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A B S T R A C T   

Statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors interfere with several pathophysi-
ological pathways of coronavirus disease 2019 (COVID-19). 

Statins may have a direct antiviral effect on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 
inhibiting its main protease. Statin-induced up-regulation of angiotensin-converting enzyme 2 (ACE2) may also 
be beneficial, whereas cholesterol reduction might significantly suppress SARS-CoV-2 by either blocking its host- 
cell entry through the disruption of lipid rafts or by inhibiting its replication. Available human studies have 
shown beneficial effects of statins and PCSK9 inhibitors on pneumonia and sepsis. These drugs may act as im-
munomodulators in COVID-19 and protect against major complications, such as acute respiratory distress syn-
drome and cytokine release syndrome. Considering their antioxidative, anti-arrhythmic, antithrombotic 
properties and their beneficial effect on endothelial dysfunction, along with the increased risk of mortality of 
patients at high cardiovascular risk infected by SARS-CoV-2, statins and PCSK9 inhibitors might prove effective 
against the cardiovascular and thromboembolic complications of COVID-19. 

On the whole, randomized clinical trials are needed to establish routine use of statins and PCSK9 inhibitors in 
the treatment of SARS-CoV-2 infection. In the meantime, it is recommended that lipid-lowering therapy should 
not be discontinued in COVID-19 patients unless otherwise indicated.   

Introduction 

At the end of 2019, a novel coronavirus, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of a 
cluster of pneumonia cases in Wuhan, in the Hubei Province of China 
and finally declared as pandemic in February 2020 [1]. Until 30 May 
2020, a total of 5,775,043 cases of coronavirus disease 2019 (COVID-19) 
and 361,220 deaths were confirmed worldwide [1]. SARS-Cov-2 is a 
beta-coronavirus in the same subgenus as the severe acute respiratory 
syndrome (SARS) virus, using an identical receptor, namely angiotensin- 
converting enzyme 2 (ACE2), for cell entry [2]. Although the majority of 
SARS-CoV-2 infections are mild to moderate, 14% of patients develop 
severe disease (dyspnea, hypoxia, or >50% lung involvement on imag-
ing within 24–48 h) and 5% critical disease (respiratory failure, shock, 
multi-organ dysfunction). Mortality rates range from 0.9 to 12% 
depending on the population under study [1,3]. Cardiovascular disease, 
diabetes, hypertension, dyslipidemia, chronic lung and kidney disease, 
cancer, obesity and smoking have all been associated with severe disease 
and increased mortality [4,5]. 

SARS-CoV-2 infection has been associated with downregulation of 
ACE2 receptors and a cytokine storm characterized by increased release 
of interleukin (IL)-6, IL-10, granulocyte-colony stimulating factor, 
monocyte chemoattractant protein 1, macrophage inflammatory protein 
1α, and tumor necrosis factor (TNF)-α [6]. The activation of these 
pathways lead to COVID-19 major complications related with high 
mortality rates, such as acute respiratory distress syndrome (ARDS) and 
secondary hemophagocytic lymphohistiocytosis, as well as cardiovas-
cular complications, including myocarditis, heart failure, myocardial 
infarction and arrhythmias [3,6–8]. Coagulopathy and thromboembolic 
events, such as stroke, pulmonary embolism and deep vein thromboses, 
have also been described in patients with COVID-19 [9,10]. 

Currently, there are no well-established effective therapies to treat 
SARS-CoV-2 [11]. Only dexamethasone has been shown to significantly 
reduce 28-day mortality in patients with critical COVID-19 [12,13]. 
Remdesivir, a novel nucleotide analogue, has been proposed in hospi-
talized patients with severe COVID-19 requiring low-flow supplemental 
oxygen, given the potential reduction in time to clinical improvement 
[12–16]. However, the World Health Organization recommends against 
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the use of remdesivir [13]. The rapidly expanding knowledge regarding 
its virology points to a number of potential drug targets. A plethora of 
randomized trials investigate possible therapeutic options against 
COVID-19 [11]. In this context, drugs used in every day clinical practice 
are being considered. As a matter of fact, there is evidence that statins 
and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors 
could interfere with several pathophysiological pathways in COVID-19 
(Fig. 1). The aim of the present review was to describe these pathways 
and evaluate the potential role of these drugs in the management of 
patients infected with SARS-CoV-2. 

