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Abstract

Estrogen receptor (ER)-a has long been a potential target in ER-a-positive breast cancer therapeutics. In this study, we
integrated ER-a-related bioinformatic data at different levels to systematically explore the mechanistic and therapeutic
implications of ER-a. Firstly, we identified ER-a-interacting proteins and target genes of ER-a-regulating microRNAs
(miRNAs), and analyzed their functional gene ontology (GO) annotations of those ER-a-associated proteins. In addition, we
predicted ten consensus miRNAs that could target ER-a, and screened candidate traditional Chinese medicine (TCM)
compounds that might hit diverse conformations of ER-a ligand binding domain (LBD). These findings may help to uncover
the mechanistic implications of ER-a in breast cancer at a systematic level, and provide clues of miRNAs- and small molecule
modulators- based strategies for future ER-a-positive breast cancer therapeutics.

Citation: Li X, Sun R, Chen W, Lu B, Li X, et al. (2014) A Systematic In Silico Mining of the Mechanistic Implications and Therapeutic Potentials of Estrogen
Receptor (ER)-a in Breast Cancer. PLoS ONE 9(3): e91894. doi:10.1371/journal.pone.0091894

Editor: Wei Xu, University of Wisconsin - Madison, United States of America

Received October 11, 2013; Accepted February 17, 2014; Published March 10, 2014

Copyright: � 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported in part by the National Natural Science Foundation of China (No. 81173093, No. 30970643, and No. J1103518), the Special
Program for Youth Science and the Technology Innovative Research Group of Sichuan Province, China (No. 2011JTD0026). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: baojinku@scu.edu.cn

. These authors contributed equally to this work.

Introduction

Breast cancer is the most common cancer in women in

industrialized countries [1]. Estrogen receptor (ER)-a activation

appears in approximately 70% of breast cancer and plays a critical

role in the pathogenesis of ER-a-positive breast cancer [2], making

it not only an important prognostic marker and clinical outcome

indicator, but also a potential therapeutic target in breast cancer.

Selective estrogen receptor modulators (SERMs) and selective

estrogen down-regulators (SERDs) have long been ideal choices

for breast cancer treatment [3]. SERMs can competitively bind

with ERs and then act as ER agonists or antagonists, while SERDs

can modulate the turnover of ER in cells and tissues. Although

several trials of SERMs have been launched over the past quarter

century [4], the clinical outcomes may not be that satisfying.

Hitherto, only tamoxifen (a first-generation SERM) and raloxifene

(a second-generation SERM) have been approved by the Food and

Drug Administration (FDA) for breast cancer treatment in the

United States [5]. Other SERMs, such as the third-generation

SERMs lasofoxifene, arzoxifene and bazedoxifene, are still in test.

Of note, these drugs are mainly developed for osteoporosis

treatment with breast cancer treatment as a secondary endpoint

[6], which makes it in urgent need to develop novel ER-a
modulators.

Intriguingly, microRNAs (miRNAs), small non-coding RNAs of

,24 nucleotides (nt) in length [7], have been recorded to exhibit

aberrant expression patterns and participate in the pathogenesis

and endocrine resistance of multiple ER-a-positive breast cancer

[8,9]. Actually, there exist putative binding sites for several

miRNAs in ER-a mRNA, some downstream miRNAs are

regulated by ER-a, while other upstream miRNAs can regulate

ER-a [10]. These miRNAs are not only potential diagnosis and

prognosis markers, but also promising therapeutic targets in breast

cancer [11]. Therefore, identifying target genes of ER-a-regulating

miRNAs will help to explore the role of ER-a-related miRNAs,

whereas predicting novel miRNAs targeting ER-a may promote

the development of miRNA-based therapies.

In the past decades, advances in biological data collection and

novel techniques have given rise to vast quantities of bioinformatic

data in breast cancer research. However, these cancer data from

different sources are always isolated and not exploited to their full

potential [12]. This is surprising given that cancer is the outcome

of global perturbations of cellular and molecular interactions

rather than the disturbances of individual components [13], and

the crosstalk of different cancer-associated modules in a biological

system is important for effective drug discovery [14]. In the present

study, we effectively integrated ER-a-related bioinformatic data

from different sources at different levels, and identified novel

miRNAs and traditional Chinese medicine (TCM) compounds

that might target ER-a. Our findings might help to gain insight

into the underlying mechanisms of ER-a at a systematic level, and

thus help to maximize the potential of ER-a for future ER-a-

targeted cancer therapies.
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Materials and Methods

Collection of human ER-a-interacting proteins
With ER-a as the bait protein, we collected experimentally

supported human ER-a-protein interaction pairs from five online

protein interaction databases, including the Human Protein

Reference Database (HPRD) (Release 9) [15], Database of

Interacting Proteins (DIP) (July 2004 release) [16], IntAct (Release

165) [17], HomoMINT [18] (September 2001 release) and

Biological General Repository for Interaction (BioGRID) (Version

3.2.99) [19] (detailed information of these five databases was given

in Table S1). After removing duplicate interactions, the union of

all interaction pairs was integrated into the human binary ER-a-

protein interaction (EPI) network. Cytoscape (Version 2.8.2) [20]

was used to visualize and present the EPI network.

