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ObjectiveaaThis study proposes an automated diagnostic method to classify patients with Alzheimer’s disease (AD) of degenerative eti-
ology using magnetic resonance imaging (MRI) markers.
MethodsaaTwenty-seven patients with subjective memory impairment (SMI), 18 patients with mild cognitive impairment (MCI), and 
27 patients with AD participated. MRI protocols included three dimensional brain structural imaging and diffusion tensor imaging to 
assess the cortical thickness, subcortical volume and white matter integrity. Recursive feature elimination based on support vector ma-
chine (SVM) was conducted to determine the most relevant features for classifying abnormal regions and imaging parameters, and then 
a factor analysis for the top-ranked factors was performed. Subjects were classified using nonlinear SVM.
ResultsaaMedial temporal regions in AD patients were dominantly detected with cortical thinning and volume atrophy compared with 
SMI and MCI patients. Damage to white matter integrity was also accredited with decreased fractional anisotropy and increased mean 
diffusivity (MD) across the three groups. The microscopic damage in the subcortical gray matter was reflected in increased MD. Classi-
fication accuracy between pairs of groups (SMI vs. MCI, MCI vs. AD, SMI vs. AD) and among all three groups were 84.4% (±13.8), 
86.9% (±10.5), 96.3% (±4.6), and 70.5% (±11.5), respectively.
ConclusionaaThis proposed method may be a potential tool to diagnose AD pathology with the current clinical criteria.
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INTRODUCTION

Alzheimer’s disease (AD), which is becoming the most 
prevalent neurodegenerative disorder with aging of the pop-
ulation, leads to an irreversible decline in memory, cognition 
and thinking ability.1,2 Mild cognitive impairment (MCI) and 
subjective memory impairment (SMI) have been proposed 
as intermediate states of AD from cognitively normal elderly 
(CNE) people.3,4 MCI particularly has been conceived as a 
clinically prodromal state with objective cognitive decline.5 

SMI is accepted as within the normal range on a clinical neu-
ropsychological rating scale.6 Considering the decline in mem-
ory and cognitive function associated with aging, SMI in-
cludes the potential risk of conversion to MCI and AD.7 The 
pathological AD markers include extracellular accumula-
tions of aggregated amyloid-β peptide8 and intracellular 
τ-associated neurofibrillary tangles (NFTs).9 NFTs are pre-
dominantly observed in hippocampal formations in autopsy 
models corresponding with AD staging, whereas amyloid 
plaques show irregular distribution patterns.10,11 T1-weighted 
brain structural magnetic resonance imaging (MRI) enhances 
the contrast between gray matter (GM) and white matter 
(WM). A high correlation between regional NFT counts and 
volume atrophy in the hippocampus (HP) has been reported 
using this technique.12 Thus, brain MRI is useful to indirectly 
evaluate structural changes by AD pathology. Another MRI 
technique, diffusion tensor imaging (DTI), allows for in vivo 
examination of microscopic random motion of water mole-
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cules, which represent the orientation and directionality of 
surrounding tissues, and provides quantitative information 
on microstructural brain integrity.13,14 Although interpreta-
tion for the results of these techniques with respect to the 
causal mechanisms of AD pathogenesis may ambiguous, the 
techniques are suitable as complementary indicators to eluci-
date neural degeneration in AD. General group-level com-
parisons using MRI [e.g., voxel-based morphometry (VBM) 
and tract-based spatial statistics (TBSS)] provide fascinating 
insights into disease-related alterations. However, these results 
are difficult to apply to clinical neuroradiology at the individ-
ual level, especially in the identification of physiological con-
ditions.15 Recently, machine-learning methods that can sort 
individual results into different classes using neuroimaging 
data have been introduced.15-22 Conceptually, these require the 
learning of class patterns from reference group data, called a 
training set, to distinguish the individuals from the so-called 
test set. Therefore, it is important to determine how well ma-
chine-learning can create the feature space to perform the 
classification and how well the feature is able to represent in-
dividual conditions. Support vector machine (SVM) is based 
on the optimal hyperplane to maximize the separation be-
tween classes, and it shows the high classification perfor-
mance compared with other methods (e.g., linear discrimi-
nant analysis and logistic regression).20-22 Therefore, the 
objectives in this study were, first, to investigate the macro-
scopic cortical and subcortical GM changes by structural vol-
umetry and microscopic brain alterations by DTI analyses 
across preclinical and AD groups to identify MRI markers. 
Second, we classified MRI markers using SVM to propose an 
automated MRI-based diagnostic method. 