SARS-CoV-2 virology 

Statin therapy has been previously described to reduce Ebola infec-
tivity through the inhibition of viral glycoprotein processing, as evi-
denced by decreased ratios of the mature glycoprotein form to precursor 
form in statin-treated cells [17]. Similarly, it has been argued that statins 
could reduce SARS-CoV-2 infectivity by inhibiting its main protease, 
which plays an important role in the proteolytic maturation and thus in 
virus replication (Fig. 1) [18]. A recent experimental study showed that 
statins, particularly pitavastatin, had a binding affinity to SARS-CoV-2 

main protease which was more potent than that of protease or poly-
merase inhibitors [18]. 

Considering that statins and inhibitors of the renin-angio-
tensin–aldosterone system (RAAS) up-regulate ACE2 receptors [19], 
concerns were initially raised as to a possible adverse impact on COVID- 
19 [20]. However, a recent case-population study including 1139 
COVID-19 cases and 11,390 controls showed that RAAS inhibitors do 
not increase the risk of COVID-19 patients requiring admission to hos-
pital when compared with users of other antihypertensive drugs 
(adjusted odds ratio, OR: 0.94, 95% confidence interval, CI: 0.77–1.15) 
[21]. Likewise, another meta-analysis of 4 studies (n = 8990 patients 
with COVID-19) revealed a significantly reduced hazard for fatal or 
severe disease with the use of statins (hazard ratio, HR: 0.70, 95% CI: 
0.53–0.94) compared to non-use of statins in COVID-19 patients [22]. 
Therefore, fear that ACE2 overexpression could increase SARS-CoV-2 
host-cell entry is not substantiated. On the contrary, ACE2 up- 
regulation may be beneficial rather than harmful in SARS-CoV-2 infec-
ted patients due to an increase in the catabolism of ‘bad’ angiotensin II 
and the production of ‘good’ angiotensin 1–7 [20]. 

Even though we lack reports on the effects of PCSK9 inhibitors 
against SARS-CoV-2, previous evidence suggests that PCSK9 might 

Fig. 1. Potential role of statins and PCSK9 inhibitors in COVID-19 pathophysiology and complications. I) SARS-CoV-2 infectivity. Statins are potent inhibitors of 
SARS-CoV-2 main protease (1). Effective cholesterol reduction by statins or PCSK9 inhibitors could suppress SARS-CoV-2 infection by either blocking its entry into 
the host cells or inhibiting its replication through the disruption of lipid rafts (2). II) Pneumonia and sepsis. Statins have been associated with improved outcomes in 
patients with viral pneumonia (3). III) Innate immunity (acute respiratory distress syndrome, cytokine release syndrome). Statins and PCSK9 exert immunomodulator 
properties (4): a) Statins inhibit the rate-limiting enzyme of mevalonate pathway leading to reduced levels of its downstream products. These are critical for GTPases 
mediating multiple steps in the immune response, such as cell migration, activation, signaling and cytokine production; b) Statins suppress toll-like receptor 
expression leading to an immune response shift towards anti-inflammatory response; c) Statins stabilize the levels of MyD88 after a proinflammatory trigger, such as 
hypoxia, and attenuate the activation of NF-κB; d) Statin-induced up-regulation of ACE2 receptors potentially ameliorates the cytokine release due to the increased 
production of angiotensin 1–7; e) The over-expression of low-density lipoprotein receptors by statins and PCSK9 inhibitors could increase endotoxin clearance and 
inhibit the initiation of an unbridle systemic inflammatory response; f) Statins have been associated with better outcomes in patients with hyper-inflammatory acute 
respiratory distress syndrome; g) PCSK9 loss-of-function (LOF) genetic variants have been associated with improved survival in septic shock patients and a decrease 
in inflammatory cytokine response both in septic shock patients and healthy volunteers after lipopolysaccharide administration. IV) Cardiovascular complications. 
Statins and PCSK9 inhibitors are associated with improved endothelial function, reduced oxidative stress, less platelet adhesion (5) and increased atherosclerotic 
plaque stability (6). Statins may protect against heart failure development (7) and exert anti-arrhythmic properties (8). V) Thromboembolic complications. Human 
and experimental studies suggest that both statins and PCSK9 inhibitors exert antithrombotic properties (9). Abbreviations: ACE2, angiotensin-converting enzyme 2; 
COVID-19, coronavirus disease 2019; GTPases, hydrolases of nucleotide guanosine triphosphate; LDLR, low-density lipoprotein receptor; MyD88, myeloid differ-
entiation primary response 88; NF-κВ, nuclear factor kappa-light-chain-enhancer of activated B cells; PCSK9, proprotein convertase subtilisin/kexin type 9; SARS- 
CoV-2, severe acute respiratory syndrome coronavirus 2; TLR, toll-like receptor. 