Retrieval of validated and predicted target genes of ER-a-
regulating miRNAs

To explore the implications of miRNAs in ER-a signaling

pathway, we searched literature available in Google Scholar [21]

to obtain known miRNAs regulated by ER-a. Validated target

genes of ER-a-regulating miRNAs were retrieved from the union

of five experimentally verified miRNA-target interaction (MTI)

resources, including the miRTarBase (Version 4.5) [22], TarBase

(Version 6.0) [23], starBase (Version 1.0) [24], miRecords (Version

3) [25] and miRWalk (Last updated on March 29, 2011) [26]

(detailed information of these databases was given in Table S2).

Predicted target genes were acquired from the intersection of three

algorithmically different programs, namely, DIANA-microT-CDS

(Version 5.0) [27], miRanda (August 2010 release) [28] and

TargetScan (TargetScanHuman Version 6.2) [29] (detailed

information of the algorithmical difference and data filtering

criteria was given in Table S3).

Identification of indicated genes in MCF-7 cells via
microarray analysis

To modify the target genes of ER-a-regulating miRNAs into a

breast cancer-specific context, two transcriptional microarray

datasets of human MCF-7 breast cancer cells (No. E-MTAB-

1196 [30] and No. E-GEOD-10061 [31]) were downloaded from

ArrayExpress database at the EMBL-European Bioinformatics

Institute (EBI) (http://www.ebi.ac.uk/arrayexpress/experiments).

The preliminarily experimental data were firstly log2 transformed

and then normalized. Next, all data were organized into the ‘‘Two

Class (unpaired)’’ response format in Significance Analysis of

Microarrays (SAM) statistical method [32]. Subsequently, the fold

change parameter was fixed to 2.0 to ensure genes change at least

2.0 fold compared with control group, and delta value in SAM

plot controller was properly adjusted to limit the false discovery

rate (FDR) within 5%. Then, gene expression signals were

analyzed by T-statistic, and all identified significantly differential

genes were used for further analysis.

Analysis of functional GO annotations of indicated genes
Gene ontology (GO) annotations analysis was carried out to

explore the biological meanings of ER-a-associated proteins.

Using the GO project [33], we firstly searched GO functional

terms, including cellular component (CC), molecular function

(MF) and biological process (BP), against ER-a-interacting

proteins and target genes of ER-a-regulating miRNAs. Subse-

quently, functional annotation clustering was performed via

Database for Annotation, Visualization and Integrated Discovery

(DAVID) (v6.7) [34,35] to analyze the GO terms enrichment.

Next, two standards, P value,0.05 and fold enrichment $2.0

were adopted to refine the GO terms set in major clusters. Then,

Web Gene Ontology Annotation Plot (WEGO) [36] was used to

integrate and plot the GO annotation analysis results.

Prediction of miRNAs targeting ER-a
Since MTI prediction programs with different algorithms may

lead to quite varying results, consensus predictions from at least

two programs may help to predict reliable MTIs [37]. Herein, we

combinationally adopted three algorithmically different programs,

namely, DIANA-microT-CDS (Version 5.0) [27], miRanda

(August 2010 release) [28] and TargetScan (TargetScanHuman

Version 6.2) [29]. DIANA-microT-CDS is the only algorithm

available online which identifies miRNA recognition elements

(MREs) both in 39 untranslated region (39-UTR) and coding

sequences (CDS), and the probability of being a real prediction is

calculated as the miTG score [27]. We used a miTG score greater

than 0.7 (a strictly high precision threshold) as the selection

criterion. MiRanda uses miRanda algorithm to predict potential

miRNA and mirSVR algorithm to rank the downregulation

likelihood of miRNA with a mirSVR score [28]. Only predictions

with ‘‘good’’ mirSVR score of 20.1 or lower were collected as

reliable miRNAs. TargetScan predicts MTIs mainly based on the

conservation by searching for conserved 8 mer and 7 mer sites

that match the seed region of each miRNA [29]. MiRNAs with a

context+ score of 21.67 or higher, appropriate PCT value and at

least one conserved site were selected as reliable predictions.

Consensus predictions of these three programs were integrated as

ER-a-targeted miRNAs.

Validation of the MTI prediction model
To validate our MTI prediction model, we constructed a test

dataset containing known false MTIs and true MTIs targeting four

miRNAs hsa-miR-30a, hsa-miR-1, hsa-miR-155, and hsa-let-7b.