METHODS

Subjects
This study was approved by the Pusan National University 

Hospital Institutional Review Board. All subjects signed writ-
ten informed consent forms. Twenty-seven patients with 
SMI, 18 patients with MCI, and 27 patients with AD were re-
cruited from the memory impairment clinic of Pusan Na-
tional University Hospital from November 2010 to March 
2012. The demographic features of the subjects and the results 
of neuropsychological tests based on Korean version of Con-
sortium to Establish a Registry for Alzheimer’s Disease assess-
ment packet (CERAD-K),23 Clinical Dementia Rating scale 
(CDR)24 and Clinical Dementia Rating Some of Box (CDR-
SOB)25 are summarized in Table 1. The inclusion criteria for 
SMI were 1) sustained subjective memory complaints; 2) nor-
mal general cognition [within -1.5 standard deviation (SD) 
of age- and education-adjusted norms on the Korean version 
of the Mini Mental State Examination (K-MMSE)26 and a 
score >26]; 3) intact activities of daily living (ADL); and 4) no 
abnormalities (within -1.5 SD of age- and education-adjusted 
norms) detected on a comprehensive neuropsychological bat-
tery. MCI was diagnosed according to the revised Petersen’s 
criteria:5 1) subjective cognitive complaints, preferably cor-
roborated by an informant; 2) objective impairment on any of 
the neuropsychological tests (at least 1.5 SD below the mean 
for age- and education-matched norms); 3) preserved global 
intellectual function; 4) preserved or minimal impairment in 
ADL; and 5) no dementia. AD was diagnosed according to 
the criteria of the National Institute of Neurological and Com-
municative Disorders and Stroke and the Alzheimer’s Disease 

Table 1. Demographic information of the subjects

SMI (N=27) MCI (N=18) AD (N=27) p-value
Age, years# 67.33±6.11 71.77±7.02 72.07±6.66* 0.03
Gender radio (F/M)** 18/9 15/3 19/8 0.47
Education, years#   8.67±4.36  6.56±5.29 8.50±5.58 0.34
MMSE# 26.74±1.97 23.11±5.09‡   16.67±5.10†¶ <0.01
15-KBT# 10.6±1.3  9.5±3.3     7.4±3.2†¶ <0.01
Constructional praxis#   9.9±1.6  9.3±1.9   8.7±2.1* 0.03
Word list recall#   5.5±1.7   3.0±1.7§     0.6±0.9†¶ <0.01
Constructional recall#   5.7±3.6   2.9±3.0§   1.8±1.8† <0.01
FAB# 14.2±1.9 12.7±2.6§ 10.9±3.4† <0.01
CDR#   0.4±0.2 0.55±0.2     1.2±0.4†¶ <0.01
CDR-SOB#   1.4±1.0   2.5±0.9§     5.5±2.7†¶ <0.01

Data are presented as mean±standard deviation. Statistics (p-value) are derived from ANOVA and χ2 test. Indicators mean the significances 
from Boferroni post-hoc test. *p<0.05 and †p<0.01 between SMI and AD, ‡p<0.05 and §p<0.01 between SMI and MCI, ¶p<0.01 between MCI 
and AD, #by ANOVA followed by Bonferroni post hoc test, **by χ2 test. SMI: Subjective Memory Impairment, MCI: Mild Cognitive Impair-
ment, AD: Alzheimer’s disease, MMSE: Mini Mental State Examination, 15-KBT: 15-item Korean Boston Naming Test, FAB: Frontal Assess-
ment Battery, CDR: Clinical Dementia Rating Scale, CDR-SOB: Clinical Dementia Rating Some of Box
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and Related Disorders Association.27 We applied the follow-
ing exclusion criteria to all subjects: 1) other neurodegenera-
tive diseases; 2) major depressive disorder according to the 
Korean version of Mini International Neuropsychiatric In-
terview (MINI-K)28,29 or other psychiatric illness; 3) intracra-
nial space-occupying lesion; 4) aphasia or other language 
barrier; 5) MRI contraindications or known claustrophobia; 
6) active substance abuse disorders; 7) severe systemic dis-
ease; 8) prominent visual or hearing impairment. We also ex-
cluded participants with moderate or severe white matter hy-
perintensitiy (WMH) on brain MRI to minimize the vascular 
etiologic impact on SMI. The presence of moderate or severe 
WMH were defined as WMH on fluid attenuated inversion 
recovery images that fulfilled the following criteria: 1) peri-
ventricular WMH (caps or rim) >5 mm and 2) deep WMH 
consistent with an extensive WM lesion or diffusely confluent 
lesion ≥10 mm in maximum diameter.