F. Barkas et al.                                                                                                                                                                                                                                  



Medical Hypotheses 146 (2021) 110452

3

interfere with the pathogenesis of viral infections, such as hepatitis C 
virus (HCV) and human immunodeficiency virus (HIV) [23,24]. In-vitro 
and in-vivo studies have shown that PCSK9 or a more active membrane- 
bound form of the protein (PCSK9-ACE2) potentially reduce HCV 
infectivity through the down-regulation of putative liver HCV receptors, 
namely CD81 and low-density lipoprotein receptors (LDL-R) [23]. 
Another study revealed that HCV enhanced LDL-R expression and 
decreased PCSK9 expression in order to facilitate viral propagation [25]. 
On the other hand, a human cohort showed that HCV and HIV co- 
infection was associated with both high PCSK9 levels and increased 
LDL-R [26]. Consequently, there were concerns as to whether PCSK9 
inhibitors actually increase the risk of viral infections and especially 
hepatitis C. An experimental study showed that PCSK9 inhibition with 
alirocumab had no effect on CD81 and did not result in increased sus-
ceptibility to HCV entry [27]. Likewise, FOURIER and ODYSSEY OUT-
COMES, the two major randomized clinical trials (RCTs) evaluating 
cardiovascular outcomes with the use of PCSK9 inhibitors over a period 
of 2–3 years, showed no differences regarding the rates of incident HCV 
between evolocumab or alirocumab and placebo (0.02% vs 0.00% and 
0.01% vs 0.01%, respectively) [28,29]. Elevated liver enzymes are 
frequently noticed in COVID-19 patients [7]. Therefore, relevant studies 
could evaluate whether PCSK9 inhibitors have a direct effect on SARS- 
CoV-2 entry at least in liver cells. 

Lipid rafts, i.e. membrane microdomains enriched with cholesterol, 
sphingolipids, and associated proteins, are involved in the process of 
viral infections [30]. Cholesterol is an essential component of lipid rafts 
and interferes with various aspects of virus life-cycle, especially viral 
entry [31]. The successful internalization of enveloped viruses, 
including many coronaviruses, requires the presence of cholesterol in 
either the viral and cellular membranes or both [31]. In this context, an 
experimental study investigated the impact of drug-induced cholesterol 
depletion from cells or virions on porcine delta-coronavirus infection 
(PDCoV) [32]. Treatment with methyl-β-cyclodextrin (MβCD) dimin-
ished PDCoV infection in a dose-dependent manner, whereas the addi-
tion of exogenous cholesterol to MβCD-treated cells or virions 
moderately restored PDCoV infectivity. In addition, the pharmacolog-
ical sequestration of cellular or viral cholesterol efficiently blocked both 
virus attachment and internalization [32]. Likewise, an experimental 
study has shown that drug-mediated cholesterol depletion of lipid rafts 
reduces the expression of viral structural proteins and consequently 
impairs the attachment of coronavirus infectious bronchitis virus to the 
cell surface [33]. Indeed, a recent study suggested 3 different 
cholesterol-depended pathways of SARS-CoV-2 host-cell entry and 
infectivity [9]. First, loading cells with cholesterol enhances endocytic 
SARS-CoV-2 host-cell entry by increasing the total number of viral entry 
points. Secondly, the cholesterol concomitantly traffics ACE2 to the viral 
entry site where SARS-CoV-2 docks to properly exploit cell entry and 
increases the bonding between SARS-CoV-2 and receptor binding do-
mains. Thirdly, the priming of furin, an enzyme that belongs to 
subtilisin-like proprotein convertase family and activates SARS-CoV-2 
cell membrane insertion, also depends on cholesterol [9]. Therefore, 
the hypothesis that effective cholesterol reduction by either statins or 
PCSK9 inhibitors could potentially suppress SARS-CoV-2 infection by 
either blocking its entry into the host cells or inhibiting its replication 
should be further tested (Fig. 1). 

