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Abstract 

Background:  In this semi-field study, a new polymer-enhanced deltamethrin formulation, K-Othrine® PolyZone, was 
compared to a standard deltamethrin product for residual activity against a susceptible strain of laboratory-reared 
Anopheles gambiae using standard WHO cone bioassays.

Methods:  Residual insecticide efficacy was recorded after exposure to metal, cement and wood panels maintained 
in experimental huts in sub-tropical environmental conditions in north central Florida, USA, and panels stored in a 
climate controlled chamber located at the Centers for Disease Control and Prevention, Georgia, USA.

Conclusions:  K-Othrine® PolyZone demonstrated 100% control on metal and cement panels 1 year post application 
and > 80% control on wood panels up to 6 mo. The new formulation should be considered for use in indoor residual 
spray programmes requiring long-term control of malaria vectors.
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Background
Indoor residual spraying (IRS) is one of the two most 
common interventions for control of malaria vectors [1] 
and is an integral part of the President’s Malaria Initiative 
(PMI) and Amazon Malaria Initiative to reduce malaria 
transmission in sub-Saharan Africa and Central and 
South America. Although an estimated 185 million peo-
ple are covered under IRS programmes, this represents 
less than 10% of the people at risk for malaria worldwide. 
Even with such limited coverage, diligent application of 
IRS, along with expanding long-lasting insecticidal net 
(LLIN) distribution programmes, are driving a decrease 
in worldwide malaria incidence and mortality [1] as well 
as in focal regions of transmission [2].

Beginning in the late 1940’s, national IRS programmes 
have been tremendously effective in reducing and 
in some cases nearly eliminating malaria [1]. When 
dichloro-diphenyl-trichloroethane (DDT) was used for 
IRS in the 1950’s, malaria was nearly eradicated from a 
number of countries in Africa and was successfully elimi-
nated from several islands, many of which still remain 
malaria-free. Due to concerns over non-target effects 
[3], contamination and widespread insecticide resistance 
in mosquitoes [4, 5], other less persistent compounds 
have been used for IRS since that time. Universal bed 
net coverage in PMI countries has greatly assisted in the 
dramatic decrease of malaria deaths since 2000 [6], with 
IRS playing a more limited role due to cost and logisti-
cal constraints. However, several issues have led to failure 
of IRS programmes and reemergence of malaria burdens. 
These causes of failure include lack of national govern-
ment programme support, a shortfall of necessary fund-
ing to cover a significant proportion of malaria-endemic 
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countries, and development of insecticide resistance [7, 
8]. To bolster these national programmes and ensure 
the continued decrease in malaria transmission, the 
World Health Organization (WHO) developed a set of 
guidelines for IRS in 2013 that recommends best poli-
cies and practices for spray programmes. The guidelines 
also define seven elements of an effective IRS insecticide, 
among which human safety, efficacy against vectors, and 
long-term residual effect are noted as critical factors.

The WHO [9] defines satisfactory residual activity as 
a >  80% mortality rate following exposure to a treated 
surface, but few insecticides achieve WHO standards 
beyond 6  months due to a variety of application and 
environmental variables. The cost effectiveness and 
residual control of DDT are well documented with effi-
cacy greater than 10  months depending on dosage and 
substrate [1, 10]; however, few comparable long-lasting 
alternatives exist. Several studies have demonstrated sus-
tained efficacy (> 70%) of various pyrethroid insecticides 
on substrates for 6  months or less [11–14], requiring 
two or more yearly applications depending on regional 
malaria transmission cycles to provide sufficient control.

Although WHO-approved insecticides include organo-
chlorines, organophosphates, and carbamates, the largest 
class is the pyrethroids as they tend to have low mam-
malian toxicity, provide quick knockdown and are rela-
tively inexpensive as compared to the other classes; thus, 
there tends to be a greater acceptance by homeowners to 
allow pyrethroids to be applied indoors [11] and support 
from national malaria control programmes in affected 
countries. Among the pyrethroids, the type II cyano-
pyrethroids have been effectively used for IRS. Lambda-
cyhalothrin has been tested in Asia and Africa with good 
efficacy and residual activity [14, 15]. In comparison to 
bendiocarb (carbamate) and malathion (organophos-
phate), use of lambda-cyhalothrin has resulted in better 
efficacy and in many cases longer residual effect [15]. In 
both cases, lambda-cyhalothrin has better acceptance 
than the more noxious carbamates or organophosphates. 
Deltamethrin, another type II pyrethroid, has also been 
used in Asia, Iran, and Africa [13, 16, 17]. Many of these 
studies note significant differences in efficacy and dura-
tion on surfaces of varied porosity and with different 
formulations.