MRI data acquisition
Subjects were examined using a multi-sequence MRI pro-

tocol on a 3T Siemens Trio Tim system (Erlangen, Germany). 
High resolution T1-weighted images (T1WI) were acquired 
using a three-dimensional magnetization-prepared rapid gra-
dient-echo sequence with the following parameters: repeti-
tion time (TR)=1800 ms, echo time (TE)=2.07 ms, inversion 
time (TI)=900 ms, flip angle=12°, acquisition matrix= 
256×256, field of view (FOV)=250×250 mm2, slice thick-
ness=1 mm, and total number of slices=256. DTI data were 
acquired using an echo-planar imaging sequence applied in 
diffusion-weighted gradients along 30 non-collinear direc-
tions (b value=600 s/mm2) and one volume without diffusion 
weighting (b0) using the following acquisition parameters: 
number of average=2, TR=6200 ms, TE=85 ms, flip angle=90°, 
acquisition matrix=128×128, FOV=230×230 mm2, and slice 
thickness=3 mm.

MRI data processing

Structural image processing
Whole-brain structural analyses of cerebral cortical thick-

ness and subcortical volume based on T1WI were performed 
using FreeSurfer v.5.1 (http://surfer.nmr.mgh.harvard.edu/).30,31 
As a fully automated image-processing tool for macroscopi-
cally visible brain structures, FreeSurfer constructs models of 
brain tissue surfaces and subcortical areas, and is useful to 
measure cerebral cortical thickness and subcortical volumes. 
Briefly, the images are processed with a head motion correc-
tion, a non-uniform intensity correction for MR acquisition 
artifacts, affine transformation to the MNI 305 template, fur-
ther intensity normalization across brain tissues, and strip-

ping of non-brain areas. The preprocessed brain image was 
non-linearly transformed to align with Gaussian classifier at-
las model, which was designated with the voxel labels based 
on neuroanatomical probabilistic information estimated from 
a large training dataset. Images were segmented into cortical 
and subcortical structures using iterative methods to compute 
anatomical probabilities by combining intensity distribution 
with spatial relationships between subject and probabilistic 
atlas for each voxel until no any changes are detected in two 
consecutive iterations. Brain volume per hemisphere was ini-
tially covered with triangular tessellation to construct surface 
models across the different tissue types and to define the sur-
face vertices. The surface defects from previous segmentation 
steps are topologically refined for accurate boundary connec-
tivity, and then the intensity gradient determined WM sur-
faces as well as pial surfaces. Local cortical thickness was mea-
sured as the average distance between vertices corresponding 
to the brain anatomy of these two surface models. The corti-
cal thickness and subcortical volume normalized with intra-
cranial volume were compared using multivariate analysis of 
covariance (MANCOVA) with age entered as a covariate fol-
lowed by Bonferroni post hoc test for feature selection of the 
classification.

DTI processing
The DTI analysis to evaluate microstructural WM integrity 

was performed with FMRIB Software Library (FSL, http://
www.fmrib.ox.ac.uk/fsl) package.32 Raw diffusion-weighted 
images were linearly aligned to b0 image, followed by remov-
ing the non-brain tissues using the brain extraction tool 
(BET).33 The diffusion tensor was calculated at each voxel to 
generate the fractional anisotropy (FA) and mean diffusivity 
(MD) images. The WM segmentation was based on the sub-
sequent TBSS procedures.34 All individual FA images were 
linearly and nonlinearly aligned to FMRIB58_FA template.32 
To create the mean FA skeleton that served as the study-spe-
cific template, all aligned FA images were averaged and 
thinned by local perpendicular non-maximum suppression 
with FA thresholds of 0.2 to exclude GM and cerebrospinal 
fluid (CSF). The resulting skeleton represented the center of 
the common WM tracts. The FA values nearest the mean FA 
skeleton from all aligned images were projected onto this 
skeleton. The skeleton was labeled to identify the 50 WM re-
gions with reference to the JHU ICBM-DTI-81 WM atlas35 
and to generate the binary masking images of WM region of 
interest (ROI). These masking images in standard space were 
transformed back into each subject’s native space using the 
inverse normalization with skeleton deprojection and then 
multiplied by the native DTIs to obtain the average DTI val-
ues (i.e., FA and MD) within the ROI. Next, the b0 image for 
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each subject was linearly registered to the skull stripped brain 
from T1WI, and then the transform matrix was applied to the 
DTIs. The subcortical GM showing volume atrophy was su-
perimposed over the aligned DTIs in T1WI space to evaluate 
the microstructural changes, and the average DTI values were 
calculated within ROI for each hemisphere. The statistical 
analysis for DTI values was performed with the same design 
as described above.

