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Automated 3D Axonal 
Morphometry of White Matter
Ali Abdollahzadeh1, Ilya Belevich   2, Eija Jokitalo2, Jussi Tohka1 & Alejandra Sierra1

Axonal structure underlies white matter functionality and plays a major role in brain connectivity. 
The current literature on the axonal structure is based on the analysis of two-dimensional (2D) cross-
sections, which, as we demonstrate, is precarious. To be able to quantify three-dimensional (3D) 
axonal morphology, we developed a novel pipeline, called ACSON (AutomatiC 3D Segmentation 
and morphometry Of axoNs), for automated 3D segmentation and morphometric analysis of the 
white matter ultrastructure. The automated pipeline eliminates the need for time-consuming manual 
segmentation of 3D datasets. ACSON segments myelin, myelinated and unmyelinated axons, 
mitochondria, cells and vacuoles, and analyzes the morphology of myelinated axons. We applied the 
pipeline to serial block-face scanning electron microscopy images of the corpus callosum of sham-
operated (n = 2) and brain injured (n = 3) rats 5 months after the injury. The 3D morphometry showed 
that cross-sections of myelinated axons were elliptic rather than circular, and their diameter varied 
substantially along their longitudinal axis. It also showed a significant reduction in the myelinated axon 
diameter of the ipsilateral corpus callosum of rats 5 months after brain injury, indicating ongoing axonal 
alterations even at this chronic time-point.

Electron microscopy (EM) techniques are used extensively to assess brain tissue ultrastructure. Studies have 
reported the morphology, distribution, and interactions of different cellular components in both healthy and 
pathological brain using transmission electron microscopy (TEM)1–4. The ultra-thin sections prepared for TEM 
can only provide 2-dimensional (2D) information, limiting the full characterization of 3-dimensional (3D) cellu-
lar structures. Recent advanced EM techniques allow for new possibilities to study the ultrastructure of the brain 
in 3D5–9. One of these techniques is serial block-face scanning electron microscopy (SBEM)6. SBEM combines 
scanning electron microscopy (SEM) with back-scattered electron detection and low beam energies10. Images 
are acquired from the block-face of a sample each time an ultra-microtome inside the vacuum chamber removes 
the top section from a block-face to expose a new surface for imaging. The result is a stack of high-resolution, 
high-contrast images of tissue. Compared to other 3D EM techniques, such as focused ion beam (FIB), serial 
section TEM, or 3D-tomography, SBEM enables imaging of up to several hundreds of micrometers of tissue at 
nanoscopic resolution without manual tissue sectioning5,11. Thus, SBEM is the method of choice for mesoscale 
imaging of brain tissue ultrastructure.

Despite substantial progress in 3D image acquisition techniques, segmentation and quantification of SBEM 
data remain challenging. To date, several software tools have been developed that focus on either manual anno-
tation (e.g., KNOSSOS12, TrakEM213, Microscopy Image Browser14, and CATMAID15), or interactive processing 
of data by combining automated analysis and proof-reading capabilities (e.g., rhoANA16, ilastik17, and SegEM18). 
In addition to these software tools, a variety of studies have also proposed segmentation pipelines for analyzing 
large amounts of TEM data. Recent studies19–26 initially identified cellular boundaries using pixel-wise classifi-
cation methods, followed by over-segmentation of the intracellular regions in each 2D image. This procedure 
requires merging the results within and between consecutive images using different strategies (e.g., watershed 
merge tree23, agglomerative or hierarchical clustering19–21,25,26, and joint segmentation of several images in aniso-
tropic datasets22,24).

Although the EM segmentation approaches cited above have yielded impressive results, they have focused 
on the neuronal reconstruction of grey matter. In this study, we address quantification of white matter ultras-
tructure and particularly the morphometry of myelinated axons in sham-operated and animals after traumatic 
brain injury (TBI). Characterization of the white matter ultrastructure requires the segmentation of the white 
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matter components from 3D-SBEM datasets. The previous segmentation methods cannot be used to address 
the segmentation of white matter for several reasons. First, using manual or semi-automated segmentation 
software tools (e.g.27, TrackEM213 and ilastik17) or pipelines (Chklovskii et al.20), would be prohibitively time 
consuming. Providing annotated data, i.e., training data, for supervised learning-based segmentation methods, 
such as SegEM18 and SyConn28, is also very time consuming, or requires several annotators. Second, our interest 
lies in segmentation of several white matter constituents, such as myelin, myelinated and unmyelinated axons, 
cell bodies, mitochondria, and vacuoles. The methods utilizing binary pixel classifiers23,24, which assign a pixel 
as either a cell boundary or a cell-interior, are inappropriate for this type of multiclass segmentation problem. 
Especially if subcellular structures, such as mitochondria, are not labeled separately, the clustering step of these 
methods fails to correctly merge regions within a complete cell26. Some studies have addressed the multiclass 
segmentation22,25,26, and segmented mitochondria as a subcellular structure. These approaches, however, are only 
valid for grey matter, which does not contain myelin. In the SBEM images of white matter, the segmentation of 
mitochondria in the presence of myelin is extremely difficult because the signal intensity and textural features 
of mitochondria and myelin are highly similar. Interestingly, a previous study tracked axons in a SBEM volume 
of the optic tract using Kalman-snakes29 initialized either manually, or automatically using watershed filtering30. 
However, this approach fails in tracking full length of axons throughout the SBEM volume. Therefore, the auto-
mated segmentation of SBEM images of white matter requires a specifically developed method to address these 
problems. In conclusion, currently there exist no automated methods to quantify the axonal morphometry in 3D 
EM images.

We developed a novel pipeline for AutomatiC 3D Segmentation and morphometry Of axoNs (ACSON) in 
mesoscale SBEM volumes of white matter. The automated pipeline eliminates the need for time-consuming man-
ual segmentation of 3D datasets and enables full 3D analysis of the white matter ultrastructure. ACSON segments 
the main cellular and subcellular components of the corpus callosum. To confirm the accuracy of the automated 
segmentation, the automated segmentation was evaluated against manual annotation by an expert. We quanti-
fied the actual cross-sections of the segmented myelinated axons based on their diameter and eccentricity. We 
analyzed the morphological features of SBEM datasets from the ipsilateral and contralateral sides of the corpus 
callosum in two sham-operated and three TBI rats.

Results
ACSON segmentation pipeline automatically annotates the white matter ultrastructure.  We 
devised the ACSON segmentation pipeline to annotate the ultrastructure in SBEM volumes of white matter. The 
segmentation procedure of ACSON labeled white matter voxels as myelin, myelinated and unmyelinated axons, 
cells, mitochondria, and vacuoles. In addition, ACSON provided a separate label for each individual axon. The 
ACSON segmentation pipeline, illustrated in Fig. 1, comprised the following steps: (1) denoising the SBEM vol-
ume; (2) segmenting the volume using the bounded volume growing (BVG) technique, which integrates seeded 
region growing31 and edge detection algorithms in 3D; (3) refining the segmentation with supervoxel techniques; 
(4) segmenting the subcellular structure and cells, and annotating myelinated and unmyelinated axons.