For the false MTI dataset, proteomic data of protein expression

changes while individually over-expressing those four miRNAs in

HeLa cells were downloaded from the pSILAC database [38]

(http://psilac.mdc-berlin.de), and only target genes having a

logarithmic fold change exceeding 0 were chosen. Thereby, we

obtained a false MTI dataset including 1475 MTIs for hsa-miR-

30a, 1683 MTIs for hsa-miR-1, 1536 MTIs for hsa-miR-155, and

1458 MTIs for hsa-let-7b. For the true MTI dataset, experimen-

tally supported human MTIs for the four miRNAs were

downloaded from miRTarBase (version 4.5) (http://mirtarbase.

mbc.nctu.edu.tw), and only functional MTIs with direct experi-

mental evidence such as reporter gene assay were selected. Thus,

we achieved a true MTI dataset containing 19 MTIs for hsa-miR-

30a, 40 MTIs for hsa-miR-1, 58 MTIs for hsa-miR-155, and 15

MTIs for hsa-let-7b.

With the same selection criteria as used in our MTIs prediction

(see previous descriptions), those four miRNAs were individually

subjected to DIANA-microT-CDS, miRanda and TargetScan to

predict potential MTIs, and the intersection results of those three

programs were taken as candidate MTIs, namely ‘‘positive’’

predictions. Accordingly, true MTIs appeared in the intersection

results were ‘‘true positive (TP)’’, the others were ‘‘false negative

(FN)’’; false MTIs did not appear in the intersection results were

‘‘true negative (TN)’’, the others were ‘‘false positive (FP)’’.

Then, to assess the predictive performance of our model,

accuracy (ACC), positive predictive value (PPV) and false-positive

rate (FPR) were measured by the quantity of TP, TN, FP and FN

as the formulas given below. According to the definitions and

formulas, ACC measures the proportions of candidates that are

correctly predicted, both true positives and true negatives, and it

Therapeutic Implications of ER-a in Breast Cancer

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91894

http://www.ebi.ac.uk/arrayexpress/experiments
http://psilac.mdc-berlin.de
http://mirtarbase.mbc.nctu.edu.tw
http://mirtarbase.mbc.nctu.edu.tw


can assess how correct our model in detecting true MTIs and

excluding false MTIs. PPV describes the percentages of positive

results from a model that are true positive results, and it can

estimate the probability a MTI will be true MTI when it appears

in our prediction results. FPR depicts the proportions of negative

candidates that are incorrectly predicted as ‘‘positive’’, and it can

evaluate the probability a false MTI will appear in our prediction

results.

ACC~
TPzTN

TPzTNzFPzFN
ð1Þ

PPV~
TP

TPzFP
ð2Þ

FPR~
FP

FPzTN
ð3Þ

To confirm the superiority of our model than other strategies,

we compared the predictive performance of individual program,

combination of two programs, and integration of three programs.

Virtual screening of TCM database for candidate ER-a
modulators

Data preparation. The X-ray crystal structure of ER-a LBD

in complex with 4-hydroxytamoxifen was downloaded from

Protein Data Bank (PDB) (http://www.pdb.org/) (PDB entry:

3ERT) [39]. The ready-to-dock 3D structures of 27418 TCM

compounds were downloaded from ZINC database (http://zinc.

docking.org/catalogs/tcmnp) [40], updated at 2013-02-21.

Test dataset used for optimization and validation of our

screening model was composed of 39 known ER-a binders

(actives) and 1448 ER-a non-binders (decoys) from the Directory

of Useful Decoys (DUD) Release 2 [41]. The 39 actives were taken

from literature, and each active has about 37 decoys which share

similar physical properties, such as molecular weight, cLogP, and

number of hydrogen bonding groups, but dissimilar topological

structure to its active counterpart.

Molecular docking procedure. UCSF DOCK6.3 program

[42] with AMBER force field parameters was used to perform

molecular docking screening. Proteins were prepared by UCSF

Chimera (Version 1.8) [43], where solvent molecules were

removed, hydrogens and standard charges were assigned to each

receptor atom. Grid scoring was firstly used to rank candidate

compounds with all the default parameters, and the best scoring

pose of each compound towards the receptor was then subjected to

amber scoring for re-ranking. PDB2PQR server [44] with

AMBER force field was used to automate the PDB file preparation

and protonation state assignments of ER-a, and the maximum

number of orientations was set to 500.

To evaluate the performance of our two-phases docking

procedure, test dataset was docked against the crystal structure

of ER-a LBD, and then the receiver operating characteristic

(ROC) curve and area under the ROC curve (AUC) were

calculated with pROC package [45] in R software environment.

The further away the ROC curve is above the diagonal and the

closer the AUC value approaching 1, the better the docking

performance. AUC was calculated as given below, where Nactives

and Ndecoys were the numbers of actives and decoys, and Ni
decoys_1

was the number of decoys ranked higher than the actives.