Parameter selection and feature analysis
We included structural parameters (i.e., cortical thickness 

and subcortical volumes), DTI parameters (i.e., FA, MD val-
ues and the DTI ratio between MD and FA) and a multimod-
al parameter as the ratio between MD value and volume for 
the classification. To identify the most reliable diagnostic im-
aging markers between features (i.e., regions and parameters) 
and to reduce the amount of processing data, the feature anal-
ysis was performed with support vector machine-recursive 
feature elimination (SVM-RFE) and principle component 
analysis (PCA). SVM-RFE estimates the feature’s ranking by 
comparing the magnitudes of the weighting values (ω2) from 
the linear SVM classifier for each feature and recursively re-
moving the features with the smallest weighting values, which 
means the least significant for classification at each step.36 
Based on the assigned priority, PCA was performed to obtain 
the two standardized scores derived from the two top-ranked 
eigenvalues that reduced the data dimensions but maintained 
the information of the original data. The PCA sources were 
selected in consecutive order from the most- to the least rele-
vant feature until the highest accuracy for classification was 
detected in the following method.

Classification using SVM
Feature maps were constructed using nonlinear SVM with 

the radial basis function (RBF) kernel.37 The advantages of 
this classifier are identification of reliable data points, called 
support vectors, and transformation into high-dimensional 
space with a kernel trick to identify nonlinear boundaries 
when the classes are not linearly separable. The RBF kernel 
involved the two parameters, denoted γ and C, to nonlinearly 
transform the datasets into high-dimensional space. The pa-
rameter γ means the kernel width and the parameter C repre-
sents the tradeoff between the maximization of discriminative 
margin and minimization of the misclassification error. A 
grid search was performed with a search range of (2-5 and 25) 
using a 10-fold cross-validation to determine the optimal two 
parameters. Four feature maps were constructed with respect 
to classification performance levels for all three groups and 
pairs of groups. Eighty percent of each group was randomly 
sampled to form a training set for learning the feature maps, 

and the remaining 20% was used as the test set for cross-vali-
dation. The procedures were repeated 1,000 times, with data 
resampling and grid search, and the average accuracy was 
evaluated as the classification performance.

RESULTS

Differences in cortical thickness and subcortical 
volume

Seventeen GM structures showed the significant differences 
on the neurodegenerative states compared with the other 
groups. Cortical thinning was found in the medial temporal 
(i.e., bilateral entorhinal cortex and bilateral fusiform cortex) 
regions, bilateral temporal pole and left insula cortex in pa-
tients with AD compared with those in patients with SMI. 
Patients with MCI showed intermediate thickness in these 
cortices except the right temporal pole region (Figure 1). Vol-
ume atrophy occurred in the HP, amygdala (AMG) and nu-
cleus accumbens (NA) in both hemispheres in AD patients 
compared with SMI. Atrophy between patients with MCI and 
AD was also observed in the left HP and AMG. Volumes of 
the right HP and AMG were significantly decreased in MCI 
patients compared to those with SMI. In contrast, ventricular 
volumes (i.e., lateral ventricles, third ventricles, and bilateral 
inferior lateral ventricles) were significantly enlarged in pa-
tients with AD compared with those of patients with SMI and 
MCI (Figure 2).

