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Abstract

Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and
clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins
were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-
platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or
300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-
response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a
clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and
54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in
response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a
longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient,
initiated after the first dose, and generally persistent over a period of 10–20 days before returning to control levels. The
data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase
in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to
both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of
nephrotoxicity.
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Introduction

The drug development industry, government regulatory

agencies, and healthcare professionals are all major stakeholders

in the development of biomarkers of drug-induced injury. The

advancement of organ-specific biomarkers of drug-induced injury

promises each stakeholder improved efficiency and effectiveness in

the drug development process that ultimately results in safe and

efficacious products coming to the market. The United States

Food and Drug Administration (U. S. FDA) has gone as far as

describing an official biomarker qualification process [1] to hasten

adoption of candidate biomarkers. Kidney injury biomarkers were

the logical test case for the biomarker qualification process.

Classical, functional biomarkers of kidney injury (blood urea

nitrogen, serum creatinine), while accessible (serum, plasma), are

not sensitive or specific to etiology or location of injury, leaving

considerable room for biomarker improvement. Individual

biomarkers have been evaluated and qualified by the U. S. FDA

based on validated immune-based assays and data packages put

together by industrial consortia [2]. Ongoing evaluation of these

biomarkers suggests that specific insults may illicit different

biomarker responses and that building biomarker profiles might

be the ultimate tool for identifying injury [3–5]. As a consequence,

there is a specific need for additional biomarkers that enable the

generation of such specific biomarker profiles. Ideally, the

biomarkers should be easily accessible in a non-invasive way,

and should be applicable in animal models, as well as in man.

‘‘Omic’’ technologies (genomics, metabolomics, proteomics,

etc.) hold the promise to fulfil this need and enable identification

of multiple biomarkers that reflect specific types of injury in the

kidney. Several proteomics approaches have been described in this

context [6–9]. CE-MS methodology was validated as an analytical

tool for the measurement of peptides in rat urine and subsequently

used to profile the urinary low-molecular proteome of the rat [10].

In an earlier publication [11], CE-MS was used as a biomarker

discovery tool for nephrotoxicity in rats treated with cis-platin. In

the study reported here we aimed to identify common and

disparate biomarkers of cis-platin- and gentamicin-induced

nephrotoxicity by applying CE-MS proteomics in rat urine. The

aim of the study was to detect multiple biomarkers that can be

efficiently analysed in a non-invasive approach. Such biomarkers

could form the basis for specific multi-marker models for
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displaying drug-induced kidney injury in pre-clinical and clinical

application and may have substantial translational value.

Results

Identification of the rat urinary peptides indicative of cis-
platin and gentamicin induced nephrotoxicity

Two parallel approaches were employed to identify potential

biomarkers for drug-induced nephrotoxicity. The study design is

graphically depicted in figure 1. In the first approach, CE-MS

data generated in a previous study [11] were used as an initial

reference to identify biomarkers for cis-platin-induced nephrotox-

icity (table S1 sheet 1). The comparison of the urinary peptides

and proteins from 14 controls and 25 treated animals resulted in

identification of 493 peptides that showed statistically significant

changes in distribution (P,0.05 after correction for multiple

testing).

In the second approach, rat urine samples from a gentamicin

study [12] were used as a second source for nephrotoxicity

biomarker discovery. Samples were analyzed using CE-MS and

the data were matched against a previously established rat urinary

proteome database [10,11]. The compiled proteomic profiles of all

samples in this study are shown according to dose and treatment

duration in figure S1. Urine samples collected at days 3, 7 or 10

(the first samples taken after treatment) from rats treated once

daily for three consecutive days with 150 mg/kg or 300 mg/kg

gentamicin (n = 23) or saline (from all time points n = 40) were

analyzed as cases and controls, respectively, to form the discovery

set (table S1 sheet 2). A total of 557 potential biomarker

candidates could be defined (P,0.05). Of this peptide pool, 88

peptides intersected with the 493 peptides profiled in the cis-platin

study (figure 1).

