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Abstract
Breast cancer is one of the most common malignancies in women worldwide. Many studies have shown that tumor
microenvironment cells, immune cells, and stromal cell infiltration have an important impact on prognosis, so it is important to identify
biomarkers for achieving better treatment and prognosis.
To better understand the relationship between immune and stromal cell-related genes and prognosis, we screened patients with

breast cancer in The Cancer Genome Atlas (TCGA) database and divided them into high and low groups based on immune/stromal
scores. We next identified differentially expressed immune-related genes that are significantly associated with the prognosis of
patients with breast cancer for functional enrichment analysis and protein–protein interaction networks, respectively. Finally, we
selected a separate breast cancer cohort in gene expression synthesis (GEO) for validation.
Both immune scores and stromal scores are meaningful in the correlation of subtype classification. Disease-free survival of cases

with the high score group of immune scores is statistically longer than the cases in the low score group. Differentially expressed
immune-related genes extracted from the comparison can effectively evaluate the prognosis of patients with breast cancer and these
genes are primarily involved in immune responses, extracellular matrix, and chemokine activity. At last, we obtained a series of verified
tumor immune-related genes that predict the prognosis of patients with breast cancer.
Combining the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues using Expression database and the TCGA

database to extract the list of tumor microenvironment related genes which may help to outline the prognosis of patients with breast
cancer. Some previously overlooked genes have the potential to become additional biomarkers for breast cancer. Further research
on these genes can reveal a new understanding of the potential relationship between tumor microenvironment and breast cancer
prognosis.

Abbreviations: BP = biological processes, CC = cellular components, DEGs = differentially expressed genes, DFS = disease-
free survival, ESTIMATE = Estimation of Stromal and Immune Cells in Malignant Tumor Tissues using Expression data, ECM =
extracellular matrix, GEO = gene expression synthesis, KEGG = Kyoto Encyclopedia of Genes and Genomes, MCODE =molecular
complex detection, MF = molecular function, PPI = protein–protein interaction, TCGA = The Cancer Genome Atlas, DAVID = The
Database for Annotation, Visualization, and Integrated Discovery, TME = tumor microenvironment.
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1. Introduction

Breast cancer is the most common malignant tumor in women
worldwide. The number of womenwho die of breast cancer every
year ranks 2nd among female malignant tumor deaths. More
than 500,000 women die of breast cancer each year, of which
China accounts for 9.6%.[1,2] Since the 1990s, the rate of breast
cancer incidence in China has increased twice as fast as the rate
of global breast cancer incidence. It is estimated that the number
of patients with breast cancer in China will reach 2.5 million by
2021.[2] The high death toll and the rapid increase of incidence
rate make the further research of breast cancer more urgent. To
better understand the impact of tumor gene composition on
clinical outcomes, researchers have established genome-wide
gene expression sets such as The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) to classify a large number
of genomic abnormalities worldwide. In the TCGA database,
breast cancer is initially classified into 4 subtypes based on global
gene expression profiles: luminal A, luminal B, Her-2 positive,
base-like. With these advances, gene expression profiles are
increasingly being incorporated into clinical diagnostic criteria
and accepted. Tumor cell intrinsic genes, especially transcription
factors, determine the occurrence, development, and evolution of
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breast cancer.[3,4] On the contrary, the tumor microenvironment
(TME) has also been reported to have an important impact on
tumor tissue gene expression, thereby affecting clinical out-
comes.[5,6] The TME is the cellular environment in which the
tumor is located. Due to the complexity of the interaction of
tumor cells with TME, it is important to identify biomarkers that
can distinguish which patients are more likely to benefit from
these treatments, thereby achieving better prognosis. It consists of
immune cells, mesenchymal cells, endothelial cells, inflammatory
mediators, and extracellular matrix (ECM) molecules.[7,8] In the
TME, immune cells and stromal cells are 2 major nontumor
components, which play a critical role in regulating both the
initiation and development of disease, as well as cellular response
to therapies. Previous studies suggest that high levels of immune
cell infiltration are associated with favorable outcomes,[9] which
means assessing the biomarkers predicting response and
prognosis has great potential for improving the success rate of
immunotherapy.
Algorithms[10,11] have been developed to predict the tumor