Microstructural damage in WM tracts  
and subcortical GM

Neurodegenerative WM damages were associated with a 

Figure 1. Significantly different cortical thickness (mm) in patients 
with SMI, MCI and AD. Indicators mean the significances from 
MANCOVA followed by Boferroni post-hoc test. *p<0.05 between 
SMI and AD, ‖p<0.05 between MCI and AD. SMI: subjective mem-
ory impairment, MCI: mild cognitive impairment, AD: Alzheimer’s 
disease, EC: entorhinal cortex, FC: fusiform cortex, TP: temporal 
pole, IC: insular cortex, R: right, L: left.
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FA decrease and an MD increase. A significant (p<0.05) or 
progressive decrease in FA values was observed in 12 WM 
ROIs across the three groups (Figure 3). These regions in-
cluded the bilateral anterior corona radiate (ACR), two cingu-
lums of cingulate gyrus and hippocampal portions, the fornix 
of cres (Fx), the corpus callosum (CC) of genu, body, and 
splenium portions and the left uncinate fasciculus (UF). The 
FA values in patients with AD were significantly decreased in 
all of these regions compared with those in patients with SMI. 
Compared to patients with MCI, the FA values in bilateral 
cingulum of the cingulate gyrus (CGC) were also significantly 
decreased in AD. The remaining 10 WM regions, except the 
bilateral ACR, showed significant differences in MD values 
between AD and SMI patients (Figure 4). In particular, MD 
values of AD patients were higher in the body of corpus cal-

losum (BCC), the two cingulums and Fx than in MCI pa-
tients. MD values of MCI patients were increased only in the 
left cingulum of hippocampus (CGH) compared with SMI 
patients. Along with these results, the microscopic damage in 
the subcortical GM showing volume atrophy were reflected 
by an increase in MD values, but not in FA values (Figure 5). 
Patients with AD showed the MD increase in all regions, 
whereas patients with MCI showed an increase in the left HP 
alone compared to patients with SMI. All regions except the 
NA and right AMG showed higher MD values in patients 
with AD than in those with MCI.

Parameter selection and feature extraction
From the multivariate statistics of the imaging analysis, 

SVM-RFE assigned the ranking of features as more or less re-

Figure 2. Significantly different structural volume (×10-3) normalized by intracranial volume in patients with SMI, MCI and AD. Indicators 
mean the significances from MANCOVA followed by Boferroni post-hoc test. *p<0.05 and †p<0.01 between SMI and AD, ‡p<0.05 between SMI 
and MCI, ‖p<0.05 between MCI and AD. SMI: subjective memory impairment, MCI: mild cognitive impairment, AD: Alzheimer’s disease, HP: 
hippocampus, AMG: amygdale, NA: nucleus accumbens, LV: lateral ventricle, ILV: inferior lateral ventricle, R: right, L: left, Int: inter hemisphere.
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Figure 3. Significantly different FA value of WM ROI in patients with SMI, MCI and AD. Indicators mean the significances from MANCOVA 
followed by Boferroni post-hoc test. *p<0.05 and †p<0.01 between SMI and AD, ‡p<0.05 between SMI and MCI, ‖p<0.05 and ¶p<0.01 be-
tween MCI and AD. SMI: subjective memory impairment, MCI: mild cognitive impairment, AD: Alzheimer’s disease, GCC: genu of the corpus 
callosum, BCC: body of the corpus callosum, SCC: splenium of the corpus callosum, ACR: anterior corona radiate, CGC: cingulum of the cin-
gulate gyrus, CGH: cingulum of the hippocampus, Fx: fornix of cres, UF: uncinate fasciculus, R: right, L: left, Int: inter-hemisphere.
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liable diagnostic imaging markers for classification. The MD 
value in the left HP was identified as the most relevant feature 
and the volume of the right NA was the least relevant feature 
for the classification across all groups. MD values in the left 
CGH (SMI vs. AD) and MD values in the right CGH (MCI 
vs. AD) were labeled as the most relevant features, respective-
ly. Finally, the top-ranked reliable feature between SMI and 
MCI was the MD value of the right HP. The most accurate 
cross validation was ensured by applying the features in con-
secutive order to discriminate the classes. First, feature maps 
were constructed for the entire group classification and were 
implemented using two PCA standardized scores based on 
the top-ranked features, including MD values in the left HP 
and the right CGH, the multimodal ratio in the left HP, DTI 
ratio in the left CGH, the FA value in the left ACR and the 
DTI ratio in the left CGC. Second, features that showed the 
highest accuracy for cross validation between SMI and AD 
were identified using the five features, including MD values in 
the left CGH, left HP, and left AMG; the multimodal ratio in 
the left HP; and the DTI ratio in the left CGH. Third, the 
most accurate differentiation between MCI and AD was 
achieved using five features including the MD value in the 
right CGH, the FA value in the left ACR, the DTI ratio in the 
left CGC, FA values in the left Fx and the right ACR. Finally, 
the feature map for distinguishing SMI and MCI was created 
using only two features, MD values in the right HP and the 
DTI ratio in the splenium of CC (SCC). 