Next, proteomic data from untreated animals and animals

treated with 150 or 300 mg/kg gentamicin were evaluated and a

mean amplitude was calculated for each peptide at each time point

(1,2,3,7,10,15,18,22,29,36 and 44 days) for both doses. The

distributions of all peptides (493+557) were visually inspected on a

graph with amplitude on the y-axis and treatment-time on the x-

axis for controls (0 mg), 150 and 300 mg/kg gentamicin to

determine regulation over time. This analysis revealed that 39 of

the 493 biomarker candidates responsive to cis-platin also

displayed a clear response to gentamicin (figures S2). Of the

557 potential candidate peptides from the gentamicin study, an

additional 108 peptides showed a clear gentamicin response over

the whole observation period (see figures S2). Combining the

markers of both analyses provided a list of 147 marker candidates.

Some of these peptides showed opposite regulation in the two

studies. Only peptides with a change in the same direction were

selected as drug induced nephrotoxicity markers (table S2). The

mean signal intensities of the resultant 101 potential biomarkers

are shown in figure 2.

To obtain sequence information for the nephrotoxicity marker

candidates, tandem mass spectrometry was applied. We were able

to identify 54 of the 101 marker candidates. Table 1 gives

sequence information for the 54 biomarker candidates. The

majority of the identified biomarkers were fragments of collagen

alpha-1 (I), (III) and alpha-2 (I). Fragments of apolipoprotein A-IV,

fibrinogen beta, fetuin-A, actin, hemoglobin subunit beta, inter

alpha-trypsin inhibitor, osteopontin, pro-epidermal growth factor,

prothrombin, tropomyosin-1 alpha and contrapsin-like protease

inhibitors 3 and 6 were also identified.

Evaluation of the distribution of protein fragments of
previously defined biomarkers

The U.S. FDA and European Medicines Agency (EMEA) have

qualified beta-2-microglobulin, cystatin C, clusterin, kim-1, trefoil

factor-3, albumin, total protein, and rpa-1 as biomarkers of acute

drug-induced kidney injury in the rat [13]. Recently, researchers

there described the association of clusterin, kim-1, albumin, rpa-1,

osteopontin, lipocalin-2 (NGAL), alpha GST and mu GST to

gentamicin treatment [12,14]. Our rat urinary proteome database

which contains naturally occurring peptides (defined by exact

mass, migration time, and, if available, exact sequence), but

generally not whole proteins (as these are generally not observed in

urine), was searched for peptides derived from these biomarkers.

We could identify 5 fragments of clusterin, 16 fragments of

osteopontin and 11 fragments of albumin in the rat urine. To

examine if any of these fragments are altered after treatment with

gentamicin the distribution of these 32 peptides in samples of

untreated rats (n = 40) were compared to samples of rats treated

with 150 and 300 mg/kg gentamicin collected at days 3, 7 and 10

using correction for multiple testing. One clusterin, two albumin,

and five osteopontin fragments were significantly altered (P,0.05,

see table 2) and showed a direction of regulation identical to that

of the total protein.

Generation of high-dimensional biomarker models for
drug induced nephrotoxicity in the rat

As drug-induced nephrotoxicity represents a highly complex

injury, we aimed to capture this complex pathophysiology in a

multidimensional biomarker model. To this end, we selected two

different sets of biomarker candidates for modeling purposes. First,

we used all selected 101 candidate biomarkers for nephrotoxicity

as listed in table S2. Second, we used a biomarker set composed

of those 54 candidate biomarkers that were sequenced (table 1).