The Anopheles gambiae complex has historically been 
considered the most important vectors of malaria in 
Africa [18] and the target for control using IRS. In this 
semi-field study, a comparison was made between a 
new formulation of K-Othrine® PolyZone, a polymer 
enhanced suspension concentrate aqueous formulation 
containing 62.5  g deltamethrin per liter, to K-Othrine® 
WG250 and control spray for residual activity against 
a pyrethroid susceptible strain of laboratory-reared 

Anopheles gambiae. Residual efficacy on plywood, metal, 
and cement panels maintained in experimental huts was 
evaluated under sub-tropical environmental conditions 
in north central Florida, USA. Panels from experimental 
huts positioned in full sun, partial shade, and fully shaded 
locations were compared to panels maintained under cli-
mate controlled conditions in an environmental chamber 
located at the Centers for Disease Control and Preven-
tion (CDC) to determine longevity of both insecticides 
on three surfaces as affected by climatological variation. 
Detachable panels were tested in CDC laboratories using 
standard WHO cone bioassays and then returned to the 
original experimental huts to continue aging. This study 
extends previous laboratory work with K-Othrine® prod-
ucts conducted by Vatandoost et al. [12] into a semi-field 
evaluation.

Methods
This study was designed to examine residual efficacy of 
IRS subject to four factors; treatment, surface type, expo-
sure, and time. These factors are described in more detail 
below. Each combination of factors was replicated three 
times. All spray mixes were prepared and sprayed under 
the supervision of DoD-certified pest applicators and fol-
lowed local environmental regulations.

Abandoned military latrines (see Additional file  1) 
(3  m  ×  2.5  m  ×  3  m) located at the Florida National 
Guard, Camp Blanding Joint Training Center (CBJTC) 
in north central Florida, USA (see Additional file 2) were 
used as experimental huts to hold panels treated with 
water, traditionally formulated deltamethrin (K-Oth-
rine® WG 250, Bayer), and K-Othrine® PolyZone (a.i. 
62.5  g/L deltamethrin; Bayer, WHOPES recommenda-
tion achieved September 2013) to determine residual 
efficacy on three different surfaces exposed to natural 
environmental conditions. Panels of plywood (true wood, 
non-treated) and galvanized steel were cut to the size of 
30.5 by 30.5  cm2. The cement panels were made using 
the same plywood base with a 2.5 cm lathe base and sand 
concrete mix (Sakrete, Oldcastle Architectural, FL, USA). 
Cement panels were allowed to cure for 2 weeks prior to 
treatment. A 4 mm hole was drilled in the corner of each 
panel (before treatment) to facilitate hanging. Each sur-
face type and treatment was replicated in three separate 
huts where they were subjected to ambient temperature 
(ranging between − 2 to 40 °C) (see Additional file 3) and 
humidity (26–96%) variations during the experimental 
time period of 1  year. An additional set of panels made 
of the same materials were treated at CBJTC and main-
tained in an insectary environmental chamber located at 
the CDC, Entomology Branch, Georgia, USA. Environ-
mental conditions in the chamber were maintained at 
28 °C, ~ 77% RH throughout the study.
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To maintain environmental integrity and adhere to 
CBJTC requirements, 6 mill plastic was placed on the 
ground and all materials were laid on the plastic for spray 
application. Traditionally, the materials would be verti-
cally oriented but in this study our goals were to assess 
the efficacy of the same active ingredient in different 
formulations and to assess the efficacy of these formula-
tions on different surfaces. Thus, all panels were treated 
horizontally so that run-off from the less porous metal 
surface did not reduce the actual active ingredient con-
centration versus the other surface types. To further 
reduce runoff from the surfaces, all panels were allowed 
to air-dry for 1 h after treatment. Treatment blocks were 
spaced roughly 30–60 m apart, perpendicular to the pre-
vailing wind to ensure no contamination between treat-
ments. Panels were treated with one of three treatments: 
water as control (CTL), K-Othrine® WG 250 (WG 250), 
Bayer and K-Othrine® PolyZone (Deltamethrin SC 62.5, 
Bayer (PolyZone)). Tap water from an outdoor faucet at 
the Navy Entomology Center of Excellence (NECE) was 
used. The three surface types were randomly mixed and 
sprayed together for each treatment to reduce variability. 
Each product was applied at 20 mg/m2 (label rate) to 8.92 
square meters of panel surface using a hand can (Hudson 
X-Pert, Chicago, IL, USA) with a flat fan nozzle (TeeJet 
8002, Spray Systems Co., Bessemer, AL, USA) pumped 
to maximum pressure. Each treatment was applied with 
a different hand can using the same nozzle type and psi. 
The spraying was conducted at a standard rhythm rec-
ommended by WHO [1].