SVM classification
A random sample of 80% of each group was used to con-

struct a feature map and the remaining 20% was included for 
cross-validation between the clinical assessment and imaging 

analysis. Because this procedure was repeated 1000 times to 
achieve global accuracy, the feature maps were differently 
configured at each step, depending on the resampled training 
set (Figure 5). The results of classification yielded an average 
accuracy of 70.5% (±11.5) for the three groups. Moreover, 
SMI and MCI could be distinguished from each other with 
84.4% (±13.8) accuracy, followed by 86.9% (±10.5) accuracy 
in distinguishing MCI from AD. The highest accuracy, 96.3% 
(±4.6), was achieved for distinguishing SMI from AD.

DISCUSSION

This study was designed to investigate the macro- and mi-
croscopic changes in patients with AD pathology using MRI 
and to distinguish the disease severity of AD from SMI and 
MCI using a SVM classification based on imaging markers.

Structural measures
The patterns of cortical thinning and volume atrophy cor-

responded to the disease progression. Cortical thinning oc-
curred in the medial temporal regions, the bilateral temporal 
pole, and the left insula cortex in AD patients compared to 
SMI patients. MCI patients also showed some cortical thin-
ning compared to SMI patients, but not significant. These 
patterns were consistent with previous studies that included 
CNE and patients with MCI and AD.38,39 The medial tempo-
ral regions play a vital role in the functions of declarative or 
long-term memory. Cortical thinning in these regions is con-
gruent with the clinical symptom of memory deficits in AD 
pathology. In particular, the medial temporal regions and 
temporal pole cortices are initially affected by τ-associated 
NFTs.10,40 The insular cortex is associated with diverse func-

Figure 4. Significantly different MD values (×10-3 mm2/s) of WM ROI in patients with SMI, MCI and AD. Indicators mean the significances 
from MANCOVA followed by Boferroni post-hoc test. *p<0.05 and †p<0.01 between SMI and AD, ‡p<0.05 between SMI and MCI, ‖p<0.05 and 
¶p<0.01 between MCI and AD. SMI: subjective memory impairment, MCI: mild cognitive impairment, AD: Alzheimer’s disease, GCC: genu of 
the corpus callosum, BCC: body of the corpus callosum, SCC: splenium of the corpus callosum, ACR: anterior corona radiate, CGC: cingulum 
of the cingulate gyrus, CGH: cingulum of the hippocampus, Fx: fornix of cres, UF: uncinate fasciculus, HP: hippocampus, AMG: amygdala, NA: 
nucleus accumbens, R: right, L: left, Int: inter-hemisphere.
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tions ranging from motor control and pain perception to 
emotional processing.39 In particular, the anterior insular cor-
tex is regarded as the limbic-related cortex that controls emo-
tion and memory functions.41,42 Considering that higher NFT 
density has been found in the agranular cortex of the anterior 
insular portion than in other portions in patients with AD 
progression,43 cortical thinning of the insular regions is 
thought to originate from secondary damage by τ pathology 
after NFTs have accumulated in the medial temporal regions 
and temporal pole cortices. We also found a progressive de-
crease in subcortical volumes (i.e., HP, AMG, and NA) and 

observed a volumetric increase in the ventricular system 
along with disease severity. Many studies have found large 
deposits of NTFs and significant HP atrophy in AD pa-
tients.12,44 The functions of HP are mainly divided into form-
ing memories and spatial memory. In particular, the left HP is 
proposed to support memorizing experienced events, where-
as the right HP is involved in location-associated memory.45 
Thus, our results suggest that AD patients might find it more 
difficult to recall the personal experiences than do the others 
and that MCI patients would complain of deficits in record-
ing spatial memory significantly more than SMI. AMG vol-