Evaluation of the ACSON segmentation pipeline.  We quantified the accuracy of the ACSON segmen-
tation pipeline against manual segmentation by an expert. The expert (A.S.) manually segmented three 2D images 
(images 50, 55, and 60) from the contralateral dataset of one of the sham-operated rats (Sham-1). The images were 
selected to be 0.2 μm apart. The expert had no access to the automated segmentations of the dataset. Figure 2b 
shows the manual segmentations and the corresponding images produced by the automated segmentation. The 
segmentation accuracy was quantified using the precision (positive predictive value) and recall (sensitivity) in 
the tissue-type level similar to the previous studies28,32, and weighted Jaccard index and weighted Dice coeffi-
cients in the region level (see Materials and Methods). The precision and recall obtain their maximum value, 
one, if the automated segmentation correctly assigned voxels to myelin, myelinated or unmyelinated axon labels. 
The evaluation metrics in the tissue-type level, however, fail to account for topological differences between the 
ground truth and the automated segmentation. We used weighted Jaccard index and weighted Dice coefficients 
to evaluate the segmentation accuracy in the region level. Thus, each axon was considered to be its own region, 
which is a much more stringent evaluation criterion than considering all axons as a single region. The maximum 
value for these metrics is one, which occurs when a segmented region by ACSON perfectly matches a region seg-
mented manually. If no overlap occurs, the metric is equal to zero. Table 1 reports the precision, recall, weighted 
Jaccard index, and weighted Dice coefficient values of the three slices shown in Fig. 2 and Supplementary Fig. S1. 
The results showed an excellent agreement between the automated and manual segmentations for myelin (preci-
sion ≥ 0.86, recall ≥ 0.88, weighted Jaccard index ≥ 0.78, and weighted Dice coefficients ≥ 0.87) and myelinated 
axons (precision ≥ 0.84, recall ≥ 0.88, weighted Jaccard index ≥ 0.80, and weighted Dice coefficients ≥ 0.88). For 
unmyelinated axons, in the tissue-type level the agreement was good (precision ≥ 0.72 and recall ≥ 0.68). The 
weighted Jaccard index and weighted Dice coefficients of unmyelinated axons showed approximately 0.37 and 
0.50 agreement, respectively, which indicated topological differences and differences in perceiving ultrastructures 
such as myelin pockets and delamination between the automated and manual segmentations. These metrics are 
sensitive to minor displacements in the location of the boundaries as demonstrated in Supplementary Fig. S2.

We further evaluated the segmentation of myelinated axons for the split (over-segmentation) and merge 
(under-segmentation) errors. Supplementary Fig. S3 illustrates the distribution of the length of myelinated axons 
in Sham-1 dataset. Myelinated axons with lengths smaller than 5 μm appeared in the corners of the SBEM vol-
umes. These myelinated axons have partially traversed the SBEM volume. We did not observe split and merge 
errors in myelinated axons visually, confirming the excellent Jaccard index and Dice coefficient values for mye-
linated axons. The 3D rendering of myelinated axons for all datasets is shown in Supplementary Fig. S4. Also, 
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Figure 1.  White matter ACSON segmentation pipeline. (a) A 2D representative image of the SBEM dataset 
from the contralateral corpus callosum of Sham-1 dataset. (b) The same image denoised with BM4D. (c) 
Boundary mask B: union of myelin obtained with BVG and dilated Canny edges. (d) The Euclidean distance 
transform was calculated for every slice of B individually to define the location of the seeds for the BVG 
algorithm. (e) The primary result of BVG segmentation. As the volume of cells/cell process exceeded ϑ, voxels 
corresponding to cells/cell process remained unlabeled in the primary segmentation (black regions). (f) The 
SLIC supervoxel technique refined the segmentation. (g) Segmentation of cells and mitochondria refined by 
the SLIC supervoxels. (h) A 4 labels map of myelin, intra-axonal space of myelinated and unmyelinated axons, 
oligodendrocyte cell body and its processes. (i) 3D rendering of myelinated axons in the contralateral corpus 
callosum of a Sham-1 dataset. The 3D rendering depicts myelinated axons with different thicknesses running 
along the dataset and organizing bundles with different orientations.
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Supplementary video shows the 3D rendering of myelin, cell, and myelinated axons in the contralateral corpus 
callosum of sham-1 dataset.

ACSON morphometry pipeline automatically quantifies the segmented myelinated 
axons.  The ACSON morphometry pipeline quantified cross-sections of the intra-axonal space of myelinated 
axons. A cross-section is the intersection of a segmented myelinated axon and a perpendicular plane to the axonal 
skeleton. To detect the axonal skeleton, we defined three points in the myelinated axon domain: one with the larg-
est distance from the axon surface and two endpoints of the axons, i.e., the tips of the axon. The minimum-cost 
path connecting these three points was defined as the axonal skeleton (see Fig. 3a, which shows the cross-sectional 
planes at three randomly selected positions along an axon). The orientation of the cross-sectional planes at each 
skeleton point was determined by the unit tangent vector at that point. For each cross-section, we measured 
the length of minor and major axes of the fitted ellipses, equivalent diameter33 and eccentricity. The equivalent 

Figure 2.  Manual expert segmentation and automated segmentation of three images from the contralateral 
corpus callosum of Sham-1 dataset. We used the Hungarian algorithm to match the color of segmented 
regions between automated and manual segmentation panels. The red arrowheads indicate delamination 
in the myelin sheaths. These substructures were annotated as myelin in the manual annotation, while the 
automated segmentation excluded the myelin delamination from the myelin-labeled structures. Occasionally, 
the automated segmentation erroneously merged neighboring unmyelinated axons when the space between the 
membranes was poorly resolved (white arrowheads). The automated segmentation of myelinated axons was in 
excellent agreement with the manual segmentation, as shown in Table 1.

Image 50 Image 55 Image 60

Prec. Rec. WJI WDC Prec. Rec. WJI WDC Prec. Rec. WJI WDC

Myelin 0.86 0.89 0.78 0.87 0.89 0.89 0.81 0.89 0.90 0.88 0.81 0.89

Myelinated axons 0.84 0.88 0.80 0.88 0.89 0.89 0.81 0.88 0.86 0.92 0.84 0.90

Unmyelinated axons 0.81 0.71 0.38 0.50 0.72 0.72 0.37 0.50 0.74 0.68 0.36 0.49

Table 1.  We evaluated ACSON segmentation by comparing it to the manual expert segmentation using 
precision (Prec.), recall (Rec.), weighted Jaccard index (WJI), and weighted Dice coefficient (WDC) metrics. 
The precision and recall metrics evaluate the segmentation in the tissue-type level and weighted Jaccard index 
and weighted Dice coefficients evaluate each axon as its own region. Therefore, the latter metrics are very 
sensitive to split-and-merge type errors.
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diameter is the diameter of a circle with the same area as the cross-section, and the eccentricity is a measurement 
of how much a conic section deviates from being circular. For example, the eccentricity of a circle is zero and the 
eccentricity of an ellipse is greater than zero but less than one. Figure 3b shows the measurements of minor axes 
along a myelinated axon. It is apparent that the myelinated axon diameter was not constant. We present more 
examples of cross-sectional variation along myelinated axons in Supplementary Fig. S5 and show that the histo-
gram of cross-sectional diameters within a myelinated axon was bimodal, which can partially be related to the 
location of mitochondria34. Note that mitochondria was included in the intra-axonal space of myelinated axons, 
while vacuoles excluded, because they appeared between myelinated axon membrane and myelin.