Linear- and support-vector-machine (SVM)-based models for

the 101 and 54 marker combinations were generated using the 39

samples from the cis-platin study as a training set. The

classification of the cis-platin (training) data using complete take-

one-out cross-validation resulted in an AUC of 1.00 with all SVM

models. Classification with the linear model based on 54 and 101

markers yielded AUC’s of 0.87 and 0.95, respectively. Subse-

quently, samples from the gentamicin study were classified with all

generated models. Classification factors for all samples from the

gentamicin study are listed in table S3 and are shown in figure 3
A for the linear models and figure 3 B for the SVM models. The

classification factors represent a composite index of signal

intensities of all biomarkers included in the model, calculated

using linear- or SVM-based algorithms. All models showed a

similar response to gentamicin treatment over time. With the

exception of the SVM model with 54 peptides, the models showed

higher scores immediately after the first drug dose for treated

animals in comparison to untreated controls. The highest scores

were observed between days 3 and 10, shortly thereafter the scores

returned to the level of controls. Classification with the biomarker

models correlated with the administered drug dose; such that

higher doses resulted in higher classification scores.

In an effort to estimate the value and validity of the urinary

peptide biomarkers, as well as the biomarker models developed

here, we examined their correlation with the pathophysiological

changes observed and with other kidney injury biomarkers. As

evident from the data presented in table 3, significant correlation

could be established for most variables.

Rat Proteomic Biomarkers of Drug Nephrotoxicity
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Discussion

Previously, urine obtained from Sprague Dawley rats before

and after administration of cis-platin was analyzed to identify

biomarkers of drug-induced nephrotoxicity. In a blinded sample

set, a set of 34 urinary peptides was validated that demonstrated

significant differences between treated and untreated animals [11].

In the present study, all data obtained previously (discovery and

validation set) were used as a discovery set to define additional cis-

platin-induced nephrotoxicity biomarker candidates. In addition, a

set of marker candidates was defined in the urine of gentamicin

treated rats. While an overlap of injury markers existed with the

two nephrotoxins, it was quite modest. Mitochondrial injury

leading to apoptotic and necrotic cell death is common to both

nephrotoxins, however, initiating events are thought to be very

different [15–17]. Furthermore, gentamicin is recognized to have

broader nephrotoxic effects impacting the collecting ducts and

glomeruli [15] while cis-platin injury is more localized to the

proximal and distal tubules especially that segment (S3) of the

proximal tubule located in the outer medulla and the cortico-

medullary junction [18]. Data from the present study further

support that substantial differences exist on a molecular level

between cis-platin- and gentamicin-induced injury and suggest

that the toxic mechanisms of these two nephrotoxins vary

considerably and/or target different structures within the nephron.

Figure 1. Study design and rationale for biomarker selection. Depicted is the size of the sample cohorts used in the biomarker definition step
and the number of selected peptides after statistical comparison of the respective treated and control groups. Numbers of peptides identified in both
cis-platin and genatmicin treated rats as markers are denominated in the intersection of the diagrams. The significant marker candidates were visually
inspected and only those candidates were selected that showed a clear response to gentamicin. In the next step the direction of regulation was
controlled for the markers identified in both studies and selected were only those demonstrating similar (up or down) regulation with both cis-platin
and gentamicin. In the last step the number of markers for which the amino acid sequence could be resolved is listed.
doi:10.1371/journal.pone.0034606.g001

Rat Proteomic Biomarkers of Drug Nephrotoxicity
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Individually, the candidate biomarkers showed a clear response

to the gentamicin treatment. Biomarker models representing a

composite index of all marker intensities based on both cis-platin

and gentamicin specific biomarkers were generated. These models

performed well in both the cis-platin and gentamicin treated

cohorts. Longitudinal data from the gentamicin cohort revealed a

dose-dependent response immediately after the first administration

of gentamicin. The highest intensity response was observed

between days 3 and 10. These results demonstrated that the

gentamicin-induced changes in urinary peptides are rapid but

return to control levels concurrent with injury resolution. No

significant differences between the control group and the

gentamicin-treated animals were observed 4 weeks after injury.