purity using gene expression data in the TCGA database. For
instance, Yoshihara et al[10] designed an algorithm called
ESTIMATE (Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression data). The algorithm
calculates the immune and stromal scores by analyzing the
specific gene expression characteristics of immune cells and
stromal cells, and predicts the infiltration of nontumor cells.
Subsequent reports quickly applied this ESTIMATE algorithm to
prostate cancer[12] and colon cancer,[13] showing the effectiveness
of such big data-based algorithms, although utility on immune
and/or stromal scores of breast cancer has not been investigated
in detail.
In the current work, we combined the TCGA database of

breast cancer groups and ESTIMATE algorithm to explore the
factors of microenvironment associated with breast cancer and
further we identified immune-related biomarkers for breast
cancer prognosis. Importantly, we have verified this correlation
in different breast queues in the GEO database.
2. Methods

2.1. Database and statistical analysis

This study uses data from the public domain and does not require
the approval of an ethics committee. Gene expression profiles of
patients with breast cancer were obtained from the TCGA data
portal (https://tcga-data.nci.nih.gov/tcga/). Clinical character-
istics such as gender, histological type, survival time, and
outcome were also obtained from TCGA data portal. Applying
the ESTIMATE algorithm to calculate scores for the level of
stromal cells and immune cells in tumor tissues.[10] The immune
score and stromal score of breast cancer were retrieved from
ESTIMATE website (http://bioinformatics. mdanderson.org/esti
mate/). This website provides an easy access to predict infiltration
of immune cell and stromal cells in TME. For validation, gene
expression profiles and clinical information of patients with
breast cancer were downloaded from the Gene Expression
Omnibus (GEO) data portal (http://www.ncbi.nih.gov/geo).
Comparing the immune/stromal scores in different subtypes by

using 1-way analysis of variance, Kaplan–Meier survival curves
were generated to illustrate the relationship between patients’
disease-free survival (DFS) and gene expression levels of
differentially expressed genes (DEGs). The relationship was
2

tested by log-rank test. Above plots were drawn using GraphPad
Prism 7. Spearman rank correlation coefficient package in R
software (version 3.5.2) was used to show the relevancy between
the final verified genes.
2.2. Differential analysis of expressed genes

Data analysis was performed in TCGA data sets using package
limma.[14] Using limma package in R software (version 3.5.2), we
identified the differentially expressed genes between high immune
score group and low immune score group. Fold change>1.0 and
adjusted P< .05 were set as the cut-offs to screen for DEGs, the
results were shown by volcano plot. Heat maps and clustering
were generated using an open source web tool ClustVis.[15]
2.3. Functional analysis

The protein–protein interaction (PPI) network was built using
STRING database[16] and reconstructed via Cytoscape soft-
ware.[17] Only individual networks with 20 or more nodes were
selected for further analysis and calculated the connectivity
degree of each node of the network. Using the Molecular
Complex Detection (MCODE) to find clusters based on topology
to locate densely connected regions.
Functional enrichment analysis of DEGs was performed by

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID)[18] to identify gene ontology (GO) categories
by their biological processes, molecular functions, or cellular
components (CC). The DAVID database was also used to
perform Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. False discovery rate <0.05 was used as the cut-off.