Following treatment and drying, the panels were hung 
in shelters with a screw through the predrilled hole, with 
the exception of the panels treated for the chamber at 
the CDC. The huts were placed in locations with expo-
sure to different amounts of sunlight/tree shading (see 
Additional file 2): 3 huts received full sun (#’s 1, 2, 3), 3 
huts partial sun (#’s 4, 5, 6), and 3 huts full shade (#’s 7, 8, 
9). Each hut received panels from the three spray treat-
ments of one surface type (wood, cement, metal). Hut 
#2 received two surface types due to the presence of 
beneficial wasps in hut #1 which required it to be aban-
doned. All huts were equipped with a HOBO U12-012 
datalogger (Onset Computer Corp, MA, USA) to record 
temperature and relative humidity. No weather data was 
collected for the period from 20 February through 1 April 
2015, when no monthly testing was performed. The field 
panels were packaged individually in two-gallon Ziploc 
bags and transported to the CDC for testing. Personnel 
conducting panel collections from experimental huts 
used nitrile gloves while handling panels on the edges 
and corners.

Panels were evaluated for residual efficacy using stand-
ard WHO cone bioassays [9] against An. gambiae (G3 

pyrethroid susceptible strain) maintained in colony at the 
CDC. Panels were positioned flat on a surface during bio-
assays (see Additional file  4) because they were treated 
with insecticide in a flat position in the field. The G3 
strain was obtained through the MR4 as part of the BEI 
Resources Repository, NIAID, NIH: Anopheles gambiae 
G3, MRA-112, deposited by MQ Benedict. Anopheles 
gambiae females (approximately 10/cone, 5 cones/panel 
were exposed in five WHO cones to each treated panel 
surface for 30  min (see Additional file  4). Knockdown 
counts were taken at 30  min; after which mosquitoes 
were transferred to screened holding containers (Nep-
tune Paper Co, NJ, USA), provided 10% sugar solution, 
and held overnight at 28 °C, ~ 77% RH. Mortality counts 
were taken again at 24-h post exposure.

Statistical analysis of 24 h mortality and 30 min knock-
down data was performed using a general linear model 
as implemented by R version 3.4.3 as has been described 
previously [19, 20], (see Additional files 5, 6). To maintain 
the binomial requirement for this analysis, the response 
variable (knockdown or mortality) was calculated by the 
programme from the raw counts knocked down or dead 
out of the total possible rather than starting with propor-
tional response data. The dataset for analysis consisted 
of 30-min and 24-h mosquito count data with 4 factors: 
(1) 3 treatments: CTL, WG 250, PolyZone; (2) 3 surfaces: 
wood, cement, metal; (3) 4 locations: full sun, partial sun, 
full shade, CDC chamber; (4) 11 time points: 0.25, 1, 2, 
3, 4, 5, 6, 7, 8, 9, and 12 mo. Initial glm analysis included 
a term for the interaction between surface and treat-
ment as well as the main factors (see Additional files 5, 
6). When possible, the initial model was stepped down 
by removing non-significant factors and rerunning the 
analysis as noted in the additional files. Post hoc means 
comparison was performed using the glht function in the 
multcomp package. Raw data is included in Additional 
files 5 and 6. Tukey comparisons were made to determine 
pair-wise significant effects of treatment and surface type 
when possible [21].

