
BIOINFORMATICS APPLICATIONS NOTE Vol. 24 no. 24 2008, pages 2921–2922
doi:10.1093/bioinformatics/btn557

Genome analysis

BASH: a tool for managing BeadArray spatial artefacts
J. M. Cairns, M. J. Dunning, M. E. Ritchie, R. Russell and A. G. Lynch∗
Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way,
Cambridge, CB2 0RE, UK

Received on September 17, 2008; revised and accepted on October 23, 2008

Advance Access publication October 25, 2008

Associate Editor: Martin Bishop

ABSTRACT

Summary: With their many replicates and their random layouts,
Illumina BeadArrays provide greater scope for detecting spatial
artefacts than do other microarray technologies. They are also robust
to artefact exclusion, yet there is a lack of tools that can perform
these tasks for Illumina. We present BASH, a tool for this purpose.
BASH adopts the concepts of Harshlight, but implements them
in a manner that utilizes the unique characteristics of the Illumina
technology. Using bead-level data, spatial artefacts of various kinds
can thus be identified and excluded from further analyses.
Availability: The beadarray Bioconductor package (version 1.10
onwards), www.bioconductor.org
Contact: andy.lynch@cancer.org.uk
Supplementary information: Additional information and a vignette
are included in the beadarray package.

1 INTRODUCTION
The existence of spatial artefacts in microarray imaging, and steps
to identify, correct or remove them is an area of much research.
Some methods are applied directly to intensity measurements using
loess surfaces (Neuvial et al., 2006) or sliding windows (Song et al.,
2007), while others work with deviations from average intensities
calculated from replicate arrays (Reimers and Weinstein, 2005;
Stokes et al., 2007a; Suárez-Fariñas et al., 2005; Upton and Lloyd,
2005), mismatch probes (Li and Wong, 2001) or replicate probes
(Yuan and Irizarry, 2006). Opinions differ over whether to adjust
affected probes by a bias correction step, to replace affected probes
by imputed values or to simply exclude such probes.

Illumina microarrays consist of a random arrangement of beads,
where each bead type (i.e. beads carrying the same probe) occurs
on the array many times (typically approximately 30 times). The
benefit of bead-level data for the detection of spatial artefacts on
Illumina arrays has been known for some time (Dunning et al., 2006,
2007), however for Illumina microarrays there has been little work
performed in this area. Illumina do remove ‘outliers’, but there is no
spatial element to this step. Stokes et al. (2007b) have adapted their
earlier work to address Illumina BeadArrays, but do not provide a
tool for easy utilization.

Our preference is to adapt the Harshlight (Suárez-Fariñas et al.,
2005) concept to Illumina data, and to this end we present BASH
‘BeadArray Subversion of Harshlight’ which forms part of the
beadarray (Dunning et al., 2007) Bioconductor package.

∗To whom correspondence should be addressed.

2 METHODS
Harshlight, as applied to Affymetrix data, constructs an ‘Error Image’ for
each array using the median values from replicate arrays. Three types
of defect are then identified: ‘Compact’ defects where large numbers of
outlying values form a connected cluster, ‘Diffuse’ defects where regions
contain more outliers than would be anticipated by chance and ‘Extended’
defects that reflect a chip-wide instability (perhaps a severe gradient across
the microarray). With BASH we seek to perform a similar function for
Illumina BeadArrays, but taking both account and advantage of the unique
characteristics of Illumina BeadArray technologies.

Illumina arrays use a hexagonal (not rectangular) grid, with concave edges
and missing observations, and we must first identify this grid. BASH requires
knowledge of the direct neighbours of a bead, and the identities of other
‘nearby’ beads. To avoid computationally intensive calculations at each step,
the network of neighbours is fitted just once, and all later steps of BASH use
this network to define their neighbourhoods. A bead’s neighbours are defined
as the n closest beads (3≤n≤6) for the largest n where the distance of the
n-th farthest neighbour is less than

√
2.2 times the distance to the (n−1)-th

farthest. This network generation routine is useful for many purposes and
we provide direct access to it as a separate function.

Compact defects are identified much as in Harshlight: outliers are
identified, connected clusters of size greater than a specified minimum are
labelled as compact defects and then an expansion and contraction step fills
in any gaps. BASH differs from Harshlight in the compact defect step in
three important ways: (i) the outliers are calculated within an array from
the replicate beads, rather than from replicate arrays; (ii) the minimum size
is specified rather than being estimated from simulated data; and (iii) the
compact defect step is iterated rather than being performed once.

We do not estimate the minimum size from simulated data because
content and layout varies between BeadArrays. To simulate data for each
array would impose an unnecessary computational burden when, due to the
redundancy built in to the Illumina platform, we can be conservative with
our choice. BASH’s iterative compact step is desirable because outliers are
defined within an array using a threshold (by default Illumina’s three median
absolute deviations, MADs, from the median rule) rather than calling a fixed
percentage of the beads as outliers based on errors calculated between arrays.
Removing compact defects with BASH changes the rest of the ‘error’ values
on the array, since estimated medians and MADs will change. Also, since we
do not force a percentage of points on the array to be called as outliers, then
we can be confident that the iterative process will terminate in reasonable time
(although a maximum number of iterations can be specified). This approach
allows for the detection of less-obvious compact defects that would otherwise
have been overshadowed by more prominent defects.

The error images that we generate for use in BASH are all calculated
within an array. The default BASH error image returns, on the log2 scale, the
residual intensities after subtracting the median intensity for the appropriate
bead-type. However, other filters can be applied to the error image including
a local median subtraction, a local mean subtraction and a local MAD scaling.
The appropriateness of these filters varies between technologies. In particular

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


J.M.Cairns et al.