AUC~1{
1

Nactives

XNactives

i

Ni
decoys 1

Ndecoys

ð4Þ

Generation of ER-a LBD conformers
Considering that effective modulators should be able to hit

diverse statuses of the target protein, we performed molecular

dynamics (MD) simulations using GROMACS package (Version

4.5) [46] to generate a series of ER-a LBD conformers. Crystal

structure of ER-a-OHT complex was used as the starting structure

for MD simulations, and protein topology was processed by

pdb2gmx with GROMOS96 43a1 force field [47]. Then, the

system was equilibrated by two phase’s equilibrations with the

temperature and pressure maintained at 300 K and 1 bar for

100 ps, respectively. Finally, the 5000 ps MD simulations with a

time step of 2 fs were launched at constant temperature (300 K)

and pressure (1 bar). The resulted trajectory files were viewed and

analyzed with VMD software [48], and all structural analysis were

conducted using programs in GROMACS package.

To explore the conformational dynamics of ER-a LBD over the

MD simulations, we monitored the variation of Ca atom root

mean square deviation (RMSD), internal hydrogen bonds,

secondary structure elements, and the per-residue root mean

square fluctuation (RMSF). To accommodate as many conforma-

tional states of the protein as possible, snapshots of ER-a LBD

with an interval of 200 ps were extracted, and thus resulted in an

ensemble of 26 representative ER-a conformers.

Screening of TCM compounds against valid ER-a LBD
conformers

The pre-generated 26 ER-a LBD conformers were docked

against the test dataset, and ACC, PPV and FPR of each

conformer at different cut-offs were computed to evaluate their

screening performance. And, only conformers exhibiting better

performance than the crystal structure at specific cut-off were

considered to be valid for the screening of TCM compounds.

Then, those valid conformers were docked against 27418 TCM

compounds with the two-phases docking procedure, and com-

pounds ranking top 10% for all the valid conformers were

considered as candidate ER-a modulators.

Validation of the ER-a modulator screening model
The test dataset containing 39 known ER-a binders and 1448

non-binders was docked against each ER-a LBD conformer with

the same docking procedure and parameters as used in our

docking screening, and compounds that could hit all valid

conformers were taken as candidate ER-a modulators, namely

‘‘positive’’ predictions. According to the formula (1) (2) (3), ACC,

PPV and FPR of our screening model were calculated by the

quantity of TP, TN, FP and FN, which denote true ER-a binders,

true ER-a non-binders, false ER-a binders and false ER-a non-

binders, respectively. Herein, ACC measures how correct our

model in clarifying true ER-a binders and ER-a non-binders, PPV

evaluates the probability a compound will be ER-a binder when it

appears in our screening results, and FPR estimates the possibility

an ER-a non-binder will appear in our screening results. To

ensure the superiority of our screening model, we compared the

performance of other strategies by taking compounds that could

hit one or more valid ER-a LBD conformers as candidate ER-a
modulators.

Therapeutic Implications of ER-a in Breast Cancer
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Results

Retrieval and functional GO annotation analysis of ER-a-
interacting proteins

Using ER-a as the bait protein, 732 protein pairs from

BioGRID, 342 protein pairs from IntAct, 192 protein pairs from

HPRD, 37 protein pairs from HomoMINT and 10 protein pairs

from DIP were collected. All these interaction data are with

certain experimental evidence. After removing duplicate interac-

tions, we achieved a human binary EPI network containing 864

unique ER-a-protein interaction pairs (Figure 1A, Table S4). By

requiring P value,0.05 and enrichment fold $2.0, DAVID

clustered those 864 proteins into 116 functional clusters with 509

GO terms, including 80 CC terms, 71 MF terms and 358 BP

terms. As shown in Figure 1B, WEGO integrated those functional

clusters into 34 sub-categories with more than half of the proteins

belonging to the GO functional groups cell (481 proteins, 55.7%;

CC), cell part (481 proteins, 55.7%; CC), cellular process (568

proteins, 65.7%; BP) and metabolic process (434 proteins, 50.2%;

BP).

Functional GO annotation analysis of the target genes of
ER-a-regulating miRNAs

So far, 45 miRNAs (including 41 single miRNAs and 1 miRNA

cluster) have been reported to be regulated by ER-a (Table S5).

From the union of five platforms providing experimentally verified

MTIs, namely, miRTarBase, TarBase 6.0, starBase, miRecords

and miRWalk, we retrieved 7099 validated target genes of ER-a-

regulating miRNAs (Figure 2A, Table S6). Additionally, predicted

target genes of those 45 miRNAs were acquired from three

algorithmically different programs DIANA-microT-CDS, miRan-

da and TargetScan, and their intersection resulted in 4163 unique

predictions. Since these prediction programs rely highly on the

validated MTIs [49], known target genes constituted a proportion

of the prediction results overall. After deleting known MTIs, we

finally obtained 1709 predicted target genes of ER-a-regulating

miRNAs (Figure 3A, Table S7).

