven guilty (not null). We don’t declare
innocence, we declare insufficient evidence of guilt.

A hypothesis test is valid if it incorrectly rejects the null hypothesis with a prespeci-
fied probability (e.g., 5%). P values measure the strength of evidence against the null:
small P values suggest strong evidence against the null. A P value of 0.01 indicates that
if the null hypothesis were true, what we observed (or an even stronger result) had less
than a 1% chance of occurring. One percent isn’t very likely, so we reject the null
hypothesis.

Unfortunately, there are many procedures that appear to be valid hypothesis tests
but are not. I call these P value-generating procedures. A P value-generating procedure
is any method that is not a valid hypothesis test but produces a number that it calls a
P value.

When writing a microbiome paper, you may have to choose between different
options for producing P values. Imagine you are interested in understanding the
gene-level differences between one type of microbiome and another. You would
typically collect some data (for example, using shotgun sequencing) and then decide
on a method to test the hypothesis of no difference between the two types of
microbiomes. Suppose one option, method 1, returns P � 0.0001 and method 2 returns
P � 0.19. Which would you use in your paper?

Method 1 produces a result that is appealing (it appears you made a discovery!), but
is method 1 a valid hypothesis test? If method 1 always returned P � 0.0001, regardless
of the input data, it would not be a valid hypothesis test. This is because it always
rejects the null hypothesis, even when it is true.

Method 2 may be frustrating, but it may save you from publishing a false result.
However, method 2 may just have randomly generated a number between 0 and 1.
If every number between 0 and 1 had equal probability of being chosen, method
2 would be a valid hypothesis test— but not a good one. It has low power, or a low
probability of correctly concluding that there is a difference between the commu-
nities (if we reject when P � 0.05, its power is 5%). In comparison, method 1 appears
to have extremely high power. However, it is not a valid hypothesis test, so that
power is meaningless.

HOW CAN WE IMPROVE THE POWER AND ACCURACY OF STATISTICAL
METHODS?

While the random P value of method 2 is a valid hypothesis test, it is not one that
we use because it has low power. An obvious way to improve the power of a hypothesis
test is to use the data that you collected. For example, “corncob” uses amplicon
sequencing data to test hypotheses about the relative abundance of microbes (8).
“betta” tests the hypothesis that the diversity (either genetic or taxonomic) of a
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community is unchanged (4). These hypothesis tests are more complicated than
methods 1 and 2, but they are valid (unlike method 1) and have high power (compared
to method 2).

As more and more microbiology papers are published, and the excitement sur-
rounding microbiome science grows, researchers will need rigorous statistical methods
to decide which of many seemingly significant signals to pursue and which to ignore.
In the absence of rigorous statistical methods, invalid hypothesis tests (like method 1)
become popular. I hope that the demand for more rigorous approaches increases
before microbiome science finds itself in a “reproducibility crisis” akin to that of cancer
biology (9).

I anticipate that major advances will come from incorporating more data structures
into statistical methods, and the Statistical Diversity Lab is pursuing methods devel-
opment in this direction. The recent success of computational methods that use
negative controls to detect and remove contamination (e.g., “decontam” [10]) leads me
to predict that statistical methods that take advantage of data structures like
dilution series, positive controls, and spike-ins will improve our power to make
interesting but true discoveries. A similarly promising avenue is using existing data
in conjunction with new data or searching for discoveries using multiple cohorts
(11, 12). Barriers that need to be overcome before this can be realized include the
development and validation of methods that remove study-specific variation (13,
14). Other research groups that develop, document, and use rigorous statistical and
computational methods for microbiome data include the Statistical Genetics and
Genomics Laboratory (U Penn), the Holmes Lab (Stanford), the Callahan Lab (NCSU),
and the Fukuyama Lab (Indiana U).

Hypothesis testing is not the only way to use data to learn about microbiomes.
Accurately predicting the response of a microbial community to a treatment is arguably
more interesting than finding significant correlations. Accurate predictions require
ample training data, which necessitates using data from distributed collaborations.
Statistical and computational methods that calibrate data collected from different
sources to remove study- or protocol-specific artifacts will be critical to detecting
biological features rather than artifactual features (15).

CONCLUSION

The coming years will see great advances in the technology that is available to
answer important microbiome questions, and new computational methods will be
developed to leverage the new data. However, we will need to develop, value, and use
valid statistical methods to sort true discoveries from the noise. More than 85% of 1,500
surveyed scientists agreed that a better understanding of statistics would be likely or
very likely to improve reproducibility (9), and I am working to provide methodological
and educational resources for the microbiome community. By developing rigorous
statistical methods, the Statistical Diversity Lab helps you determine if your discovery
is signal or noise.
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