Fig. 1. Outlier detection in a HumanWG 6 microarray and the areas masked
for removal by BASH (the segmental structure of the strip is visible).

they have not proved useful for the arrays on a Sentrix Array Matrix, as these
are too small to observe large gradients. Such filters are, though, useful for
the larger BeadArrays, where low-frequency trends are observed, and in
particular for the diffuse defect step.

Diffuse defects are areas containing unexpected numbers of (not
necessarily connected) outliers. Compact defects should always be removed
before running this step, and not subject to a contiguity test as performed in
Harshlight, as BASH’s within array calculation allows prominent compact
defects to overshadow diffuse defects. The extended defect score is calculated
much as Harshlight’s, save for the use of our own definition of neighbourhood
and error, but with BASH it can be used as a guide for manual intervention
rather than automatically discarding the array. Large compact defects
may drive such scores, or a spatial normalization may help to rectify
the problem (perhaps manually removing the edges of the array where
spatial normalization would be less robust). Alternatively, if the trend is
approximately linear across the array, then we may simply observe increased
variance in our estimates but little or no bias. Such an array can be
down-weighted in an analysis (Dunning et al., 2008) rather than discarded.

BASH has been coded in R and C and is implemented in beadarray.
Typically it takes less than 5 min per strip, and runs in <2.5 GB of RAM.
A GUI for the manual drawing/editing of masks is also provided, for those
occasions where the results of BASH are deemed undesirable. The BASH
process returns, for each array, a list indicating beads that should be masked
in all future summary and analysis steps. Due to the generally high levels of
redundancy within the Illumina platform, we choose not to impute or correct
observations within artefacts, but discard them knowing that we should still
be able to estimate most of the properties that we desire. The representation
of data in beadarray now allows for such information and the functions in
beadarray will ignore beads that are so masked.

Figure 1 presents BASH’s results for one strip of an Illumina
HumanWG-6 V3.0 BeadArray. Illumina’s approach identifies 81 166 (of
1 042 243) beads as outliers, while BASH masks 272 440, picking up many
beads that Illumina missed in the affected regions. Of the many outliers
outside of the artefacts, some may still be excluded in our analysis, but
only if they are still outliers after artefact removal. All strips on this array
have technical replicates, and for this example BASH reduces the squared
differences between the twin strips, summed over bead types with a RefSeq
match, by 36%.

3 DISCUSSION
BASH can be applied in a number of ways: as part of an automated
preprocessing pipeline, to process arrays with apparent spatial
artefacts, or merely to identify suspect arrays. BASH may require

some initial tuning when dealing with a new technology or new
laboratory, but has many adjustable parameters for doing so. There
is scope for future improvement of BASH, such as incorporating
transformations other than log2, or explicitly incorporating prior
beliefs about the locations, sizes and shapes of defects. Additionally,
questions such as ‘what is the best way to identify defects on two-
colour Illumina platforms?’ remain to be answered, although BASH
allows for flexibility in this regard.

Spatial defects in Illumina arrays have not been widely reported
because the majority of Illumina data are examined only at the
summary level. Our example shows the value of doing more than just
accepting Illumina’s outliers and provides an additional incentive
to work at the bead level, which brings with it many additional
benefits. BASH requires at least a list of bead locations, identities
and intensities, and users may have to adjust their scanner settings
to obtain this information. BASH does not need to be perfect to be
useful. Removing some defects is better than not removing any, and
removing some ‘good’ beads should not be catastrophic due to the
redundancy on the platform.

ACKNOWLEDGEMENTS
We thank colleagues at the CRI for access to motivating data sets.

Funding: The University of Cambridge, Cancer Research UK;
Hutchison Whampoa Limited.

Conflict of Interest: none declared.

REFERENCES
Dunning,M. et al. (2006) Quality control and low-level statistical analysis of Illumina

BeadArrays. REVSTAT, 4, 1–30.
Dunning,M.J. et al. (2007) Beadarray: R classes and methods for Illumina bead-based

data. Bioinformatics, 23, 2183–2184.
Dunning,M.J. et al. (2008) Statistical issues in the analysis of Illumina data. BMC

Bioinformatics, 9, 85.
Li,C. and Wong,W.H. (2001) Model-based analysis of oligonucleotide arrays:

expression index computation and outlier detection. Proc. Natl Acad. Sci. USA,
98, 31–36.

Neuvial,P. et al. (2006) Spatial normalization of array-CGH data. BMC Bioinformatics,
7, 264.

Reimers,M. and Weinstein,J.N. (2005) Quality assessment of microarrays: visualization
of spatial artifacts and quantitation of regional biases. BMC Bioinformatics, 6, 166.

Song,J.S. et al. (2007) Microarray blob-defect removal improves array analysis.
Bioinformatics, 23, 966–971.

Stokes,T.H. et al. (2007a) chip artifact CORRECTion (caCORRECT): a bioinformatics
system for quality assurance of genomics and proteomics array data. Ann. Biomed.
Eng., 35, 1068–1080.

Stokes,T.H. et al. (2007b) Extending microarray quality control and analysis algorithms
to Illumina chip platform. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2007, 4637–4640.

Suárez-Fariñas,M. et al. (2005) ‘Harshlighting’ small blemishes on microarrays. BMC
Bioinformatics, 6, 65.

Upton,G.J.G. and Lloyd,J.C. (2005) Oligonucleotide arrays: information from
replication and spatial structure. Bioinformatics, 21, 4162–4168.

Yuan,D.S. and Irizarry,R.A. (2006) High-resolution spatial normalization for
microarrays containing embedded technical replicates. Bioinformatics, 22,
3054–3060.

2922