Subsequently, two transcriptional microarray datasets were

utilized to integrate these target genes into a breast cancer-specific

context. Based on the SAM analysis results, 1580 significantly

differential genes were identified from untreated and drug-treated

MCF-7 cells (No. E-MTAB-1196, Table S8), and 219 genes were

identified from untreated and ER-a knockdown MCF-7 cells (E-

GEOD-10061, Table S9). Then, previously obtained target genes

were examined to see if they appeared in the differential gene set

identified from the microarray data, and those not appeared were

excluded. Consequently, we confirmed 596 validated and 81

predicted target genes of ER-a-regulating miRNAs in the context

of MCF-7 cells (Figure 2B and Figure 3B, Table S10 and Table

S11).

Afterwards, functional GO annotation enrichment analysis was

performed against the target genes of ER-a-regulating miRNAs.

As shown in Figure 2C, 596 validated target genes were classified

into 33 sub-categories with more than 30% genes belonging to the

GO functional groups cell (265 proteins, 44.5%; CC), cell part

(265 proteins, 44.5%; CC), organelle (256 proteins, 43%; CC),

organelle part (202 proteins, 33.9%; CC), cellular process (340

proteins, 57%; BP) and metabolic process (218 proteins, 33.6%;

BP). And, 81 predicted target genes were sorted into 7 sub-

categories with more than 20% genes belonging to the GO

functional groups cell (19 proteins, 23.5%; CC) and cell part (19

proteins, 23.5%; CC) (Figure 3C).

Prediction of novel miRNAs targeting ER-a
To predict novel miRNAs targeting ER-a, we adopted three

algorithmically different programs, including DIANA-microT-

CDS, miRanda and TargetScan. These programs predict

miRNAs mainly based on sequence complementarity between

mature miRNA and target site, binding energy of miRNA-target

duplex, and evolutionary conservation of target site sequence and

target position in aligned UTRs [50]. Herein, with previously

described data selection criteria, we predicted 140 miRNAs from

DIANA-microT-CDS, 66 miRNAs from miRanda, and 118

miRNAs from TargetScan. Given high dependence of these

prediction programs on known MTIs [49], known miRNAs

constituted a proportion of the prediction results. After deleting

known miRNAs, intersection of these three programs resulted in

ten novel miRNAs, including hsa-miR-148b, hsa-miR-301b, hsa-

miR-302e, hsa-miR-520a-3p, hsa-miR-520b, hsa-miR-520c-3p,

hsa-miR-520d-3p, hsa-miR-520e, hsa-miR-874 and hsa-miR-

1297 (Figure 4). Evaluation details of these novel miRNAs in

each prediction program were given in Table S12. These miRNAs

might inhibit the expression levels of ER-a and thus negatively

regulating ER-a-mediated signaling pathways in breast cancer.

Validation of the MTI prediction model
To validate our MTI prediction model, we utilized the test

dataset containing known ‘‘false MTIs’’ and ‘‘true MTIs’’

targeting four miRNAs hsa-miR-30a, hsa-miR-1, hsa-miR-155,

and hsa-let-7b. With the same data selection criteria as used in our

MTI prediction, we predicted 285 MTIs for hsa-miR-30a, 192

MTIs for hsa-miR-1, 225 MTIs for hsa-miR-155, and 4 MTIs for

Figure 1. Retrieval and functional GO annotation analysis of human ER-a-interacting proteins. A. Human binary ER-a-protein interaction
network. B. Functional GO annotation analysis of ER-a-interacting proteins.
doi:10.1371/journal.pone.0091894.g001
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hsa-let-7b. Then, we counted the number of TP, FP, TN and FN,

and calculated the ACC, PPV and FPR of our prediction model

(Figure 5, Table S13). Compared with the predictive performance

of individual program, combination of two programs and

integration of three programs, our model of selecting the

intersection of three prediction programs displayed its superiority

by showing the highest ACC, PPV, and the lowest FPR for all the

four test datasets (Table S13). As for hsa-let-7b, although the

intersection of three programs led to no positive predictions

(TP+FP = 0), our model achieved the highest ACC (98.982%)

compared with other strategies (Table S13). For other three

datasets, our model exhibited the best performance with the ACC

higher than 97%, PPV higher than 20%, and FPR less than

0.542% (Figure 5). These findings indicated that our model might

be effective in detecting true MTIs and excluding false MTIs.