Results
WHO cone bioassay testing was utilized with a suscep-
tible strain (G3) of An. gambiae to examine a variety 
of factors; environmental exposure, surface type, and 
treatment. Panel sampling and testing were performed 
11 times over a 1 year period to determine the effective 
period of these treatments. Specific surface composition, 
pesticide doses, and collection/testing time points are 
described in the Methods section. Initial 30-min knock-
down and 24-h mortality were measured.

WHO cone bioassay testing of Polyzone and WG-250 
treated panels indicated significant effects in com-
parison to the control panels maintained in the CDC 
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environmental control chambers. Modeling the 30  min 
knockdown indicated two significant factors. Panels 
maintained in the controlled environmental chamber 
at CDC were more effective than panels in experimen-
tal huts exposed to full sun, partial sun or fully shaded 
but these three field exposures were not different from 
one another. A significant decline in knockdown was 
observed as panels aged; however there was not a sig-
nificant contribution to knockdown from the interaction 
between surface and treatment.

The substrate type clearly affects the efficacy of the IRS 
products. On metal panels, the PolyZone and WG-250 
treated panels produced more 30  min knockdown 
than the control panels for the first 9  months of test-
ing (Fig.  1a). Even 1  year after treatment, the PolyZone 
treated metal panels still produced about 80% knock-
down. While the knockdown of the WG-250 treated 
metal panels was similar during the first 5  months, by 
the sixth month it was less than the PolyZone treated 
metal panels. It continued to fade through months 7–9 
and, while still higher than the control panels, was less 
than the K-Othrine PolyZone. By the 1  year point, the 
knockdown of WG-250 on metal was not higher than 
the control panels. The cement panels treated with the 
two deltamethrin treatments did have knockdown at the 
first testing a week after application but was not signifi-
cantly greater than the control by the 1 month timepoint 
(Fig. 1b). The results do show a low level of knockdown 
is present on the PolyZone treated cement panels. Nei-
ther the PolyZone or WG-250 formulations treatment 
produced knockdown above 10% at any time point on the 
wood panels (Fig. 1c).

Twenty-four hour mortality also showed significant 
effects. Panels stored in the CDC environmental cham-
ber were more effective than panels subject to natural 
temperature and humidity variation regardless of expo-
sure condition. There were also significant effects due 
to panel treatment, panel material, and the interaction 
between the two factors with mortality that in most cases 
faded as the panels aged.

As with 30  min knockdown variation in efficacy on 
the different substrates was observed. The metal panels 
treated with K-Othrine PolyZone produced greater than 
98% 24  h mortality at every test period during the year 
(Fig.  2a). The WG-250 matched this through the first 
5  months. After this, the WG-250 produced a trend of 
lower mortality (60–80%) but was still higher than the 
control panels. PolyZone treatment also produced high 
mortality on the cement panels during the entire testing 
period (Fig.  2b). Even though the WG-250 panels con-
tained the same dose of active ingredient, the 24 h mor-
tality was less than the PolyZone treated cement panels 
and often below the WHO 80% efficacy threshold. On 

the wood surfaces, the first testing period at 1 week after 
application did not produce any mortality regardless of 
the treatment (Fig. 2c). However, by 1 month the K-Oth-
rine Polyzone treatment was effective and caused mortal-
ity of nearly all of the test organisms.

Discussion
Several things should be considered when initiating 
and conducting IRS operations. Optimum effectiveness 
of IRS efforts is achieved by using the correct formula-
tion for the type of surface being treated. For instance, 
wettable powders (WP) and water dispersible granules 
(WG) are best suited for very porous surfaces such as 
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Fig. 1  Anopheles gambiae knockdown at 30 min on treated 
panels. a metal; b cement; c wood. Control = water treated control 
panels aged at Camp Blanding Joint Training Center field site. WG 
250 = panels treated with K-Othrine® WG250 aged at Camp Blanding 
Joint Training Center field site. K-Othrine® PolyZone = panels treated 
with deltamethrin suspension concentrate (K-Othrine® PolyZone) 
aged at Camp Blanding Joint Training Center field site
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mud walls, while suspension concentrates (SC) or emul-
sifiable concentrates (EC) are more effective on finished 
cement, finished wood or lumber, or painted surfaces, 
especially those where oil-based paints have been applied 
[1]. This study demonstrated that K-Othrine® PolyZone 
(SC) outperformed a conventional deltamethrin product, 
K-Othrine® WG-250, especially with respect to resid-
ual mortality on metal and cement surfaces. Although 