Consistent with these peptide data, all the urinary protein

biomarkers elevated in the original study and the associated

histopathology changes [12] demonstrated the same temporal

response. The correlation with the different variables was not

uniform (e.g. highest correlation with the different histopatholog-

ical datasets was not consistently observed with one specific

biomarker), but on average the highest correlation was detected

with the biomarker model based on the 101 biomarkers, again

supporting the concept that a multi-marker model is better suited

to display complex pathophysiological changes. Furthermore,

when examining the data in a hypothesis-driven approach and

limiting the dataspace to only previously described biomarkers

[12,19–24], we could detect fragments of peptides from three of

the eight specific acute kidney injury (AKI) -associated biomarkers

(albumin, osteopontin, and clusterin) from the original study.

Using the untargeted MS it was not possible to detect fragments of

all eight AKI-associated biomarkers that were previously

described. This may be because the protein biomarkers are not

represented by specific peptides (e.g. may not fragment in the same

areas consistently or may degrade to very small fragments) and

hence cannot be detected by an approach targeted at naturally

occurring peptides. In addition, we were not able to identify the

sequence of all potential peptide biomarkers in this study. This is

due to the specific challenges associated with sequencing of

naturally occurring peptides. These challenges are described in

detail elsewhere [25]. The most prominent hurdles are poor

fragmentation and/or post-translational modifications altering the

mass, and thereby interfering with sequence assignment. It should

also be noted that the sensitivity of untargeted MS is generally

below that of targeted immunological methods. Therefore, low

abundant prototypic peptides that may represent the biomarkers

may be present but below the limit of detection with the MS

technology applied in this study.

Altered regulation of human urinary peptides in AKI and

tubular injury was previously described [26,27]. All 54 identified

sequences in this study were compared with sequenced human

urinary biomarkers for AKI [26] and for Fanconi syndrome [27].

Regulation of collagen fragments in human AKI was opposite to

that seen in the rat models described here. Generally, urinary

collagen fragments were substantially reduced in human AKI

while a significant up-regulation was observed in the rat. In

addition to inherent species differences, disease etiology and

severity could account for some response differences. In the

Figure 2. Group specific polypeptide profiles for the 101 drug-induced nephrotoxicity markers in the gentamicin-treated rat
cohort. The compiled data sets of urine samples from gentamicin-treated rats at different doses and sampling days are shown. The data sets were
divided into four groups according to the days of sampling after initiation of treatment (samples collected at day 1+2; day 3+7+10; day 15+18+22 and
day 29+36+44 from left to right) and for the gentamicin dose (0, 150 and 300 mg/kg gentamicin from the top to bottom). Molecular mass of the
analyzed polypeptides (kDa) in logarithmic scale is plotted against CE migration time (min). The mean signal intensity is represented on the z-axis of
the 3D plot.
doi:10.1371/journal.pone.0034606.g002

Rat Proteomic Biomarkers of Drug Nephrotoxicity
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Table 1. Sequenced urinary biomarkers for drug induced kidney injury.

Mass [Da] CE-T [Min]
Regulation factor in
gentamicin study p-value (BH) AUC Sequence

UniProt name
(start AA- stop AA)

1197.58 36.97 12.5 2.9E204 0.793 DSYVGDEAQSK ACTS_RAT (53–63)

1685.83 41.55 4.7 2.1E202 0.688 AFSPVASVESASGEVLH FETUA_RAT (307–323)

1215.56 38.53 1234.6 1.3E203 0.688 TIDQNLEDLR APOA4_RAT (211–220)

2070.03 30.75 9.8 2.5E204 0.823 AEGSpGRDGApGAKGDRGETGP CO1A1_RAT (1009–1030)

1998.98 30.79 86.1 0.0E+00 0.998 EGSpGRDGApGAKGDRGETGP CO1A1_RAT (1010–1030)

1366.66 39.46 16.1 1.7E202 0.667 DRGETGPAGPpGApG CO1A1_RAT (1024–1038)

2047.06 36.4 9.3 6.9E204 0.798 GApGApGPVGPAGKNGDRGETGP CO1A1_RAT (1038–1060)

1990.04 35.94 5.0 2.4E205 0.872 ApGApGPVGPAGKNGDRGETGP CO1A1_RAT (1039–1060)