Virtual screening of TCM compounds for candidate ER-a
modulators

Given the inherent flexibility of protein structure, compounds

that can hit variable conformations of the target protein may be

able to modulate the interaction between protein and ligand at

different stages, and thus have higher opportunity to be developed

as potential modulators for clinical uses. Herein, we firstly

explored the conformational dynamics of ER-a LBD over the

5000 ps MD simulations. Conformational elements of ER-a LBD,

including the RMSD of Ca atoms, internal hydrogen bonds,

secondary structures, and per-residue RMSFs, exhibited an

irregularly time-dependent response during the whole simulation

process (Figure S1). To accommodate as many conformational

states of the protein as possible, we extracted conformation at 0 ps

(the crystal structure) and 25 simulation-generated snapshots with

an interval of 200 ps, and thus led to an ensemble of 26

representative ER-a LBD conformers.

To select conformers qualified for the screening of TCM

compounds, we checked the screening performance of those 26

ER-a LBD conformers. After docking the test dataset into each

conformer, we calculated their screening ACC, PPV and FPR at

different cut-offs. Herein, we set ten cut-offs from 10% to 100%,

which denotes that the top low-scored compounds at specific

percentage were considered as candidate ER-a modulators, and

then explored the optimal performance of each conformer at

specific cut-offs. As for the crystal structure (conformation at 0 ps),

a cut-off of 10% exhibited the best screening performance with

ACC of 89.4%, PPV of 5.512%, and FPR of 8.602% (Table S14).

As shown in Table S15, among other 25 conformers, three

exhibited higher ACC, PPV, and lower FPR than crystal structure

at the cut-off of 10%, namely, conformations at 3000 ps, 3200 ps

Figure 2. Identification and functional GO annotation analysis of the validated target genes of ER-a-regulating miRNAs. A. Global
validated ER-a-regulating miRNA-target gene network. B. Validated ER-a-associated MTIs in MCF-7 cells. C. Functional GO annotation analysis of the
validated target genes of ER-a-regulating miRNAs.
doi:10.1371/journal.pone.0091894.g002

Figure 3. Identification and functional GO annotation analysis of the predicted target genes of ER-a-regulating miRNAs. A. Novel
predicted ER-a-regulating miRNA-target gene network. B. Novel predicted ER-a-associated MTIs in MCF-7 cells. C. Functional GO annotation analysis
of novel predicted target genes of ER-a-regulating miRNAs.
doi:10.1371/journal.pone.0091894.g003

Therapeutic Implications of ER-a in Breast Cancer
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and 4800 ps. Compared with the crystal structure (0 ps), RMSFs

of key residues in the active sites of other three conformers

displayed variable fluctuations ranging from 0.5,2 Å (as labeled

in the Figure 6A). And, cartoon of the pair-wise comparison of

catalytic triad (residues Glu353, Arg394 and His524) that

documented to be essential for the hydrogen bond interaction

between E2 and ER-a was shown in Figure 6B. Together with the

crystal structure, those four conformers were selected for further

docking screening.

Then, 27418 TCM compounds were docked against each valid

ER-a LBD conformer to screen potential ER-a modulators. As a

result, we identified eighty compounds that could target all the

four valid conformers, and their detailed screening information

was given in Table S16. These compounds might have high

potentials to serve as candidate ER-a modulators for future

treatment of ER-a-positive breast cancer.

Validation of the ER-a modulator screening model
To validate our docking screening model, test dataset contain-

ing 39 known ER-a binders and 1448 non-binders from the DUD

(Release 2) was adopted. With the same procedure and parameters

as used in our docking screening, we firstly evaluated the two-

phases screening procedure by docking test dataset into the crystal

structure of ER-a LBD. As shown in Figure 7, AUC value of grid

scoring for total compounds was 0.5735, meaning a relatively

slight discrimination capability. Moreover, amber scoring for all

the grid-scored compounds led to an AUC value of 0.5843,

suggesting an improved screening performance. While taking the

top 10% amber-scored compounds as candidate ER-a modulators

produced the highest AUC value up to 0.8798, indicating that our

two-phases docking screening procedure of selecting top 10%

amber-scored candidates from grid-ranked compounds could yield

fairly acceptable screening performance.

Then, we compared the performance of other strategies by

taking compounds that could hit two, three, or four valid ER-a
LBD conformers as candidate ER-a modulators. Compared with

the screening performance of individual conformer (Table S15),

using two or three conformers produced an enhanced perfor-

mance with the ACC of 90.934% and 95.467%, PPV of 8.257%

and 6.667%, and FPR of 7.168% and 2.007%, respectively

(Figure 8A and B). However, using all the four valid conformers

substantially improved the screening performance with the ACC

of 97.280%, PPV of 50%, and FPR of 0.072% (Figure 8C). These

results suggested that our model was able to screen potential ER-a
modulators with the accuracy up to 97.280% and false-positive

rate low as 0.072%, and candidate compounds identified to hit all

the four valid conformers from our model had 50% chance to be

true ER-a modulators (Table S16).