Pneumonia and sepsis 

Available evidence derived from observational cohorts have shown 
conflicting results regarding the effect of prior statin therapy on hospi-
talized patients with community-acquired pneumonia (CAP) or sepsis 
[34–36]. Among 17,802 trial participants enrolled in JUPITER (Justifi-
cation for the Use of Statins in Prevention: an Intervention Trial Eval-
uating Rosuvastatin) and followed for a median of 1.9 years, incident 
CAP was reported as an adverse event in 214 participants taking rosu-
vastatin and 257 on placebo (hazard ratio, HR: 0.83, 95% CI: 0.69–1.00) 

[34–36]. Analyses restricted to events occurring before a cardiovascular 
event showed that pneumonia occurred in 203 participants treated with 
rosuvastatin and 250 on placebo (HR: 0.81, 95% CI: 0.67–0.97) [37]. On 
the other hand, RCTs have not confirmed any benefit on inpatient statin 
treatment in sepsis or ventilator-associated pneumonia (VAP) [38,39]. 
In a placebo-controlled study with 1002 patients with suspected VAP 
who required invasive mechanical ventilation for more than two days, 
treatment with simvastatin had no effect on 28-day mortality (HR: 1.45, 
95% CI: 0.83–2.51) [39]. In line, a meta-analysis of 14 RCTs (n = 2628) 
suggested that statin therapy cannot be recommended for sepsis man-
agement, since no difference was noticed regarding 30-day all-cause 
mortality (risk ratio, RR: 0.96, 95% CI: 0.83–1.10) [38]. 

Statins have been considered promising in the context of viral in-
fections. Available evidence derived from observational studies supports 
the efficacy of statin therapy in reducing hospitalizations and deaths 
related with influenza and Ebola [40,41]. In a retrospective case-control 
study of 1520 patients with laboratory-confirmed influenza (H1N1), 
prior statin therapy was associated with a 28% reduction in the severity 
of illness (adjusted OR: 0.72, 95% CI 0.38–1.33) [42]. Likewise, a multi- 
state observational study showed that administration of statins prior to 
or during hospitalization reduced mortality risk in patients infected with 
influenza (adjusted OR: 0.59, 95% CI: 0.38–0.92) [43]. All evidence 
considered, statins could be considered to be ‘used against’ COVID-19 
and future RCTs are needed to confirm this theory. 

There are limited data regarding the effect of PSCK9 inhibitors on 
infections and sepsis. According to an analysis from 10,924 black par-
ticipants tested for PCSK9 loss-of-function (LOF) variants in the REasons 
for Geographic and Racial Differences in Stroke (REGARDS) cohort, the 
presence of PCSK9 variants was not associated with infection risk 
(adjusted HR: 0.68, 95% CI: 0.38–1.25) or sepsis among those hospi-
talized for a serious infection (adjusted OR: 7.31, 95% CI: 0.91–58.7) 
[44]. In phase II RCTs, upper respiratory infection, such as nasophar-
yngitis and cough, were more frequent in the PCSK9 inhibitor group 
compared with placebo [45–48]. Nevertheless, FOURIER and ODYSSEY 
OUTCOMES found no increase in infection or sepsis risk [28,29]. 