3. Results

3.1. Association of immune and stromal scores with
breast cancer subtypes and prognosis

Gene expression profiles and clinical data of all 723 patients with
primary pathological diagnosis of breast cancer were obtained
from the TCGA database. Among them, 702 (97.1%) patients
were females, 6 (0.8%) cases were males, and 15 (2.1%) patients
were of unclear gender. About 346 (47.9%) cases of luminal A
subtype, 176 (24.3%) luminal B subtype, 66 (9.1%) Her-2
positive subtype, and 126 (17.4%) cases of basal-like subtype, 14
patients were of unknown pathological subtype. After excluding
patients with incomplete clinical information and male patients,
498 women with breast cancer were eventually included in our
analysis. Based on ESTIMATE algorithm, stromal scores ranged
from �2282.33 to 1958.16, and immune scores were distributed
between �1343.3 to 3487.52. The average immune scores of
basal-like subtype cases ranked the highest of all 4 subtypes,
followed by that of Her-2 positive subtype, and luminal A
subtype. The luminal B subtype cases had the lowest immune
scores (Fig. 1A, P< .0001). Similarly, the rank order of stromal
scores across breast cancer subtypes from highest to lowest is
luminal A > Her-2 positive > luminal B > basal-like (Fig. 1B,
P< .0001), indicating that both immune scores and stromal
scores are meaningful in the correlation of subtype classification.
To mine the potential connection between DFS and immune/

stromal scores, we divided 498 patients with breast cancer into
upper and lower halves based on median immune/stromal scores
as the cut-off criteria. Kaplan–Meier survival curves (Fig. 1C)
were used to show that DFS of cases with the high score group of
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Figure 1. Immune scores and stromal scores are associated with breast cancer subtypes and their overall survival. (A) Distribution of immune scores of breast
cancer subtypes. Box-plot shows that there is significant association between breast cancer subtypes and the level of immune scores. (B) Distribution of stromal
scores of breast cancer subtypes. Box-plot shows that there is significant association between breast cancer subtypes and the level of stromal scores. (C) Breast
cancer cases were divided into 2 groups based on their immune scores. As shown in the Kaplan–Meier survival curve, median survival of the high score group is
longer than low score group. (D) Similarly, breast cancer cases were divided into 2 groups based on their stromal scores. The median survival of the high score
group is longer than the low score group. DFS = disease-free survival.
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immune scores is statistically longer than the cases in the low
score group (P= .0004 in log-rank test). Although it was not
statistically significant, cases with higher stromal scores showed
longer overall survival compared to patients with lower stromal
scores (Fig. 1D, P= .2974 in log-rank test).
3.2. Comparison of gene expression profile with immune
scores in breast cancer

We can see from the previous analysis that the association
between DFS and immune scores was statistically significant.
Immune-related genes were worthwhile to be explored by
comparing high and low score groups. These DEGs (Supplemen-
tary File 1, http://links.lww.com/MD/D942) extracted from the
comparison can effectively evaluate the prognosis of patients with
breast cancer. Therefore, we decided to focus on these DEGs for
use in subsequent analysis in this article (Fig. 2). The volcano plot
in Figure 2A shows genes associated with prognostic differences
between high and low immune scores groups. Heat maps in
Figure 2B showed immune-related genes were selected by
comparing high and low score groups; 18 genes were upregulated
and 307 genes downregulated (fold change >1.5, P< .05).
Furthermore, we performed functional enrichment analysis of

the 325 DEGs to mine the potential function. Plasma membrane,
immune and inflammatory response, chemokine activities, and
3

transmembrane signaling receptor activity were indicated by GO
analysis. Cytokine–cytokine receptor interaction and chemokine
signaling pathway were indicated by KEGG analysis (Fig. 2C–F).
3.3. Survival analysis of individual DEGs

We generated Kaplan–Meier survival curves to explore the
potential link between individual DEGs and DFS. Median was
used as the cut-off for high or low expression chosen for the
DEGs. Among the 325 DEGs, a total of 259 DEGs (Supplemen-
tary File 2, http://links.lww.com/MD/D943) were shown to
significantly predict DFS (P< .05, selected genes are shown in
Fig. 3A–F). These genes were considered to be potential
prognostic immune-related genes and the focus of further
research.