Figure 4. Prediction of novel miRNAs targeting ER-a from three
algorithmically different programs.
doi:10.1371/journal.pone.0091894.g004

Figure 5. Validation of the MTI prediction model.
doi:10.1371/journal.pone.0091894.g005
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Discussion

One of the notable characteristics of cancer is the appearance of

protein sets that tend to physically interact with one another and

work in cooperation [51]. Attempts have long been launched to

identify potential interaction partners of known cancer-associated

genes [52,53]. And, various publicly available protein interaction

databases [54], such as BioGRID, IntAct, HPRD, HomoMINT

and DIP used in our study (Figure 1), have substantially facilitate

the exploration of physical or functional associations among

genetic components. Herein, we obtained 864 unique ER-a-

protein interaction pairs (Figure 1A) with experimental evidence

such as the yeast two-hybrid, mass spectrometry, peptide/protein

array, immunohistochemistry, western blot, coimmunoprecipita-

tion and fluorescence microscopy [15]. Further GO annotation

analysis revealed that these proteins mainly located at cell and cell

part, envelope, organelles and membrane-enclosed lumen, and

participated in cellular process, metabolic process and biological

regulation, etc (Figure 1B). Studies have confirmed the localization

of ER-a in nucleus or non-nuclear subcellular fractions, including

mitochondria and plasma membrane in MCF-7 cells [55,56], and

its discrepant ultrastructural distributions are closely associated

with the action mechanisms of estrogen. In the nucleus, ER-a can

function by binding directly to the estrogen response element

(ERE) of target genes, or by interacting with transcription factors

and recruiting of co-regulator proteins [57]. When redistributed to

mitochondria, it can bind to mitochondrial EREs (mtEREs) in

human mitochondrial DNA (mtDNA) [58], and thus regulating

mtDNA gene transcription and modulating biological process such

as mitochondrial respiration, glutathione distribution and apopto-

sis [59]. Moreover, plasma membrane-associated ER-a can act

through the estrogen non-genomic signaling pathways via crosstalk

with membrane receptors [60] and further stimulate downstream

effectors [61]. Collectively, different subcellular localizations of

ER-a and its associated proteins may exert diverse influence on

their molecular function and biological process, and thus modulate

corresponding physiologic and pathologic processes in breast

cancer.

Aberrant expression patterns of miRNAs have been document-

ed in different human breast cancer types [8], suggesting a

potential role in breast cancer initiation and progression. Multiple

techniques have been developed to identify miRNAs regulated by

estrogen or ER-a, including global genome binding assays [62],

miRNA microarrays [63] and luciferase reporter assays [64].

What’s more, several resources are accessible to obtain exper-

imentally verified target genes of indicated miRNAs, such as

miRTarBase, TarBase 6.0, starBase, miRecords and miRWalk

used in our work. And, some other programs are available to

predict specific MTIs, such as DIANA-microT-CDS, miRanda

and TargetScan adopted in our study. GO annotation analysis

(Figure 1B, Figure 2C and 3C) suggested that both ER-a-

interacting proteins and target genes (both validated and

predicted) of ER-a-regulating miRNAs localized with the follow-

Figure 6. Conformational comparison of the four valid ER-a LBD conformers. A. Root mean square fluctuation (RMSF) analysis of three MD
simulations-generated conformers with respect to the crystal structure of ER-a LBD. B. Pair-wise comparison of the catalytic triad (residues Glu353,
Arg394 and His524).
doi:10.1371/journal.pone.0091894.g006

Figure 7. Comparison of the performance of three docking
screening procedures.
doi:10.1371/journal.pone.0091894.g007

Therapeutic Implications of ER-a in Breast Cancer

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e91894



ing order of priority: cell, cell part, organelle, and then organelle

part. Moreover, ER-a-interacting proteins can perform a function

of binding, catalytic, and transcriptional regulation, while only the

target genes of ER-a-regulating miRNAs can function as

transporters. In addition, all these ER-a-associated proteins were

involved in the biological processes of cellular process and

localization, and validated ER-a-related proteins could also

participate in metabolic process, pigmentation, biological regula-

tion, and developmental process, etc. These findings suggested that

there existed certain identity and complementarity in cellular

location and function between these two sets of ER-a-associated

proteins.