Innate immunity 

Apart from their cholesterol-lowering effect, statins and PCSK9 in-
hibitors exert pleiotropic effects and favorably affect inflammation and 
oxidative stress [49,50]. Experimental studies have linked both drug 
classes with the modulation of immune response at different levels, such 
as immune cell adhesion and migration, antigen presentation and 
cytokine production (Fig. 1) [49,50]. 

Statins inhibit the rate-limiting enzyme of the mevalonate pathway 
leading to reduced levels of its downstream products, which are critical 
for geranylgeranylation or farnesylation of GTPases (hydrolases of 
nucleotide guanosine triphosphate) mediating multiple steps in the 
immune response, such as cell migration, activation, signaling and 
cytokine production [49]. In addition, statins have been demonstrated 
to suppress the expression of toll-like receptor (TLR) leading to an im-
mune response shift towards anti-inflammatory response [51]. Experi-
mental evidence demonstrated that statins stabilize the levels of myeloid 
differentiation primary response 88 (MyD88) after a proinflammatory 
trigger, such as hypoxia, and attenuate the activation of NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells) [52]. These ef-
fects could be beneficial in the management of COVID-19, since SARS- 
CoV-1 interaction with TLR on the host cell-membrane significantly 
increases MyD88 gene expression, which in turn attenuates the activa-
tion of NF-κB inflammatory pathway [53]. Notably, NF-κB inhibition has 
been associated with reduced lung infection and increased survival in a 
murine model of SARS-CoV-1 infection [54]. 

In addition to the conventional role of LDL-Rs in cholesterol clear-
ance, these receptors are involved in the hepatic clearance of endo-
toxins, such as lipopolysaccharide (LPS) from the bloodstream during 
sepsis [55,56]. Therefore, LDL-R up-regulation by statins and PCSK9 
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inhibitors could increase endotoxin clearance and inhibit the initiation 
of an unbridle systemic inflammatory response in sepsis (Fig. 1) [55,56]. 

After the initial entry through ACE2, SARS-CoV-2 down-regulates 
ACE2 expression, possibly facilitating the initial infiltration by innate 
immunity cells and causing an unopposed angiotensin II accumulation, 
leading to organ injury [8]. Therefore, ACE2 up-regulation induced by 
statins and RAAS could ameliorate the cytokine release in COVID-19. To 
this end, statins and ACE inhibitors were recently associated with 
reduced mortality in hospitalized patients with COVID-19 [19,20]. 

Considering the well-known effects of statins on subclinical inflam-
mation, their use as immunomodulatory treatment against cytokine 
storm in COVID-19 patients may deserve consideration. Of course, the 
question remains whether tackling subclinical inflammation would be 
sufficient to prevent such a major inflammatory response, as a cytokine 
storm. Despite the lack of RCTs in COVID-19, statins have been shown to 
be effective in targeting the host response and preventing endothelial 
barrier damage in patients infected with Ebola [41]. It has also been 
suggested instead that statins act beneficially in ‘hyper-inflammatory’ 
ARDS patients, as defined by increased biomarkers of inflammation, 
coagulation and endothelial activation [57]. Indeed, a large multicenter, 
placebo-controlled randomized trial of simvastatin for ARDS (HARP-2) 
showed that 28-day mortality was lower in the hyper-inflammatory 
subphenotype patients treated with simvastatin compared with pla-
cebo (32% vs 45%, p = 0.008) [57]. Moreover, human PCSK9 LOF ge-
netic variants were associated with improved survival in septic shock 
patients and a decrease in inflammatory cytokine response both in septic 
shock patients and in healthy volunteers after LPS administration [58]. 