Substantial differences between 2D and 3D morphological analyses.  We compared the tradi-
tional 2D morphometry and the proposed 3D morphometry pipelines for myelinated axons in one dataset of 
the sham-operated rats (Sham-1). In Fig. 4a, a representative myelinated axon is elongated in the z direction. 
We sampled the myelinated axon parallel to the x-y plane at three points denoted as p1, p2, and p3 in the figure. 
Figure 4a shows that when the axonal axis was nearly perpendicular to the sampling plane (point p1), the relative 
difference between the 2D and 3D quantifications was small. However, when the axonal axis was not aligned 
with three main orientations, the relative difference between the 2D and 3D quantifications increased and was 
substantial (points p2 and p3). In addition, as the relative difference varied along a myelinated axon, a single 2D 
measurement was noisy. We compared the 2D and 3D measurements for all myelinated axons in contralateral 
corpus callosum of Sham-1 dataset as shown in Fig. 4b–e. The comparisons showed that the median of the relative 
difference, in percentage, was 16.64% for the minor axis, 18.25% for the major axis, 16.23% for the equivalent 
diameter, and 11.34% for the eccentricity. This indicates substantial differences between the 2D and 3D based 
measurements of morphometry of myelinated axons. As the cross-sectional measurements of a myelinated axon 
varied along it, sampling a single cross-section for measurement, as in 2D morphometry, gave an incomplete 
account of the parameters to be quantified. The 3D analysis, instead, quantified the morphology of a myelinated 
axon while taking into account the morphological variations along its axis.

3D morphometry of the ultrastructure of the corpus callosum.  We quantified the morphological 
and volumetric aspects of the white matter ultrastructure in our SBEM datasets. For the morphological analysis, 
we thresholded myelinated axons based on their length, and preserved those myelinated axons whose length was 
long enough to run approximately one third of the SBEM volumes, which was equal to 5 μm. Supplementary 
Fig. S3a shows the thresholded myelinated axons which partially traversed the SBEM volume. In addition, the 
thresholding can eliminate myelinated axons which were split erroneously or subcellular structures that were 
mistakenly labeled as myelinated axons.

For each myelinated axon, we considered the median of the cross-sectional measurements (minor and major 
axes, equivalent diameter and eccentricity) as our measurement variable. The box plots of these measurements 
are shown in Fig. 5. We subjected these quantities to nested (hierarchical) 1-way analysis of variance (ANOVA) 
separately for each hemisphere35. The nested ANOVA tests whether there exists a significant variation in means 
among groups, or among subgroups within groups. The myelinated axons were nested under rats and the iden-
tities of rats were nested under the groups (sham-operated and TBI). We set the alpha-threshold defining the 
statistical significance as 0.05 for all analyses. The ANOVA was performed using the anovan function of MATLAB 
R2017b. Myelinated axon and rat identity were treated as random effects and the group was treated as fixed effect.

We observed a significant reduction of the equivalent diameter (F = 14.4, p = 0.029) and the major axis 
(F = 26.4, p = 0.012) in the ipsilateral corpus callosum of TBI rats as compared to the ipsilateral corpus callosum 

Figure 3.  ACSON morphometry. (a) 3D reconstruction of a representative intra-axonal space of one 
myelinated axon and its mitochondria. Three intersecting planes at randomly selected positions show the cross-
section of the myelinated axon. (b) The cross-sectional diameter of a myelinated axon varies along its length.
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of sham-operated rats (see Supplementary Table S1 and Fig. 5). The contralateral corpus callosum, however, did 
not show a significant difference between sham-operated and TBI rats for any of the measures (see Supplementary 
Table S1 and Fig. 5). We measured that the equivalent diameter was about 15% greater than the minor axis of 
the fitted ellipses. The eccentricity in all datasets were markedly different from zero indicating that the axonal 
cross-sections were not circular, but elliptical.

We also partitioned the variability of the measurements in cross-sectional, axonal, and animal levels, known as 
variance component analysis. The variance components describe what percentage of the total variance is attribut-
able to each level. The design matrix of a 4-levels nested ANOVA for all measurements was very large (2 groups, 
i.e., sham-operated and TBI, 5 animals, approximately 250 myelinated axons per animal, and approximately 250 
cross-sectional measurements per myelinated axon) making it impossible to perform the computations with the 
complete dataset. Therefore, we sampled 10000 of the measurements (without repetition), computed the variance 
components and repeated the procedure for 10 times. The variance components (Table 2) indicated that the great-
est part of the variance was attributed to variance of cross-sections, then between myelinated axons, and the least 
amount of variance was attributed to between sham-operated and TBI animals.

We also quantified the volumetric aspects of myelin in our 3D-SBEM datasets. The ultrastructure volumetry 
was dataset-dependent, preventing a direct comparison between datasets. For example, the volume of cell body/
processes varied among datasets [1.3–22.1%], influencing the volume of the other ultrastructures (see the results 
of volumetric analysis in Supplementary Table S2). Therefore, we calculated the implicit representation of the 
g-ratio36 with no measurement of the myelin thickness37, denoted as − = − ⁎aggregate g ratio Myelin1 . We 
defined Myelin* as the ratio of the myelin volume to the myelin volume plus the intra-axonal volume of all 

Figure 4.  A comparison between the 2D and 3D morphological analyses. (a) 3D reconstruction of intra-
axonal space of a representative myelinated axon with an axis that does not align with image cross-sections. The 
myelinated axon was quantified at three planes parallel to the x-y plane simulating the 2D morphometry and 
three cross-sections for the 3D morphometry. The quantified parameters were minor axis (MinAxis), major 
axis (MajAxis), equivalent diameter (EqDiameter), and eccentricity (Ecc). When the angle between the normal 
planes to the axonal axis and the image cross-sections grew, the relative difference (RD) between the 2D and 
3D quantifications increased (p2 and p3). (b-d) Percentage of the relative difference between the 2D and 3D 
measurements of (b) the minor axis [median: 16.64%, median absolute deviation (MAD): 10.66%], (c) the 
major axis [median: 18.25%, MAD: 16.68%], (d) the equivalent diameter [median: 16.23%, MAD: 9.60%], and 
(d) the eccentricity [median: 11.34%, MAD: 6.30%] for all myelinated axons in contralateral corpus callosum of 
Sham-1 dataset.
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Figure 5.  Box-plots of equivalent diameter (EqDiameter), minor axis (MinAxis), major axis (MajAxis), and 
axonal eccentricity measured for myelinated axons in sham-operated and TBI animals. The measurements are 
medians of the cross-sectional measurements of each myelinated axon. On each box, the central mark indicates 
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. 
The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually using the ‘o’ symbol. Nested ANOVA showed a significant reduction in the diameter of myelinated 
axons (the equivalent diameter and the length of major axis) in the ipsilateral corpus callosum of rats after TBI.