3.4. Functional analysis of genes of prognostic value

To better understand the relationship and function of prognostic
genes, PPI networks were revealed using the STRING tool. Seven
modules including 295 nodes and 3811 edges together form this
network. Top 4 significant modules were selected from this
network to further analysis (Fig. 4A–D). PTPRC, ITGB2, LCP2,
and IL10RA modules were remarkable for having many
connections with other genes, so that we named these modules,
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Figure 2. Genes associated with prognostic differences between high and low immune score groups were shown in the volcano plot. Heat maps were drawn
based on the comparison of gene expression profile with immune scores in breast cancer. (A) Volcano plot of the differentially expressed genes (DEGs) of immune
scores of top half (high score) vs bottom half (low score). (B) Heat map of the DEGs of immune scores of top half (high score) vs bottom half (low score). (C–F) Top
gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. False discovery rate (FDR) of GO analysis was acquired from
The Database for Annotation, Visualization, and Integrated Discovery functional annotation tool.
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respectively, module A to D. In the module A (Fig. 4A), 826 edges
involving 46 nodes were generated in the network, PTPRC,
CCR5, IL6, SELL, CCR7, CD2, and TLR8 were the significant
nodes, as they had more connections with other parts of the
module. In the module B (Fig. 4B), ITGB2, CD53, VAV1,
LAPTM5, CD3D, ITK, MNDA, and CXCL13 had higher degree
values. For the module C (Fig. 4C), there are several critical
4

immune-related genes in the center, including LCP2, PLEK, BTK,
IKZF1, and FYB. In the module D (Fig. 4D), IL10RA, CD48,
VCAM1, CD247, and S1PR4 are also connected to immune
response genes.
The functional enrichment clustering of genes of prognostic

value has a significant correlationwith immune response, and this
result is basically consistent with the analysis of PPI network. Top



Figure 3. Correlation of expression of individual differentially expressed genes (DEGs) in disease-free survival in The Cancer Genome Atlas. (A–F) Kaplan–Meier
survival curves were generated for selected DEGs extracted from the comparison of groups of high (red line) and low (blue line) gene expression. P< .05 in log-rank
test. DFS=disease-free survival in days.

Figure 4. Top 4 protein–protein interaction networks of (A–D) modules A to D. PTPRC, ITGB2, LCP2, and IL10RA occupy the center of their modules, respectively.

Yang et al. Medicine (2020) 99:14 www.md-journal.com
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Figure 5. Gene ontology term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for differentially expressed genes significantly associated
with disease-free survival. Top pathways with false discovery rate <0.05 are shown: (A) biological process, (B) KEGG pathway.
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GO terms (Fig. 5A) included immune/inflammatory response,
chemotaxis, and chemokine activity. In addition, all the path-
ways that were yielded from the KEGG analysis (Fig. 5B) were
associated with immune response.

3.5. Validation in the GEO database

To understand whether the genes found in the TCGA database
have an impact on the prognosis of other patients with breast
cancer, we downloaded and analyzed gene expression data from
139 patients with breast cancer from the GEO database
(GSE45255). A total of 44 genes were validated (Fig. 6A–F) to
Figure 6. (A–F) Validation of correlation of differentially expressed genes (DEGs) e
gene expression synthesis cohort. Kaplan–Meier survival curves were generated fo
low (blue line) gene expression. P< .05 in log-rank test. DFS=disease-free survi
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be significantly linked to prognosis, Spearman rank correlation
coefficient also showed strong relevancy between these verified
genes (Fig. 7). By searching a large amount of literature, we found
that 18 genes of these verified genes have never or rarely been
connected with pathophysiology and prognosis in patients with
breast cancer.

4. Discussion

In our present work, we attempt to identify genes associated with
the TME in the TCGA database that contribute to DFS of breast
cancer. First, we analyzed 325 DEGs generated by comparing
xtracted from The Cancer Genome Atlas database with disease-free survival in
r selected DEGs extracted from the comparison of groups of high (red line) and
val in years.