Figure 5. Examples of two-dimensional feature map using the ninth data set derived from factor extraction. A: Black indicators (i.e., ‘○’ and 
‘×’) exhibit the Alzheimer’s disease (AD) dataset, green represents subjective memory impairment (SMI), and red is mild cognitive impair-
ment (MCI). B: Black indicators are the MCI dataset, and red is SMI. C: Black indicators are the AD dataset, and red is MCI. D: Black indi-
cators are the AD dataset, and red is SMI. The symbol ‘×’ in the dataset is a support vector to determine the hyperplane between the 
groups. Colored background visualizes partitions of the classified group regions. The horizontal axis represents the first standard score de-
rived from the PCA feature extraction, and the vertical axis indicates the second score.
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ume also decreased, similar to the HP atrophy. AMG has 
been reported to show pathological changes similar to those 
observed in the HP, and a high correlation has been found 
between performance in global cognitive functions (i.e., 
MMSE) and AMG volume.46,47 Therefore, AMG atrophy is 
also suggested as an earlier biomarker of AD pathology. The 
other atrophied regions were the bilateral NA. These struc-
tures receive afferents from (or project to) the limbic system 
through the mesolimbic pathway as well as the fornix-fimbria 
fibers and contribute to integrating information related to 
cognitive function.48,49 Given these previous and present re-
sults of significant volumetric damages in AD patients, we 
speculate that NA atrophy may have originated from second-
ary degeneration of HP. The ventricular system adjacent to 
the medial temporal lobe was significantly enlarged, with a 
corresponding volume loss in patients with AD compared 
with the other groups. A previous study reported that the 
hemispheric atrophy and ventricular enlargement were great-
er in those who clinically converted to a more severe form of 
cognitive impairment (e.g., from CNE to MCI or AD and 
from MCI to AD) or progressed faster to a more severe AD 
stage (e.g., from mild- to moderate AD) than those whose 
clinical conditions was unchanged.50 Additionally, the ven-
tricular enlargement was highly related to both cortical NTFs 
and amyloid plaques, to the rate of HP atrophy and hippo-
campal NTFs in patients with AD until death.51 These results 
suggest that ventricular volume changes are effective to assess 
the treatment response and to understand the disease pro-
gression. Taken together, these findings suggest that the ven-
tricular enlargement may be mirrored by the cortical abnor-
malities and be a sensitive indicator of subsequent clinical 
severity due to prior damage in the medial temporal lobe.

DTI parameters
WM damage was detected in progressive FA decrease, to-

gether with MD increase in the corpus callosum, the two cin-
gulums, Fx and the left UF across all groups. The volume at-
rophy observed in the subcortical ROI was mirrored by a 
concomitant MD increase. A lower FA value together with 
higher MD value in WM tracts possibly resulted from altera-
tions in tissue cytoarchitecture (i.e., axon density and myelin 
integrity),52 which also reflects disruption of structural barri-
ers to water diffusivity or enlargement of the extracellular 
space.53 FA is low in GM due to the complex orientation of 
cell membranes and multiple crossing fibers (i.e., local den-
drites and axons) compared with FA in WM, where water 
motion is restricted in the dominant direction by the aligned 
axons. The subtle FA decrease underlying microscopic GM 
integrity may be difficult to interpret. In contrast, MD value 
indicates the magnitude of all directional diffusivity and any 

change is influenced by the relative spatial extent, not by 
structural direction.54 That is, the MD increase in GM may 
represent a loss of neuropil including dendrites and unmy-
elinated axons surrounding neuronal cell bodies, therefore, it 
may be more useful to identify the microstructural GM dam-
age. Previous DTI studies have reported differences in FA and 
MD values between patients with AD and CNE based on 
with two main pathophysiological hypotheses.55-60 Some re-
searchers have suggested that alterations in WM with disease 
severity may involve a posterior-to-anterior gradient parallel 
to the pattern of GM atrophy from the limbic to the frontal 
and isocortical areas based on τ-pathology; that is, WM dis-
ruptions result from anterograde or Wallerian degeneration 
(WD) secondary to distal GM pathology.56-58 In contrast, WM 
degeneration may follow an anterior-to-posterior gradient; 
that is, it progresses from late-myelinating tracts to early-my-
elinating tracts by retrogenesis.59,60 In this study, WM disrup-
tion in the anterior CC and left UF in patients with AD may 
be evidence of retrogenesis in AD pathology. CC is associated 
with connectivity of learned, perceptual, and mnemonic cog-
nitive functions between the two hemispheres.61 Therefore, 
CC damage in patients with AD may reflect impaired of inter-
hemispheric organization in the entire brain. Additionally, the 
high MD value of the BCC, the relatively anterior CC, in pa-
tients with AD compared those with MCI indicates that late-
myelinating WM integrity may be more vulnerable than ear-
ly-myeliniting tracts of the SCC. These results agree with 
previous results showing myelin breakdown in the anterior 
CC, supporting the retrogenesis of AD pathology, whereas 
posterior damage of these tracts may occur through WD. As 
another late-myelinating tract, UF, which connects the inferi-
or frontal lobe with the anterior temporal lobe and limbic sys-
tem, is also associated with the retrogenesis in patients with 
AD.59 DTI fiber-tracking study has found that the ventral-an-
terior insular cortex involves connectivity with temporal pole 
via UF and that this structure is also associated with the lim-
bic pathway for regulating emotions.62 In keeping with this 
report, thinning of the left insular cortex was coincident with 
WM alterations in the left UF in AD patients in our study. 
Therefore, the hippocampal abnormalities may be linked to 
damage to WM connectivity and further insular atrophy sim-
ilar to that in the NA. Taken together, these findings suggest 
that the DTI results may be associated with both the WD and 
the retrogenesis.