Cross-sections (%) Axons (%) Animals (%)

Contralateral

EqDiameter 57.33 ± 1.09 41.29 ± 1.16 1.38 ± 0.46

MinAxis 59.47 ± 0.93 39.14 ± 1.00 1.39 ± 0.30

MajAxis 63.59 ± 1.18 35.15 ± 1.09 1.26 ± 0.31

Eccentricity 83.12 ± 0.70 15.97 ± 0.66 0.91 ± 0.20

EqDiameter 49.85 ± 1.26 48.02 ± 1.26 2.13 ± 0.46

Ipsilateral

MinAxis 51.67 ± 1.12 44.47 ± 1.12 3.86 ± 0.30

MajAxis 56.18 ± 1.08 41.27 ± 1.23 2.55 ± 0.36

Eccentricity 75.53 ± 0.98 17.96 ± 0.86 6.51 ± 0.51

Table 2.  Variance components analysis. The variance was partitioned into cross-sectional, axonal, and animal 
levels.

https://doi.org/10.1038/s41598-019-42648-2
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myelinated axons. In addition, we calculated the density for myelinated axons and mitochondria defined as 
ρ =N

N
Vnc

, where N is the number of myelinated axons or mitochondria counted once in a volume Vnc which is the 
volume of non-cellular ultrastructure. Supplementary Table S2 shows the aggregate g-ratio and the density of 
myelinated axons and mitochondria for all datasets. We did not run statistical hypothesis tests for comparing 
these metrics between sham-operated and TBI rats. However, visually, we observed myelin delamination and 
pockets in myelin sheath more frequent in rats after TBI compared to sham-operated rats.

Computation time.  On a 4-core Intel CPU 3.41 GHz machine with 64 GiB RAM using MATLAB R2017b, 
the computation times for one dataset were approximately as follows: block-matching and 4D (BM4D) filtering 
5–7 h, segmentation process 1 day, and skeletonization and cross-sectional analysis 6 h. Correcting the segmenta-
tion of mitochondria and proofreading of myelinated axons versus unmyelinated axons was accomplished in 7 h 
for the entire SBEM-volume. The manual expert annotation of a single slice of the SBEM datasets required 10 h.

Discussion
Previous studies that quantified white matter were limited to 2D morphometry, which simplifies the assumptions 
about axonal morphology. In this paper, we reported an extensive 3D morphological analysis of SBEM volumes. 
For this, we devised a novel pipeline, termed ACSON, for automated segmentation and morphometry of the 
cellular and subcellular components of the corpus callosum in SBEM datasets. ACSON segmented white matter 
into myelin, the intra-axonal space of myelinated and unmyelinated axons, cell bodies and their processes, and 
subcellular compartments, such as mitochondria and vacuoles. The segmentation accuracy evaluations revealed 
excellent agreement between the automated and manual segmentation of myelin and myelinated axons. ACSON 
quantified the morphology of the segmented myelinated axons. The 3D morphometry demonstrated a substan-
tial variation in the diameter of myelinated axons along their longitudinal axis. The results indicated that the 
cross-sections of a myelinated axon are more likely to be elliptical than circular. To compare sham-operated 
and TBI animals, we used nested ANOVA and variance component analysis. After TBI, we found a significant 
reduction in the diameter of myelinated axons in the ipsilateral of corpus callosum, indicating that the alterations 
persisted for several months after the injury.

Traditionally, studies have modeled axons as straight cylinders, and utilized 2D-EM sections to assess the 
axonal morphology38–40. However, studies of unmyelinated axons in peripheral nerves41 and in the hippocampus 
and cerebellum42 indicated highly irregular axial shapes with periodic varicosities containing organelles42. In 
addition to studying the anatomical alterations of brain ultrastructure in disease, models of diffusion magnetic 
resonance imaging (dMRI)43,44 or electrophysiology45,46 in many studies assume simplified geometries for axons. 
However, Novikov et al.47 and Fieremans et al.48 have shown the effect of structural disorder along axons and 
micron-level sample architecture while modeling dMRI. Thus, realistic modeling of cells49 and myelinated axons50 
have raised attention for numerical simulation of dMRI. Segmentation of high-resolution EM volumes provides 
realistic properties such as axonal diameter, eccentricity of cross-sections and orientation dispersion that can 
substitute simplified models of axons.

Our segmentation and morphometry pipeline is automated. The ACSON segmentation pipeline requires tun-
ing several parameters, such as the thresholds for measuring similarity or vacuole intensity. These parameters, 
however, are easy to set. Annotating the mitochondria was the only step that remained a challenge and required 
human intervention. Compared with manual segmentation, which required, on average, 10 hours for a single 
slice, annotating the mitochondria required approximately six hours for the entire dataset comprising 285 SBEM 
images. In an earlier study, Lucchi et al.32 specifically targeted segmentation of mitochondria in high resolution 
FIB-SEM datasets of 5-6 nm × 5-6 nm planar resolution, which is a much finer resolution than in our datasets. 
They reported that mitochondria and myelin were difficult to discriminate whenever they were in close proximity. 
The high resolution of their FIB-SEM datasets enabled them to outline the prominent shape-features of mito-
chondria and they segmented mitochondria almost in the absence of myelin. Unfortunately, their technique is not 
applicable to our data due to our larger tissue samples, lower resolution, and proximity of mitochondria to myelin.

The ACSON morphometry pipeline required no user input parameters and extracted a sub-voxel precise 
and naturally smooth axis for each individual myelinated axon. We assumed a myelinated axon skeleton with 
no branches and only two endpoints. This allowed us to optimize the computation time for skeleton extraction. 
The computational efficiency was crucial because we solved the eikonal equation for several thousands of axons 
with multi-stencils fast marching (MSFM), which is more accurate but also more time-consuming than the fast 
marching method (FMM)51. We quantified myelinated axons for their minor and major axes, equivalent diame-
ter and eccentricity. The minor and major axes and the equivalent diameter, all can describe the cross-sectional 
diameter of myelinated axons. Estimating the minor and major axes, however, requires fitting an ellipse to the 
cross-sections. Ellipse fitting step regularizes the measurements, which reduces the cross-sectional variance along 
myelinated axons. The equivalent diameter is measured directly from the area of cross-sections and it can cap-
ture the cross-sectional variance along myelinated axons, however, it measured the cross-sectional diameter 15% 
greater than the minor axis. Our morphological analyses of myelinated axons in sham-operated animals were 
in line with a previous study52 measuring axon diameter in the rat corpus callosum. Kim et al.52 measured an 
average myelinated axon diameter of 0.35 μm in the splenium of the corpus callosum in male and female rats at 
postnatal day 60 using 2D electron microscope. The authors measured the myelinated axon diameter as the min-
imum diameter of each axon. For a comparison to this study, we measured an average myelinated axon diameter 
as equivalent diameter (Sham-1: 0.44 μm and Sham-2: 0.5 μm) and minor axis (Sham-1: 0.37 μm and Sham-2: 
0.42 μm) for the contralateral corpus callosum. Note that our tissue samples were acquired from the body of the 
corpus callosum at approximately −3.80 mm from bregma from male adult rats. Moreover, the variability of the 
myelinated axon diameter along its longitudinal axis can be related to the accumulation of organelles, such as 
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mitochondria, increasing the cross-sectional diameter locally34. Wake et al.53 also indicated that accumulation of 
vesicles containing neurotransmitter along an axon induces a local rise in the form of varicosities.

The segmentation accuracy evaluations demonstrated substantial agreement between the automated and 
manual segmentations as shown by the precision and recall metrics. These evaluations, however, did not provide 
a realistic estimation of the segmentation quality when the goal is to separate distinct axons. The weighted Jaccard 
index and weighted Dice coefficients computed in the region level were much more stringent evaluation meas-
urements, and demonstrated excellent results for the segmentation of myelin and myelinated axons. However, the 
weighted Jaccard index and weighted Dice coefficients indicated 37% and 50% agreement in the segmentation of 
unmyelinated axons, respectively. There were several possible reasons for the decreased accuracy in the segmenta-
tion of unmyelinated axons. First, pockets in the myelin sheaths were included in the myelin label, while ACSON 
annotated these volumes individually. This potentially introduced false positives reducing the weighted mean of 
the Dice coefficients. Second, faintly resolved unmyelinated axons might have been included into the cell body/
process annotation. Finally, the cellular boundaries of unmyelinated axons were often difficult to detect, which 
resulted in the erroneous merging of neighboring unmyelinated axons. Overall, as the precision and recall scores 
of unmyelinated axons were good, we investigated the volumetry of unmyelinated axons.