1805.94 34.27 13.9 0.0E+00 0.959 GApGPVGPAGKNGDRGETGP CO1A1_RAT (1041–1060)

2048.01 30.91 87.4 1.8E203 0.710 NGDDGEAGKPGRPGERGppGP CO1A1_RAT (218–238)

1876.95 31.11 109.9 6.4E204 0.793 DDGEAGKPGRPGERGPpGp CO1A1_RAT (220–238)

1646.89 27.78 10.2 1.5E202 0.724 GEAGKPGRpGERGPpGP CO1A1_RAT (222–238)

1662.89 27.84 7.3 3.8E203 0.764 GEAGKpGRpGERGPpGP CO1A1_RAT (222–238)

2040.99 36.17 100.9 0.0E+00 0.973 NSGEpGApGNKGDTGAKGEpGP CO1A1_RAT (421–442)

1737.87 41.58 5.8 3.3E202 0.700 TGSpGSpGPDGKTGPpGPAG CO1A1_RAT (530–549)

1235.62 38.24 9.2 2.0E203 0.776 pGPDGKTGPpGPAG CO1A1_RAT (536–549)

1691.86 35.21 5.1 1.0E205 0.898 DGKTGPpGPAGQDGRPGp CO1A1_RAT (539–556)

1737.9 33.68 75.2 6.9E204 0.720 GTAGEpGKAGERGVpGPpG CO1A1_RAT (576–594)

1508.78 32.47 146.3 5.9E205 0.785 GEpGKAGERGVpGPpG CO1A1_RAT (579–594)

1451.77 32.23 6.0 8.2E203 0.831 EpGKAGERGVpGPpG CO1A1_RAT (580–594)

1550.78 40.72 76.6 4.8E204 0.726 VGPAGKDGEAGAQGApGP CO1A1_RAT (596–613)

1405.72 39.05 3.4 1.8E204 0.827 GLpGPAGPpGEAGKpG CO1A1_RAT (633–648)

1860.95 42.67 4.9 3.7E204 0.777 TGPIGPpGPAGApGDKGETGP CO1A1_RAT (755–775)

1584.8 33.97 19.6 6.0E206 0.904 DGQPGAKGEpGDTGVKG CO1A1_RAT (809–825)

1469.76 32.4 6.0 3.4E203 0.766 GQPGAKGEpGDTGVKG CO1A1_RAT (810–825)

1182.6 39.65 4.0 4.0E205 0.873 DTGVKGDAGPpGP CO1A1_RAT (820–832)

1067.56 36.83 9.4 1.5E202 0.724 TGVKGDAGPpGP CO1A1_RAT (821–832)

1844.97 34.95 18.4 2.0E206 0.927 SGNAGPpGPpGPVGKEGGKGP CO1A1_RAT (878–898)

2058.09 30.81 108.6 2.4E204 0.758 SGNAGPpGPpGPVGKEGGKGPRG CO1A1_RAT (878–900)

1590.87 27.67 5.8 3.0E206 0.920 GPpGPVGKEGGKGPRGE CO1A1_RAT (885–901)

1900.95 42.53 7.0 4.5E202 0.655 ETGPAGRpGEVGPpGPpGPAG CO1A1_RAT (901–921)

1714.81 42.32 119.1 2.4E202 0.641 TGPAGRpGEVGPpGPpGPA CO1A1_RAT (902–920)

1771.91 41.88 13.0 2.9E203 0.756 TGPAGRpGEVGPpGPpGPAG CO1A1_RAT (902–921)

1388.72 39.15 2.2 1.5E205 0.866 RpGEVGPpGPpGPAG CO1A1_RAT (907–921)

1944.02 35.43 13.6 3.0E206 0.908 RpGEVGPpGPpGPAGEKGSPG CO1A1_RAT (907–927)

1308.64 39.09 4.7 1.0E202 0.707 GLpGPSGEPGKQGp CO1A1_RAT (963–976)