SVM classification analysis
Another objective of this study was to distinguish patients 

with degenerative etiology using the SVM method based on 
the most relevant MR imaging markers. The present results 
are comparable to or better than previous classification stud-
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ies in AD that focused on discriminating between patients 
with AD or MCI and CNE. In studies using structural volum-
etry only, Magnin et al. achieved 94.5% mean correct classifi-
cation using the nonlinear SVM method in 16 patients with 
AD (MMSE=23.1) and 22 CNE (MMSE=28.5).16 Another 
study demonstrated a maximum 96.4% correct classification 
rate using the linear SVM method, when data of 20 patients 
with confirmed AD (MMSE=16.7) and 20 CNE (MMSE= 
29.0) were assigned as a training set and data from a different 
center including 14 patients with AD (MMSE=16.1) and 14 
controls (MMSE=29.2) were applied as a test set. However, 
the accuracy decreased to 81.1% in discrimination between 33 
patients with mild AD (MMSE=23.5) and 57 CNE (MMSE= 
29.1).18 Furthermore, previous SVM studies using DTI classi-
fied MCI vs. CNE with 91.4% accuracy19 and 93% accuracy.17 
The importance of our study can be summarized in three 
points. 1) The subjects in this study were included to examine 
brain changes in a narrow cognitive range from SMI to AD. 2) 
Difference in both macro- and microstructure were analyzed 
to identify whole-brain damage caused by AD pathology. 3) 
Hybrid feature selection methods (ROI based MANCOVA 
and SVM-RFE) were conducted to determine the relevant re-
gions and imaging parameters for the classification. In this 
study, the features that best discriminated in correctly classi-
fying each subject were the DTI-MD values. These results 
suggest that the microstructural GM and WM changes may 
be closely related to cognitive profile and may also be compa-
rable to features identified in studies based on neurodegen-
erative etiology. Although the HP is the best-known marker 
of brain alterations in AD,12,43,63 our results indicate that a 
classification using the selective combination of top-ranked 
features yielded higher accuracies than any feature alone. 
This finding suggests that covariance between relevant classi-
fication features may accentuate differences among disease 
conditions. However, contrary to our expectations, which the 
multimodal ratio may be more reliable for classification than 
volumes and DTI measures, MD values in these regions were 
more sensitive features for discrimination. Features that are 
useful for categorizing subjects into these groups may vary 
depending on the sample size,64 therefore, caution is needed 
when generalizing the results of this study as a feature analy-
sis for AD specific imaging markers. 

Limitations
There are several limitations in this study. First, the design 

may have been affected by the relatively small sample size. Al-
though our results show that it is possible to detect brain al-
terations with macro- and microstructural findings across 
three groups and to individually classify patients with AD pa-
thology using a machine-learning model, further validation 

on a larger sample is required to understand the present re-
sults and longitudinal studies should be conducted to clarify 
the progression of brain changes over time. Another limita-
tion is that CNE were absent from this study. The feature 
analysis and classification across groups were performed 
within a relatively narrow spectrum of cognitive disorders. It 
will necessary to include CNE in a future study to understand 
which features are reliable and to identify the degenerative 
pattern of AD pathology.

Conclusions
We introduced multimodal MRI measures to identify brain 

regions and imaging parameters damaged by AD pathology. 
Automatic machine learning was conducted to classify the 
subjects based on imaging markers. A highly accurate classifi-
cation between the least severe group (SMI) and the most se-
vere group (AD) was achieved at the individual level. Thus, 
the proposed method may be helpful as an ancillary tool for 
diagnosing AD with the current clinical criteria.
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