We have provided a framework for the statistical inference of data with nested structure. Simply pooling 
the measurements from all animals is not a valid approach35. Also, averaging the lowest levels of hierarchy has 
sub-optimal statistical power54. The nested ANOVA analysis, however, can capture the variability of the measure-
ments in all levels. In addition to testing the equality of the means at each level through nested ANOVA, we par-
titioned the variance into different levels. The variance component analysis showed that variation among animals 
was relatively small compared to the variation among cross-sections and myelinated axons.

It is becoming increasingly clear that white matter pathology plays a major role in brain disorders. After TBI, 
the white matter pathology is extremely complex. The initial response of an axon to a brain injury55 can be either 
degeneration or regeneration. Studies of the white matter ultrastructure indicate axonal swelling in the early 
stages of TBI56,57. Axonal damage persists for years after injury in humans58 and for up to 1 year in rats59. In the 
present study, we observed morphological changes in the corpus callosum 5 months after severe TBI in rats. We 
found that the axonal diameter of myelinated axons in the ipsilateral corpus callosum of TBI rats had reduced sig-
nificantly. The reduction of the diameter of myelinated axons might indicate a prolonged axonal degeneration60 or 
regeneration55. In analysis of myelin, the automated pipeline has excluded the pockets and delamination from the 
myelin label. Visually, we observed more frequent delamination in TBI animals, which might indicate active mye-
lin processes still ongoing 5 months after the injury. Myelin delamination was also observed in sham-operated 
rats, which may be part of the natural dynamics of healthy myelin. Note that, we observed pockets in the myelin 
sheaths more frequently in animals after injury. The delamination of the myelin sheaths in healthy and injured 
brains at this chronic time point is currently unclear, and warrants further studies.

When characterizing the ultrastructural morphometry, the tissue shrinkage caused by fixation, staining, and 
sectioning might affect quantification of the axonal diameter and volumes61. In addition, the locations from which 
the specimens were obtained might influence the quantifications. The SBEM datasets in this study were consist-
ently imaged at a specific location in the corpus callosum in both sham-operated and TBI animals, and in both 
hemispheres. Due to the small tissue size, however, the environment might change from one sample to another. 
For example, one of our datasets from the contralateral corpus callosum in a TBI rat contained more cell body/
process volume than the other datasets. The small sample size can be reflected as well in the orientation of the 
myelinated axons. In a coronal view of the rat brain, the corpus callosum mainly contains in-plane parallel axons 
oriented in the latero-medial orientation, however, there are also bundles of axons oriented dorso-ventrally, and 
even rostro-caudally. For that reason, our datasets can contain different axonal populations with different orien-
tations. Thus, studies including more SBEM datasets from more subjects and/or locations in the corpus callosum, 
as well as bigger sample size are necessary to increase our understanding of the 3D ultrastructure of the corpus 
callosum.

Materials and Methods
Animal model, tissue preparation, and SBEM imaging.  Animals.  Five adult male Sprague-Dawley 
rats (10-weeks old, weight 320 and 380 g, Harlan Netherlands B.V., Horst, Netherlands) were used in the study. 
The animals were singly housed in a room (22 ± 1°C, 50–60% humidity) with 12 h light/dark cycle and free access 
to food and water. All animal procedures were approved by the Animal Care and Use Committee of the Provincial 
Government of Southern Finland and performed according to the guidelines set by the European Community 
Council Directive 86/609/EEC.

Traumatic brain injury model.  TBI was induced by lateral fluid percussion injury in three rats (TBI-1, TBI-
2, TBI-3)62. Rats were anesthetized with a single intraperitoneal injection (6 mL/kg) of a mixture of sodium 
pentobarbital (58 mg/kg), magnesium sulphate (127.2 mg/kg), propylene glycol (42.8%), and absolute ethanol 
(11.6%). A craniectomy (5 mm in diameter) was performed between bregma and lambda on the left convexity 
(anterior edge 2.0 mm posterior to bregma; lateral edge adjacent to the left lateral ridge). Lateral fluid percussion 
injury was induced in one rat by a transient fluid pulse impact (21 ms) against the exposed intact dura using 
a fluid-percussion device (Amscien Instruments, Richmond, VA, USA). The impact pressure was adjusted to 
3.1 atm to induce a severe injury. Two sham-operated rats (Sham-1, Sham-2) underwent all the same surgical 
procedures except for the impact.

Tissue processing.  Five months after TBI or sham operation, the rats were transcardially perfused using 0.9% 
NaCl (30 mL/min) for 2 min followed by 4% paraformaldehyde (30 mL/min) at 4 °C for 25 min. The brains were 
removed from the skull and post-fixed in 4% paraformaldehyde /1% glutaraldehyde overnight at 4 °C.
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Tissue preparation for SBEM.  The brains were sectioned into 1-mm thick coronal sections with a vibrating blade 
microtome (VT1000s, Leica Instruments, Germany). From each brain, a section at approximately 3.80 mm from 
bregma was selected and two samples from the ipsilateral and the contralateral corpus callosum were further dis-
sected, as shown in Supplementary Fig. S6a. The samples were stained using an enhanced staining protocol63 (see 
Supplementary Fig. S6b). First, the samples were immersed in 2% paraformaldehyde in 0.15 M cacodylate buffer 
containing 2 mM calcium chloride (pH = 7.4), and then washed five times for 3 min in cold 0.15 Μ cacodylate 
buffer containing 2 mM calcium chloride (pH = 7.4). After washing, the samples were incubated for 1 h on ice in a 
solution containing 3% potassium ferrocyanide in 0.3 M cacodylate buffer with 4 mM calcium chloride combined 
with an equal volume of 4% aqueous osmium tetroxide. They were then washed in double distilled H2O (ddH2O) 
at room temperature (5 × 3 min). Thereafter, the samples were placed in a solution of 0.01 mg/mL thiocarbohy-
drazide solution at room temperature for 20 min. The samples were then rinsed again in ddH2O (5 × 3 min), and 
placed in 2% osmium tetroxide in ddH2O at room temperature. Following the second exposure to osmium, the 
samples were washed in ddH2O (5 × 3 min), and then incubated in 1% uranyl acetate overnight at 4 °C. The fol-
lowing day, the samples were washed in ddH2O (5 × 3 min) and en bloc Walton’s lead aspartate staining was per-
formed. In this step, the samples were incubated in 0.0066 mg/mL lead nitrate in 0.03 M aspartic acid (pH = 5.5) 
at 60 °C for 30 min, after which the samples were washed in ddH2O at room temperature (5 × 3 min), and dehy-
drated using ice-cold solutions of freshly prepared 20%, 50%, 70%, 90%, 100%, and 100% (anhydrous) ethanol 
for 5 min each, and finally placed in ice-cold anhydrous acetone at room temperature for 10 min. Embedding was 
performed in Durcupan ACM resin (Electron Microscopy Sciences, Hatfield, PA, USA). First, the samples were 
placed into 25% Durcupan#1 (without component C):acetone, then into 50% Durcupan#1:acetone, and after into 
75% Durcupan#1:acetone overnight. The following day, they were placed in 100% Durcupan#1 for 2 in a 50 oven 
(2 times), and into 100% Durcupan#2 (4-component mixture) for 2 h in a 50 °C oven. Finally, the samples were 
embedded in 100% Durcupan#2 in Beem embedding capsules (Electron Microscopy Sciences) and baked in a 60 
°C oven for 48 h.