Figure 7. The Spearman correlation matrix of 44 verified genes.
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high immune scores groups with low immune scores groups.
Through GO term analysis, we can find many of these genes were
involved in TME (Fig. 2C–F). This is consistent with the
relationship between previously reported immune cell function
and ECM molecules in the construction of breast cancer
TME.[19–22] Next, we were able to perform a survival analysis
of these 325 genes and found that 259 genes are associated
with the prognosis of patients with breast cancer. Besides, we
constructed 7 PPI modules which were related to immune and
inflammation response (Fig. 4). PTPRC, ITGB2, LCP2, and
IL10RA are highly interrelated nodes in the network, ITGB2 and
IL10RA have been reported to promote proliferation, angiogen-
esis, migration, and invasiveness in Glioblastoma Multiforme
(GBM) cell lines or patient samples.[23,24] Finally, by cross-
validationwith an independent cohort of 139 patients with breast
cancer from GEO, we identified 44 TME-related genes whose
expression was significantly associated with prognosis (Figs. 6
and 7). Of the 44 genes identified, 26 genes have been reported to
be involved in breast cancer pathogenesis or significant in
predicting survival, explaining that big data analysis based on
TCGA and GEO has predictive value. The remaining 18 genes
have not previously been linked with breast cancer pathophysio-
logical mechanism and prognosis, and could serve as potential
biomarkers for breast cancer. Among them, STAT4, SPOCK2,
PTPN7, CD96, GPR18, and IL2RB aroused our interest.
Relevant studies have found that STAT4 can promote the

metastasis of ovarian cancer by inducing the activation of cancer-
associated fibroblasts.[25] It was also found that high expression
of STAT4 in gastric cancer predicted better clinical outcomes.[26]

SPOCK2 is involved in the progression of endometrial cancer by
regulating the biological behavior of cancer cells in recent
studies.[27] According to an article predicting miRNA targets in
stomach adenocarcinoma, PTPN7 was identified as a valuable
target genes.[28] As a new immunological checkpoint receptor
target, CD96 has received extensive attention in recent years.
Although the role of CD96 as an immunological checkpoint
receptor just begun to be discovered, the accumulated data
support the targeting of these receptors to improve antitumor
immune responses.[29] GPR18 has recently been identified as a
potential member of the cannabinoid family because it recognizes
7

several endogenous, vegetal, and synthetic cannabinoids. Poten-
tial therapeutic applications for GPR18 include cancer.[30] IL2RB
belongs to the member of interleukin. As shown in the latest
literature, the autosomal recessive mutation of IL2RB was 1st
observed, revealing the need for IL2RB in immune and peripheral
immune tolerance.[31] In this study, all the above 6 genes showed
a close relationship with prognosis and immunity. Based on the
information obtained from literature search, we are interested in
further studies on the relationship between these genes and breast
cancer in the future.
Significant progress has been made in the study of the

correlation between survival and gene expression in patients with
breast cancer. Many of these experiments were performed in
animal tumor models, in vitro tumor cell lines, or small
populations of patient tumor samples. However, the complexity
of breast cancer and the microenvironment of breast cancer
require more comprehensive analysis and evaluation. Fortunate-
ly, the rapid development of high-throughput tumor databases,
including TCGA and GEO, was developed and made available to
the research community free of charge. These resources provide a
solid foundation for big data analysis for large breast cancer
populations.[32,33] The interaction of breast cancer and its TME
seriously affects the evolution of tumors, which in turn affects
subtype classification, recurrence, drug resistance, and prognosis
of patients. Former reports have indicated activation of tumor-
intrinsic genes can form a TME.[34] In the present work, we are
concerned with the genetic characteristics of the microenviron-
ment, which in turn affects the development of breast cancer, thus
contributing to the survival of patients. Our findings may provide
additional data to address the complex interactions between
tumors and the tumor environment in breast cancer.
5. Conclusion

The TCGA data were analyzed by immune scores based on
ESTIMATE algorithm to extract the list of TME-related genes
and various biological analyses were performed on these genes.
These genes have been validated in an independent breast cancer
cohort, which may help to outline the prognosis of patients with
breast cancer. Some previously overlooked genes have the
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potential to become additional biomarkers for breast cancer. In
addition, it would be very interesting to test whether this new set
of genes provides a stronger survival prediction than a single
gene. Finally, through further research on these genes, a new
understanding of the potential relationship between TME and
breast cancer prognosis can be achieved.
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