1314.6 48.73 36.7 4.1E202 0.624 GNpGPpGPpGPpGPG CO2A1_RAT (1135–1149)

1441.74 32.22 31.9 0.0E+00 0.946 SpGIpGPKGEDGKDG CO3A1_RAT (453–467)

1695.81 40.95 32.4 4.8E203 0.720 GMpGSpGGPGNDGKpGPpG CO3A1_RAT (536–554)

1351.66 39.57 6.1 6.0E206 0.904 ApGDKGDAGPpGPQG CO3A1_RAT (624–638)

1558.73 48.82 10.0 7.0E206 0.892 GLpGPpGNNGNpGPpGP CO3A1_RAT (878–894)

2071.06 36.16 4.9 4.0E202 0.678 VGEpGPAGSKGETGNKGEpGSAG CO1A2_RAT (351–373)

1620.84 40.7 55.9 2.5E204 0.757 GLpGSpGNVGPAGKEGPV CO1A2_RAT (457–474)

1677.84 41.02 46.6 3.3E202 0.749 GLpGSpGNVGPAGKEGPVG CO1A2_RAT (457–475)

1142.56 36.71 10.4 3.1E203 0.751 NIGFpGPKGPSG CO1A2_RAT (497–508)

1414.68 39.01 4.9 5.9E203 0.753 LYQAEAFIADFK SPA3L_RAT (156–167)

989.49 35.54 26.6 9.3E203 0.690 IDELYLPK SPA3N_RAT (306–313)

1690.86 41.54 13.0 2.2E202 0.691 EPPSLRPAPPPISGGGY FIBB_RAT (43–59)

1711.8 40.76 7.5 2.0E202 0.759 DSFGDLSSASAImGNPK HBB1_RAT (44–60)

1163.56 37.95 6.7 2.8E202 0.720 LGDGLVGSRQY O35802_RAT (651–661)

Rat Proteomic Biomarkers of Drug Nephrotoxicity
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gentamicin rodent study, experimental kidney injury due to a toxic

insult was very apparent upon histopathology examination and

was detectable with urinary protein biomarkers. However, the

classical serum biomarkers, blood urea nitrogen and serum

creatinine, were only minimally elevated and animals never

demonstrated morbidity or clinical signs of kidney injury. In the

human study, kidney injury was generally observed in conjunction

with morbidity and/or more severe alteration of classical

biomarkers.

Perhaps more significantly, the human study encompassed AKI

of largely pre-renal or glomerular etiology while the animal models

represented drug-induced, primarily kidney tubular injury. This

may explain the difference in regulation of urinary collagen

fragments. Reduction of glomerular function has been associated

with a reduction of specific collagen fragments in the urine

[28,29]. Tubular damage resulting in reduced tubular re-

absorption and consequently in an increases of the urinary protein

and peptides secretion has been investigated in proteomic

experiments [27]. A comparison of rat nephrotoxicity markers

and human markers for tubular injury (Fanconi syndrome) [27]

reveals similarities including the elevation of urinary collagen

fragments. Interestingly, two collagen fragments were observed to

have identical cleavage sites in the human and in the rat,

indicating upregulation of similar proteases. These data give rise to

the hypothesis that the observed alterations in specific urinary

peptides may be indicative of disease-associated changes in

extracellular remodeling, displayed in the urine by increase in

the specific urinary peptides reported here.

The majority of identified biomarkers present in this study were

fragments of the collagen chains alpha-1 (I), alpha-1 (III) and

alpha-2 (I). Several of the collagen fragments had a PGP-motif at

the C-terminus, suggesting these fragments may be generated by

matrix metalloproteinase (MMP) activity. Up-regulated MMPs,

especially MMP-2 and MMP-9, have been detected following

acute kidney injury, mostly in animal models of ischemia [30,31],

and up-regulation of MMP-9 was reported to protect from

apoptosis in AKI [32]. Deregulation of MMPs, up-regulation of

MMP-2 and down-regulation of MMP-9 have also been reported

in CKD [33]. In addition, MMP-9 deletion was reported to

mitigate vascular lesions (hence insult) after ischemia [34,35]. It

appears reasonable that increases in urinary collagen fragments

may evolve from increased MMP (and possibly other protease)