After selecting the area within the samples, as shown in Supplementary Fig. S6c, the blocks were further 
trimmed into a pyramidal shape with a 1 × 1 mm2 base and an approximately 600 × 600 μm2 top (face), which 
assured the stability of the block while being cut in the SBEM microscope. The tissue was exposed on all four 
sides, bottom, and top of the pyramid. The blocks were then mounted on aluminum specimen pins using con-
ductive silver epoxy (CircuitWorks CW2400). Silver paint (Ted Pella, Redding, CA, USA) was used to electrically 
ground the exposed block edges to the aluminum pins, except for the block face or the edges of the embedded 
tissue. The entire surface of the specimen was then sputtered with a thin layer of platinum coating to improve 
conductivity and reduce charging during the sectioning process.

SBEM data acquisition.  All SBEM data were acquired on an SEM microscope (Quanta 250 Field Emission Gun; 
FEI Co., Hillsboro, OR, USA), equipped with the 3View system (Gatan Inc., Pleasanton, CA, USA) using a backs-
cattered electron detector (Gatan Inc.). The top of the mounted block or face was the x-y plane, and the z direction 
was the direction of the cutting.

All the samples were imaged with a beam voltage of 2.5 kV and a pressure of 0.15 Torr. The datasets were 
acquired with a resolution of 13-18.3 nm × 13-18.3 nm × 50 nm amounting to an area of 13.3-18.7 μm × 13.3-
18.7 μm × 14.25 μm in the x, y, and z directions, respectively. After imaging, Microscopy Image Browser14 was 
used to apply lateral registration to the slices. We quantified the registration using cross correlation analysis 
between successive slices and subtracting the running average (window size = 25) to preserve the directionality 
of axons while registration. Supplementary Fig. S6d shows a representative SBEM volume of the contralateral cor-
pus callosum of the sham-operated rat. We also show two representative images cropped from the sham-operated 
and TBI volumes in Supplementary Fig. S6e and f, respectively.

ACSON segmentation pipeline.  The ACSON segmentation pipeline annotates the ultrastructure in SBEM 
volumes of white matter. The pipeline began with denoising of the SBEM volumes, and proceeded by segmenting 
the volumes using BVG. The segmented volumes were refined using supervoxel techniques, and, finally, the sub-
cellular structures, cells, and myelinated and unmyelinated axons were annotated.

Denoising.  SBEM images are degraded by noise from different sources, such as noise in the primary beam, 
secondary emission noise, and noise in the final detection system64. To suppress these complex noise patterns, 
we applied a non-local BM4D algorithm65. Unlike local averaging filters, which smooth an image by averaging 
values in the neighborhood of a target voxel, non-local filtering considers all the voxels in the image, weighted 
by how similar these voxels are to the target voxel. BM4D, in particular, enhances a sparse representation in the 
transform-domain by grouping similar 3D image patches (i.e., continuous 3D blocks of voxels) into 4D data 
arrays called, groups. The steps to realize the filtering are the 4D transformation of 4D groups, shrinkage of 
the transform spectrum, and inverse 4D transformation. While BM4D has been extensively used for denoising 
datasets from diverse imaging modalities, its application in 3D-SBEM datasets is novel. We applied the default 
parameter values of BM4D for denoising, which automatically estimates the noise type and variance. Figure 1a 
shows a slice of SBEM volume before filtering, and Fig. 1b illustrates the BM4D output in which the noise has 
been strongly attenuated.

Segmentation.  For the segmentation of a 3D-SBEM image, we devised a hybrid technique, named BVG, that 
integrates seeded region growing and edge detection. To elaborate BVG, we denote a 3D-SBEM image after 
denoising with BM4D as z(x):X → [0, 1], where x ∈ X is a 3D spatial coordinate. Note that the intensity can range 
from 0 to 1. We defined ⊂Ê X as the set of edges of z, using a Canny edge detector66. We set the parameter values 
of the Canny edge detector as follows: the SD of the Gaussian filter was 2  and thresholds for weak and strong 
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edges were 0.25 and 0.6 times the maximum gradient magnitude. In SBEM volumes with resolution anisotropy 
and a coarser resolution in the z direction, regions in successive slices did not appear continuously, and areas close 
to the structure boundaries overlapped. Therefore, we dilated the set of edge coordinates Ê in-plane with a 3 × 3 
square structuring element. The dilated edges are denoted as E. The edge dilation was proportional to the resolu-
tion anisotropy. We then used BVG to segment z into n + 1 distinct volumes V1, V2, …, Vn, E ⊂ X, in which 
Vi ∩ Vj = ∅, Vi ∩ E = ∅, ∀i, j = 1, …, n, i ≠ j. BVG is a serial segmentation algorithm, meaning that segmentation 
of Vi starts only when Vi−1 is segmented. To segment Vi, BVG begins with one voxel called the seed, denoted as 
Sk ⊂ Vi, which iteratively grows—k is the iteration number—and finally results in the volume Vi. N(Sk) is in the 
neighborhood of Sk defined as N(Sk) = {r|r ∉ Sk, ∃s ∈ Sk:r ∈ N(s), r ∉ E, r ∉ V1,…,i−1}, where N(s) is the 
3D-neighborhood of voxel s. In each iteration, BVG appends a set of voxels A to Sk, where A = {x|x ∈ N(Sk), 
δ(x) ≤ δT} and δ(x) measures the similarity of voxel x to the set Sk. We defined the measure of similarity as 
δ = − ∑| | ∈x z x z s( ) ( ) ( )

S s S
1

k k
 and set the similarity threshold δT to 0.1. An iteration terminates, if A = ∅, or 

|Sk| ≥ ϑ, where ϑ is a volume constraint. If Vi grew larger than ϑ, the results were discarded and the voxels within 
Vi were freed for other regions to compete for them.

The segmentation was initiated by annotating the low-intensity structures, i.e., myelin and mitochondria, 
which were considered together as V1. BVG was initiated with a random low-intensity voxel S1 with z(S1) ≤ 0.4. 
This one seed was sufficient to segment V1 because myelin is a connected structure in a consecutive SBEM image. 
We defined N(s) using 26 neighbors, and set ϑ = ∞. Figure 1c shows a slice of canny edges together with the 
segmented myelin and mitochondria (V1). To segment other structures V2, …, Vn, we needed a more advanced 
seeding mechanism. Referring to Fig. 1c, we noticed that other structures are surrounded by myelin and edges. 
Therefore, we first generated a binary mask, B, of the union of the dilated edges E and the myelin-mitochondria 
segment V1 (Fig. 1c). Denoting each 2D-slice of B as Bi, we computed the Euclidean distance transform67 for every 
Bi individually, defined as DTi and shown in Fig. 1d. The pixel value in the distance transform DTi is the shortest 
distance from that pixel to a set of pixels Bi. We defined the location of the seeds by extracting the regional max-
ima of each DTi (Fig. 1d). To segment Vi, BVG was initiated with a seed from the set of extracted regional maxima 
not belonging to any previously segmented Vj, j = 1, …, i − 1. We defined N(s) using 6 neighbors and set ϑ = 106, 
which equals 12.5 μm3of tissue or 1.5 times the volume of the largest axons in the dataset. Figure 1e shows one 
slice of the primary segmentation of the white matter ultrastructure, not belonging to B. The seed extraction over-
estimates the number of segmented volumes. This does not pose a problem, however, as the serial nature of BVG 
does not permit repetitive segmentation of an already segmented volume.

