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ABSTRACT Malassezia restricta, one of the predominant basidiomycetous yeasts pres-
ent on human skin, is involved in scalp disorders. Here, we report the complete ge-
nome sequence of the lipophilic Malassezia restricta CBS 7877 strain, which will facil-
itate the study of the mechanisms underlying its commensal and pathogenic roles
within the skin microbiome.

Malassezia restricta, one of the most abundant Malassezia species of the human skin
microbiota (1–3), is considered an opportunistic pathogen associated with skin

disorders such as seborrheic dermatitis and dandruff (4–6). Due to the absence of fatty
acid synthase, most Malassezia yeast growth depends on the presence of host lipids
and the expression of an extensive number of lipases (7–10). However, other mecha-
nisms are likely involved in its interactions with skin and surrounding bacteria (11, 12).
Currently, public databases contain three M. restricta genomes identified at either the
contig or scaffold level (whole-genome sequences [WGS] of LFCZ01, AAXK01, and
LFDA01) and unassembled next-generation sequencing (NGS) reads of the M. restricta
KCTC 27527 strain (8), which limits comparative genomic and in vivo metagenomics
studies. We succeeded in completely resequencing and assembling the M. restricta
genome at the chromosomal level.

Genomic DNA of M. restricta CBS 7877, a strain isolated from normal human skin
(13), was purchased from the ATCC (reference MYA4611D5). Sequencing was per-
formed at BaseClear on both the HiSeq 2500 (Illumina) and PacBio RS II (Pacific
Biosciences) platforms. The Illumina library was obtained following the Nextera proto-
col (Illumina). The Illumina 125-base paired-end short reads (4,849,647 reads after
quality control with FastQC version 0.10.0; 1.222 Mbp in total; coverage, 167�) were
trimmed and de novo assembled using CLC Genomics Workbench version 7.5.1 (CLC
bio, Denmark). The optimal k-mer size was automatically determined using KmerGenie
version 1.6213 with default parameters (14). For PacBio, the library was prepared using
the standard procedure for the PacBio RS II instrument. PacBio reads were processed
and filtered using the SMRT Analysis software suite version 2.3.0, leading to 858,347
continuous long reads (1.721 Mbp in total; coverage, 235�). Illumina contigs were then
aligned with the PacBio CLR reads using BLASR (15). From the alignment, the orienta-
tion, order, and distances between contigs were estimated via SSPACE-LongRead
Scaffolder version 1.0 (16) and gaps filled with GapFiller version 1.10 (17). The final
assembly consisted of a mitochondrial plasmid (33.6 kbp, 22 tRNA genes, 31.5% GC
content) and 9 scaffolds. The longest scaffold was 1,419,096 bp. The genome size was
7.26 Mbp, with a G�C content of 56.8%. Structural annotation was performed using
Augustus version 3.3 (18) with the training model organism M. restricta strain KCTC
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27527 (GenBank accession numbers CP030251 to CP030259). Functional annotation
was completed using a combination of BLAST-p and Blast2GO (19, 20) against Pfam
(version 31) and the UniProt/Swiss-Prot (release 2017-04) databases, as included in the
Prokka annotation framework version 1.12. A total of 4,096 protein-coding genes cover
86.8% of the genome.

The mitochondrial sequence is identical to the previously released M. restricta CBS 7877
mitochondrion sequence (GenBank accession number KY911093), with the exception of
one repeated region. A previous karyotype study found nine chromosomes for the M.
restricta CBS 7877 strain (21). Here, the nine scaffolds exhibit short tandem repeats (TKA
GTG, �60 bp) considered to be telomeres, as previously reported (9). Six scaffolds show
telomere repeats at both ends, suggesting that these are complete chromosomes, and
these hexamer-repeated motifs were not found elsewhere in the assembly. Six and three
lipase coding sequences (CDS) have been identified, harboring the Pfam PF01764 and
PF03583 signatures, respectively. Among the cell wall biosynthesis-related proteins ana-
lyzed, 20 chitin-chitosan-processing genes were identified by BLAST using a Malassezia
globosa protein data set (19). These activities are of main importance since the M. restricta
cell wall contains a very high percentage (20%) of chitosan (22), and chitosan is reported to
be required for fungal virulence and persistence in mammals (23). Further investigation on
specific factors and functions (such as proteases and glycosyl hydrolases [9, 12]) will be
essential to a better understanding of the physiopathology of M. restricta.

Data availability. The complete genome sequence of CBS 7877 is available in
GenBank under the accession numbers CP033148 to CP033157. The version described
in this paper is the first version. Raw data have been deposited in the SRA under the
accession numbers SRX5004588 and SRX5004589 and BioProject number PRJNA474956.
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