Finally, it has been recently proposed that the persistent inflamma-
tion happening in COVID-19 adversely affects the anti-inflammatory, 
antioxidant and immunomodulatory function of high-density lipopro-
teins (HDL) which could contribute to pulmonary inflammation [59]. In 
addition, the impaired HDL function associated with increased lipid 
oxidation could result in the over-activation of innate immune scav-
enger receptors [59,60]. Considering their beneficial effect on the 
quantity and quality of HDL [61–63], statins and PCSK9 inhibitors could 
ameliorate the cytokine release syndrome in COVID-19. 

Cardiovascular complications 

Could statins and PCSK9 inhibitors protect against the cardiovascu-
lar complications of COVID-19? There is strong evidence of direct car-
diovascular involvement in COVID-19, such as acute coronary 
syndrome, arrhythmia, myocarditis, pericarditis and heart failure [64]. 
Hypoxemia is a putative mechanism underlying the increased risk of 
cardiovascular disease complications in COVID-19 [64]. Pulmonary 
parenchymal inflammation and edema caused by SARS-CoV-2 infection 
interferes with alveolar gas exchange, thereby resulting in ventilation/ 
perfusion imbalance and hypoxemia, which not only affects respiratory 
function, but also impairs systemic metabolism and vital organ func-
tions, including the heart [64]. Moreover, down-regulation of ACE2 
receptors by SARS-CoV-2 leads to inflammation and multi-organ failure 
[8]. In addition, immune over-reactivity can potentially destabilize 
atherosclerotic plaques and explain the development of acute coronary 
syndromes [65]. The ‘cytokine storm’ induced by SARS-CoV-2 activates 
T cells and macrophages which may infiltrate infected myocardium, 
resulting in severe myocarditis and subsequent heart failure [65]. 
Moreover, the viral invasion itself may cause direct cardiac myocyte 
damage, leading to myocardial dysfunction and arrhythmogenesis [65]. 

In addition to their immunomodulating properties, statins and 
PCSK9 inhibitors exert direct antioxidative and antithrombotic proper-
ties, since their use has been experimentally associated with improved 
endothelial function, reduced oxidative stress, less platelet adhesion and 
increased atherosclerotic plaque stability [50,66]. Available evidence 
suggests that statins may protect against arrythmias and heart failure 
(Fig. 1) [67,68]. Therefore, both drug classes could ameliorate the 
endothelial dysfunction, instability of the atherosclerotic plaque and 

myocardium inflammation or fibrosis induced by COVID-19 and protect 
against its cardiovascular complications. 

Finally, patients at high cardiovascular risk, such as elderly people 
with cardiovascular comorbidities or patients diagnosed with familial 
hypercholesterolemia are more likely to develop severe COVID-19 
[8,69]. Likewise, such patients are likely to be at increased long-term 
risk of an atherothrombotic event following COVID-19 [8,69]. In this 
context, lipid-lowering therapy in patients at high cardiovascular risk 
should not be discontinued during infection and, because of their 
possible increased ASCVD risk, could even be intensified following re-
covery from COVID-19 [70,71]. Of note, the potential advantages of 
intensifying lipid-lowering therapy for such patients after COVID-19 
epidemic and the potential disadvantages of a lack of intensification, 
should be explored in future epidemiological investigations. 

Thromboembolic complications 

COVID-19 has been associated with coagulation abnormalities and 
increased incidence of venous thromboembolic disease [9,10]. Statins 
and PCSK9 inhibitors could be beneficial in COVID-19 patients at 
increased thromboembolic risk. In a post-hoc analysis of JUPITER, 
rosuvastatin significantly reduced the occurrence of symptomatic 
venous thromboembolism by 43% compared with placebo (HR: 0.57, 
95% CI: 0.37–0.86) [72]. An analysis of FOURIER and ODYSSEY OUT-
COMES reported lower rates of venous thromboembolism in subjects 
treated with PCSK9 inhibitors compared with placebo (HR: 0.69, 95% 
CI: 0.53–0.90) [73]. 