Segmentation post processing.  The segmentation with BVG may result in small volumes, e.g., smaller than 
5 × 103 voxels, which actually belong to larger segments. As well, dilated Canny edges E should be assigned with 
a label as Fig. 1f shows. Therefore, we refined the segmentation by utilizing the SLIC supervoxel68 technique to 
relabel the small volumes and attach them to larger ones. Supervoxels group nearby voxels with similar intensity 
values into clusters. Particularly, SLIC clusters voxels based on a distance measure defined by = +

ρ
D d ds int

c
sp, 

where dint ensures intensity similarity and dsp enforces voxel proximity to the supervoxels. In SLIC, the initial 
supervoxel centers are defined at regular grid steps ρ, and their compactness is controlled by c. Also, the spacing 
parameter s allows accounting for resolution anisotropy in x, y, and z directions. We assigned the SLIC arguments 
to produce compact and large supervoxels, while accounting for the resolution anisotropy. Thus, we set c = 23, 
ρ = 11 and s = [1, 1, vx/vz], where vx and vz are the voxel size in x and z directions, respectively. Note that, voxel 
size in x and y directions was equal. Supplementary Fig. S7 shows the effect of altering ρ, c and s while generating 
supervoxels. We refined the large volumes Vi with more than 5 × 103 voxels by the SLIC supervoxels. In more 
detail, suppose that we have generated Q supervoxels SVq, q = 1, …, Q. Then, we re-defined Vi as ∪=′

∈
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. Refining the segmentation with SLIC technique elimi-

nated most of the small volumes by relabeling and attaching them to the larger segments. Note that as the edges 
were included in the supervoxels, the supervoxel-based refinement also labeled voxels belonging to the edges 
(Fig. 1f).

Annotating subcellular structures and cells.  The segmentation of myelin sometimes included mitochondria 
because the boundaries between these two structures were not clearly resolved. We wanted to label mitochondria 
separately, however, and include them as part of the myelinated axons. Not including mitochondria in the myeli-
nated axon domain produces cavities, as shown in Fig. 1e,f. The cavities can be used to label the mitochondria. To 
detect the cavities in the myelinated axons, on each large volume, | |>′V 10i

4, using a 3D distance transform, we 
propagated the surface of the volume for 1 μm. The surface of the enlarged volume was then propagated for 
−1 μm shrinking of the volume. Applying this procedure to each large volume altered the morphology of the 
volume, and closed those cavities smaller than 1 μm. The difference between the altered volume and V′ was con-
sidered a potential mitochondrion, Mi. We refined Mi with SLIC supervoxels with the same parameter values and 
techniques mentioned in the segmentation post-processing section. Note that because some of the cavities were 
due to myelin, annotating the mitochondria was finalized using human supervision to check for myelin. Figure 1g 
shows the final result of the mitochondria segmentation. The myelin segment was then re-defined as the set dif-
ference of V1 and all mitochondria, denoted as MY. In our SBEM-datasets, vacuoles appeared brighter than all of 
the other ultrastructures. Thus, if | | < ×′V 2 10i

4 and ∑ ≥ .
| | ∀ ∈′

′z s( ) 0 85
V s V
1

i i
, we labeled ′Vi  as a vacuole. We 

defined the remaining volumes, not mitochondria nor vacuole, as axons denoted as AXi, i = 1, …, m. To distin-
guish if an axon AXi was a myelinated or an unmyelinated axon, we studied a thick hollow cylinder enclosing the 
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axon. The enclosing cylinder was formed by those supervoxels having a common face with the axon AXi. If the 
enclosing cylinder contained myelin above a threshold, the axon has been considered as a myelinated axon. In 

more detail, let Λi be the indexes of supervoxels enclosing an axon AXi. If ≥ .
∪ ∩

∪

∈Λ

∈Λ

( )
( )

0 7
SV MY

SV

q i q

q i q

, we considered 

AXi to be a myelinated axon. Note that because unmyelinated axons can be surrounded by several myelinated 
axons, they can be miss-classified as myelinated axons, thus requiring a proof reading after the classification.

To label cells and cell-processes, we considered a straightforward approach as the volumes of cells were 
expected to be larger than the volumes of any other structure, excluding myelin. Recall that we set the volume 
threshold ϑ = 106 for the segmentation of V2, …, Vn, which leaves some voxels unlabeled. These unlabeled voxels 
X′ comprised cells and cell processes. We segmented X′ into n′ cells using connected component analysis. In 
general, we detected 1–4 cell bodies/process in each SBEM-volume. Figure 1h demonstrates the final segmen-
tation results of myelin, myelinated axons, unmyelinated axons, oligodendrocyte cell body and its processes. 
Mitochondria and vacuoles belonging to myelinated axons were colored the same as their corresponding mye-
linated axons. Figure 1i and Supplementary Fig. S4 show the 3D rendering of myelinated axons in contralateral 
corpus callosum of Sham-1 dataset.

ACSON morphometry pipeline.  We defined a cross-section as the intersection of a segmented myeli-
nated axon Ω and a perpendicular plane to the axonal skeleton γ69. To detect the myelinated axon skeleton γ 
with sub-voxel precision, we adapted a method from Van Uitert & Bitter70. First, we defined three points in the 
myelinated axon domain Ω: x* with the largest distance from the myelinated axon surface Γ, and xe1 and xe2 as 
the endpoints of the axons, i.e., the tips of the axon. The minimum-cost path connecting xe1 to xe2 through x* was 
the axon skeleton γ. The path was found in two steps, first from xe1 to x*, and then from xe2 to x*. Mathematically,

∫γ ς ς= H P dargmin ( ( )) ,
(1)P x

x

e

e

1

2

where ς traces the path P, and H is the cost function. To enforce the minimum-cost path to run at the middle of 
the object, the cost function H should be higher if the path moves away from the center. Points x*, xe1, and xe2 and 
solving equation (1) was defined by solving an eikonal equation on the axonal domain Ω. The eikonal equation is 
a non-linear partial differential equation defined as a special case of wave propagation in which the front Γ 
advances monotonically with speed F(x) > 0. The eikonal equation can be formulated as |∇T(x)|F(x) = 1, where 
T|Γ = 0. The solution, T(x), is the shortest time needed to travel from Γ to any point x ∈ Ω, with the speed F(x) > 0. 
Although the eikonal equation can be solved with the FMM71, we used 3D MSFM51. MSFM combines multiple 
stencils and second-order approximation of the directional derivatives over the FMM to improve the accuracy of 
solving the eikonal equation on Cartesian domains. To find x*, we computed the time-crossing map T1(x) from 
the myelinated axon interface Γ with constant speed F1(x) = 1, x ∈ Ω. The global maximum of T1, where 
T1(x) ≤ T1(x*), ∀x ∈ Ω was defined as x*. To find xe1, xe2, and γ, we calculated a new time-crossing map T2(x), 
starting at x* to every voxel in Ω, with a non-constant speed = ⁎( )F x( ) T x

T x2
( )
( )