Apart from being well known as critical regulators of cellular

processes, miRNAs are also recognized as potential therapeutic

targets in a wide range of diseases including cancer [7]. Given the

significant implications of ER-a-related miRNAs, it is essential to

predict novel miRNAs targeting ER-a for breast cancer

therapeutic use. Although MTIs prediction programs with

different algorithms may result in varying prediction results,

studies have shown that at least a certain class of conserved MTIs

can be confidently predicted [37]. In our case, we combinationally

utilized three algorithmically different programs, and predicted ten

novel miRNAs targeting ER-a (Figure 4, Table S12). With a test

dataset containing known ‘‘false MTI’’ and ‘‘true MTI’’, our

prediction model was validated to have fairly acceptable predictive

performance (Figure 5). Currently, several miRNA-based drugs,

including anti-miRNAs and miRNA mimics, have been in clinical

trials for the treatment of human diseases. For example,

miravirsen, a locked nucleic acid (LNA)-based miRNA-122

inhibitor, is in Phase II clinical trial for patients with chronic

hepatitis C virus (HCV) infection [65] (NCT01200420). MRX34,

a miRNA-34a mimic compound, is now in the patient recruitment

status for phase I study (NCT01829971), and is likely to be the first

miRNA replacement compound reaching clinical trials [7]. Given

the established therapeutic implications of miRNAs and the

encouraging progress of miRNA-based therapeutic strategies,

miRNAs predicted to target ER-a in our study might be potential

for future treatment of ER-a-positive breast cancer.

In addition to miRNAs-based approaches, small molecule ER-a
modulators may serve as an alternative therapy. Although existing

ER-a-targeted SERMs, such as tamoxifen, raloxifene, ICI 164,384

and ICI 182,780, have achieved evidenced therapeutic effects, the

situation that SERMs are now mainly developed for osteoporosis

treatment and have not yet been widely approved for breast

cancer treatment [5] prompts researchers and clinicians to explore

novel ER-a modulators. As a complement to conventional wet lab

high-throughput screening (HTS) methods, structure-based virtual

screening approaches, including receptor- and ligand-based

strategies, take advantage of the direct physical interaction

between target proteins and ligand to identify novel lead scaffolds

for further hit-to-lead optimization [66]. Recently, progresses have

been achieved in the identification of novel ER-a modulators via

structure-based virtual screening techniques. For example, eleven

compounds have been screened as non-steroidal ER modulators

from an in-house natural product database (NPD) containing over

4,000 natural products [67], and four novel ER-a antagonists have

been obtained from SPECS library containing 160,796 commer-

cial compounds via a structure-based tieredScreen protocol [68].

However, these existing in silico structure-based screening cases

have not yet given enough consideration to the inherent flexibility

of ER-a [69], which is an indispensable factor affecting the

binding between ligand and target protein. Nowadays, experi-

mental data for protein flexibility in vivo have been slow in coming

due to costs and limitations in experimental techniques, therefore,

MD simulations tend to be a good choice to model the

conformational dynamics of target protein. Actually, the strategy

of using an ensemble of protein conformations generated from

MD simulations for subsequent docking screening as adopted in

our study has been successfully confirmed in several reports. The

earliest example of such routine was reported in 1994, in which

Pang and colleagues obtained 69 conformations of acetylcholin-

esterase from the 40 ps MD simulations, and then identified

huperzine A as its potent inhibitor via docking studies [70]. Several

recent studies also confirmed the advantage of such screening

procedure. For example, when adopting two-phases docking

procedure to screen novel inhibitors of Avian influenza neur-

aminidase, researchers found that the ‘‘dynamic’’ model using

representative receptor ensembles extracted from the 40 ns MD

simulations could achieve better screening performance than the

‘‘static’’ model using single crystal structure of the protein [71].

Hitherto, such flexible screening strategy has not yet been applied

to the screening of ER-a modulators. In this study, we combined

MD simulations and molecular docking, where MD simulations

Figure 8. Validation of the ER-a modulator screening model.
Comparison of the screening model by taking candidate modulators as
those hitting two (A), three (B), or four (C) valid ER-a LBD conformers.
doi:10.1371/journal.pone.0091894.g008
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were applied to generate a series of ER-a LBD conformers and

molecular docking was utilized to evaluate the binding affinity

between ER-a and candidate compounds. Using a test dataset

containing known ER-a binders and non-binders, our screening

model was validated to have relatively high predictive accuracy,

positive predictive value, and low false-positive rate (Figure 8). The

candidate TCM compounds (Table S16) identified from our two-

phases screening endeavor may provide new cues in better

harnessing TCM resources for future ER-a-targeted breast cancer

therapeutics.

Conclusions
In the present study, to better exploit the therapeutic potential

of ER-a, we effectively integrated ER-a-related bioinformatic data

from different resources at different levels. As a result, we

identified human ER-a-interacting proteins and target genes of

ER-a-regulating miRNAs, and predicted novel miRNAs and

candidate TCM compounds that might serve as ER-a modulators.

These inspiring findings may not only help to systematically

illustrate the mechanistic implications of ER-a, but also provide

new clues for future miRNAs- and SERMs-based therapies in ER-

a-positive breast cancer.
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elements. D. The per-residue root mean square fluctuation

(RMSF) of Ca atom.
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