Endothelial dysfunction 

It has been suggested that the non-pulmonary complications of 
COVID-19 could be attributed to profound endothelial dysfunction and 
injury [74]. Indeed, a case series in New York showed that ~30% of 
COVID-19 patients with electrocardiographic signs indicating active 
ischemia had no obstructive coronary artery disease and thus, micro-
vascular dysfunction was considered as the likely cause of ischemia 
[75]. Moreover, SARS-CoV-2 isolation from cardiac autopsy samples 
was not associated with immune cells infiltration, as observed in 
myocarditis [76]. Therefore, the virus seems to primarily affect the 
endothelium, resulting in secondary myocardial inflammation and 
dysfunction. The mechanisms involved in the systemic endotheliitis in 
COVID-19 include the activation of the renin angiotensin system and 
angiotensin II type 1 receptor, the increase of reactive oxygen species 
(ROS), the activation of NF-kB reducing nitric oxide (NO) production 
and the activation of several cytokine receptors, such as TNF-a and IL-6 
[74]. In turn, endothelial dysfunction itself impairs organ perfusion by 
disrupting the balance between vasoconstriction and dilatation, in-
creases inflammation and leads to a pro-thrombotic state in both larger 
and smaller vessels by favoring tissue factor production and platelet 
activation [74]. In this setting, statins might be helpful by reducing 
oxidized LDL levels and NADPH oxidase activity, which decreases 
reactive oxygen species (ROS), by affecting the NF-kB transcription or by 
improving the coupling of endothelial NO synthase [74]. Independently 
of NO, statins also prevent the expression of tissue factor in endothelial 
cells, thus protecting against blood coagulation and platelet activation 
[77]. 

Likewise, accumulating evidence suggests that coronary endothelial 
dysfunction and vascular inflammation are associated with increased 
PCSK9, with the NF-κB signaling pathway playing a pivotal role in 
PCSK9-mediated vascular inflammation [78]. The Effect of Evolocumab 
on Coronary Endothelial Function (EVOLVE) study demonstrated that 
evolocumab rapidly improved coronary endothelial function in in-
dividuals with stable pro-inflammatory states (HIV and dyslipidemia) 
but without coronary artery disease [79]. It could be speculated that 
PCSK9 inhibitors could also protect against the systemic endothelitiis in 
SARS-CoV-2 infected patients [79]. 
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Safety of statins and PCSK9 inhibitors in COVID-19 

On admission, a considerable proportion of patients infected with 
SARS-CoV-2 exhibit acute kidney injury (AKI) (16.0–36.6%) along with 
elevated levels of creatinine kinase (13.7%) and aminotransferases 
(32–46%) [80–82]. Statin therapy might prove beneficial in AKI in such 
patients, considering their pleiotropic effects in this setting [83,84]. 

Myalgias, myositis and increase of aminotransferase serum levels are 
adverse events taken into consideration in patients treated with statins 
[85] and physicians should be cautious in COVID-19 patients with 
relevant symptoms and laboratory abnormalities. 

Drugs with a potential viricide effect, such as chloroquine/hydrox-
ychloroquine, protease inhibitors (lopinavir-ritonavir, darunavir- 
cobicistat), remdesivir and azithromycin are being used in treatment 
protocols of COVID-19 patients [11]. Most statins undergo a hepatic 
metabolism through CYP3A4, and concomitant administration of 
CYP3A4 inhibitors currently used in COVID-19, such as ritonavir and 
cobicistat, could increase the risk of muscle and liver toxicity. Low-dose 
statin treatment and monitoring creatine kinase and transaminases is 
advised. 

PCSK9 inhibitors have reportedly low rates of adverse effects and 
drug interactions [86] and their use appears safe in the setting of COVID- 
19. 

Conclusion 

Available evidence seems to support the hypothesis that statins and 
PSCK9 inhibitors favorably interfere with several pathways in COVID- 
19. Considering the need for effective therapeutic strategies to address 
cases of COVID-19 ranging from mild to severe, further research may be 
warranted to evaluate potential benefits with these agents. Nonetheless, 
their well-established cardioprotective effects should prompt physicians 
to maintain lipid-lowering therapy when treating patients infected with 
SARS-CoV-2. 
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