2
1

1
 for x ∈ Ω. T1(x)|Γ = 0. Using 

H(x) = 1 − F2(x) to define the cost ensured that voxels in the middle of the myelinated axon were reached prior to 
the voxels close to Γ. We defined the furthest point from x* on the T2 map, i.e., the global maximum of T2, as xe1. 
Similarly, xe2 was defined as the furthest point from xe1, at the global maximum of the time-crossing map T3(x), 
starting from xe1 to every voxel in Ω, with speed F2(x). For both endpoints, we determined the minimum-cost 
path between xei and x*, γi, i = 1, 2, by backtracking, starting from xei and progressing along the negative gradient 
− ∇

|∇ |
T x
T x
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( )

2

2
 until x* was reached. x* is the global minimum of T2(x), so that we were guaranteed to find it with back-

tracking. The backtracking procedure can be described by the ordinary differential equation 
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2
, where ς traces γi. We used a 4th order Runge-Kutta scheme, with a 25 nm step size, 

to solve the ordinary differential equation with sub-voxel accuracy. The myelinated axon skeleton was formed as 
γ = γ1 ∪ γ2. Note that computing the skeleton in this way prevented the skeleton from cutting corners72. Figure 3a 
shows a 3D reconstruction of a myelinated axon, its mitochondria, and the extracted skeleton (axonal axis). Note 
that xe1 and xe2 defined as the global maxima of T2(x) and T3(x), lie on the myelinated axon surface Γ, and not in 
the center of the myelinated axon. The cost function H, however, forces the skeleton to immediately move away 
from the surface Γ toward the center. Therefore, we dropped the first 1 μm at both ends of γ in our later 
calculations.

To determine the cross-sectional planes perpendicular to γ, we formed a moving reference frame of the size 
8 μm × 8 μm with 50 nm resolution. At each skeleton point ς, the unit tangent vector to γ was used to define the 
orientation of the reference frame. The intersection of the reference frame with the myelinated axon defined the 
cross-section of the myelinated axon.

The intensity values of a cross-section ranged between 0 and 1. Each cross-section was thresholded at 0.5, 
resulting in a 2D binary image C denoted as C : X → {0, 1}, where the point x = (x1, x2) was foreground iff x ∈ C. We 
defined the center point of C as = ∑| | ∈c x

C x C
1 . By translating the binary 2D cross-section C to the center of 2D 

Cartesian coordinate Ct = {y ∈ X:y = x − c}, we found an ellipse that had the same normalized second central 
moment as Ct. The cross-sectional morphology of myelinated axons were quantified by computing the minor and 
major axes and the eccentricity of the fitted ellipse73, and the diameter of a circle with the same area as the 
cross-section, called equivalent diameter.

Evaluation of segmentation accuracy.  Manual segmentation.  The manual segmentation by A.S. 
defined each ultrastructure as its own region, i.e., different axons had distinct labels in the manual segmentation 
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as in the automatic one. It also annotated each segmented region as myelin, myelinated or unmyelinated axon. In 
the annotated images, mitochondria and vacuoles were included into intra-axonal space.

Precision and recall.  For a tissue-type level evaluation, we used the precision and recall as in the previous stud-
ies28,32. Let A and B be the sets of voxels of a particular tissue-type (myelin, myelinated axon, unmyelinated axon) 
in the manual and automated segmentations, respectively. We defined = ∩| |

| |
Precision A B

B
, and = ∩| |

| |
Recall A B

A
. 

The maximum for the precision and recall is equal to one when the automated segmentation perfectly matches 
the manual segmentation. These metrics do not describe topological differences between the manual and auto-
mated segmentations. For example, these metrics do not penalize the automatic segmentation for incorrectly 
dividing a single axon into two axons.

Weighted Jaccard index and weighted Dice coefficient.  To further evaluate the automated segmentation, we used 
Jaccard index and Dice coefficients in the region level. The Jaccard index74 and Dice coefficient75 is defined by 

= ∩
∪

| |
| |

J A B( , ) A B
A B

 and = ∩| |
| | + | |

Dice Coef A B( , ) A B
A B
2 , where A and B are the regions segmented manually and auto-

matically, respectively. The maximum for these metrics is equal to one occurring when A perfectly matches B. If 
no overlap occurs between A and B, these metrics are equal to zero. Let Ai, i = 1, …, a′, and Bj, j = 1, …, b′ be the 
regions in the manual and automated segmentation, respectively. To assign Ai and the best matching Bj, we 
formed a similarity matrix based on Dice coefficients for any possible pair of Ai and Bj, where the element (i, j) of 
the similarity matrix was Dice Coef(Ai, Bj). We used the Hungarian algorithm76,77 to match the regions. We defined 
the weighted mean of the Jaccard index and the weighted mean of the Dice coefficients as ∑ =

′ w J A B( , )i
a

i i b i1 ( ) , and 
∑ =

′ w Dice Coef A B( , )i
a

i i b i1 ( ) , respectively, where b(i) is the index of the region best matching Ai and the weight 
= | |

∑ =
′wi
A

A
i

i
a

i1

.

Comparison of 2D and 3D morphological analyses.  To simulate 2D morphometry, we assumed that 
the myelinated axon morphometry is quantified on a single image of the 3D image stack. For each myelinated 
axon, we determined the best orientation of the image stack for the 2D quantifications by extracting the Euler 
angles of a fitted ellipsoid to the segmented myelinated axon. We randomly selected a single image in that orien-
tation to present the myelinated axon. For example, if a myelinated axon was elongated parallel to the z-axis, we 
selected a random image parallel to the x − y plane. Each myelinated axon was quantified separately for its minor 
and major axes, equivalent diameter, and eccentricity. The relative difference between the 2D and 3D quantifica-
tions for each myelinated axon was defined as =

| − |
relative difference

q q

q qmax( , )
D D

D D

2 3

2 3
, where q is the quantity of interest, 

i.e., minor and major axes, equivalent diameter, and the eccentricity, measured by the 2D or 3D procedures. Note 
that, for the 3D morphometry, median of the measurements along the axonal axis were quantified Fig. 4a.

Statistical analysis.  Nested ANOVA.  Nested (hierarchical) ANOVA is a parametric hypothesis testing 
and an extension of 1-way ANOVA. A nested ANOVA is used when there is one measurement variable and 
more than one nominal variable, and the nominal variables are nested35. The nominal variables being nested 
means that each value of one nominal variable (the subgroups) is found in combination with only one value of 
the higher-level nominal variable (the groups). We considered lower-level variables (cross-section, axon, ani-
mal) as random effects variables and the top level (group, either sham or TBI) as a fixed effect variable. The null 
hypotheses were whether there existed significant variation in means among groups at each level. The analysis 
was performed using the anovan function of MATLAB R2017b, with type II sum of squares. Because, the design 
matrix of anovan grows quickly when the nesting levels increases, we measured the median of the cross-sectional 
quantities and assigned them to the lowest level of nested ANOVA. At the cross-sectional level, the distributions 
of equivalent diameter, minor and major axes and eccentricity were multimodal (Supplementary Fig. S5), thus 
median of cross-sections was preferred to mean. The analysis was performed separately for two hemispheres.

Variance components.  Nested ANOVA partitions the variability of the measurements into different levels. The 
variance components describe what percentage of the total variance is attributable to each level35.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on rea-
sonable request. The source code of ACSON is available at https://github.com/aAbdz/ACSON.
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