wood panels demonstrated lower overall mortality and 
residual, K-Othrine® PolyZone provided >  80% control 
in field-aged panels for up to 6 months, nearly two times 
greater than control provided by the other deltamethrin 
product we tested. The interaction on wood panels is 
intriguing because an efficacy lag with both deltamethrin 
formulations was observed at the initial 1  week testing 
period. While there may be no specific explanation for 
this observation, efficacy was strong at the 1 month time 
point begging the question of whether this initial lack of 
efficacy was an issue of availability before the formulation 
began to weather. It is not expect that it was a panel issue 
as each treatment was replicated on three separate panels 
and the efficacy of each individual panel was low.

Along with chosen formulation, the frequency of spray-
ing cycles should be considered and will depend on the 
malaria transmission patterns in a given region. Accord-
ing to the WHO, spray rounds should ideally be com-
pleted in less than 2 months and just before the start of 
the peak transmission season in holoendemic areas (gen-
erally, just prior to the beginning of the rainy season). In 
endemic areas with perennial transmission, two rounds 
of spraying in 6 months cycles may be recommended to 
ensure that there is adequate year-round coverage with 
residual insecticides. If the transmission pattern exhibits 
bimodal peaks, spraying rounds should target the peaks, 
beginning just before the first peak; hence, one annual 
spray with a long-lasting insecticide would hopefully 
survive through the second peak season and thus result 
in significant insecticide and operational cost savings. 
In areas with one seasonal transmission peak, one spray 
round, in yearly cycles before the period of transmission, 
should be enough to have an impact on malaria transmis-
sion. However, DDT and new capsule suspension (CS) 
insecticide formulations have been shown, in some areas, 
to last more than 10 months [1]. Results from this study 
suggest that use of K-Othrine® PolyZone provides suffi-
cient control for 1 year on the metal and cement surfaces 
evaluated.

Insecticides with longer residual attributes should also 
be considered for outdoor surface efficacy evaluations, 
which may be a necessary intervention given changes in 
resting and feeding behaviors observed in some malaria 
vectors. Anopheles species that were historically endo-
philic have in some locations shifted to outdoor resting/
feeding preferences [22, 23]; however, to date there is no 
commonly used intervention in highly endemic regions 
such as Africa that specifically targets outdoor biting 
mosquitoes [24]. The residual activity demonstrated 
in this study indicates that alternatives to long-lasting 
DDT are feasible through modern formulation technol-
ogy. This new formulation of deltamethrin extends the 
residual efficacy on multiple surfaces, which may require 
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Fig. 2  Anopheles gambiae mortality at 24 h on treated panels. 
a metal; b cement; c wood. The boxed 0.8 on the vertical scale 
represents the 80% mortality level considered effective under WHO 
guidance. Control = water treated control panels aged at Camp 
Blanding Joint Training Center field site. WG 250 = panels treated 
with K-Othrine® WG250 aged at Camp Blanding Joint Training Center 
field site. K-Othrine® PolyZone = panels treated with deltamethrin 
suspension concentrate (K-Othrine® PolyZone) aged at Camp 
Blanding Joint Training Center field site
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fewer applications, reducing spraying costs, and mini-
mizing disruption to families in highly endemic regions. 
Further work with other malaria vector species, differ-
ent housing surfaces, and natural populations under field 
conditions is warranted to further demonstrate the effec-
tiveness of K-Othrine® PolyZone in a local context before 
using it in large-scale IRS operations.

Conclusions
K-Othrine® PolyZone demonstrated 100% control of sus-
ceptible An. gambiae on metal and cement panels 1 year 
post application and > 80% control on wood panels for up 
to 6 months. The new formulation should be considered 
for use in indoor residual spray programmes requiring 
long-term control of malaria vectors. Further work with 
other species, different surfaces, and natural populations 
under field conditions is warranted to further demon-
strate the effectiveness of K-Othrine® PolyZone in a local 
context before using it in large-scale IRS operations.
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