activity as a result of a toxic insult. Significant up-regulation of

peptides derived from the N-terminus of Fibrinogen-beta was also

recognized. Recently, a peptide of similar origin was ascribed

nephroprotective properties [36]. The nephroprotective capability

of the Fibrinogen-beta fragment described here needs to be

evaluated. For a fibrinogen alpha chain derived peptide identified

in this study as a rat nephrotoxicity marker, a peptide homologue

in humans exists which was previously described as prognostic for

AKI development [26]. This study also identified as a potential

biomarker candidate a fragment of apolipoprotein A-IV that has

been described as predictive for progression of chronic kidney

diseases [37].

In conclusion, we have identified a panel of urinary peptide

biomarkers that are significantly associated with drug-induced

Table 1. Cont.

Mass [Da] CE-T [Min]
Regulation factor in
gentamicin study p-value (BH) AUC Sequence

UniProt name
(start AA- stop AA)

1416.68 39.34 9.0 1.1E202 0.707 ISHELESSSSEVN OSTP_RAT (305–317)

1583.81 33.26 119.5 2.8E202 0.740 DGTDYKTLLSRQMG EGF_RAT (501–514)

2082.11 31.05 44.6 4.3E202 0.633 SLTDKTEKELLDSYIDGR THRB_RAT (342–359)

1486.72 39.89 13.2 2.6E202 0.684 EELDHALNDMTSI TPM1_RABIT (272–284)

Given are molecular mass (in Da), normalized migration time (in min) regulation factor (mean signal intensity of urine samples from 150 and 300 mg/kg gentamicin
treated rats collected at days 3, 7 and 10 divided by mean signal intensity of control samples), adjusted p-value (Benjamini and Hochberg), amino acid sequence
(modified amino acids: p = hydroxyproline; k = hydroxylysine; m = oxidized methionine) and short protein name of the UniProt database with the position of the firs and
last amino acid in parenthesis.
doi:10.1371/journal.pone.0034606.t001

Table 2. Significantly changed fragments of serum albumin, osteopontin and clusterin by gentamicin induced kidney injury in
rats.

Masse [Da] CE-time [Min] Sequence Protein name (start AA- stop AA) P-value (BH)

1180.63 31.49 DEDLTSRMKS Osteopontin (171–180) 0.0196

1314.68 39.17 SQESDEAIKVIP Osteopontin (180–191) 0.0002

1326.63 39.17 TVDETYVPKEF Serum abumin (516–526) 0.0154

1416.68 39.34 ISHELESSSSEVN Osteopontin (305–317) 0.0196

1465.73 31.50 EGALDDTRDSEMK Clusterin (81–93) 0.0196

1753.77 43.58 DEQYPDATDEDLTSR Osteopontin (163–177) 0.0195

2012.96 36.86 DEQYPDATDEDLTSRMK Osteopontin (163–179) 0.0154

2406.29 22.03 EAHKSEIAHRFKDLGEQHFK Serum abumin (25–44) 0.0283

Given are molecular mass (in Da), normalized migration time (in min), amino acid sequence (modified amino acids: p = hydroxyproline; k = hydroxylysine; m = oxidized
methionine), protein name with the position of the first and last amino acid in parenthesis and p-values (adjusted according to the method of Benjamini and Hochberg).
doi:10.1371/journal.pone.0034606.t002
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nephrotoxicity in two different rat models. The biomarkers

correlate with pathophysiology and likely reflect collagen degra-

dation and changes in extracellular matrix turnover associated

with increased MMP activity. These biomarkers, and especially

the high-dimensional biomarker models, appear to be valuable for

the monitoring of early nephrotoxicity in drug safety trials. To

further establish their value and validity, we will aim at analyzing

their performance in additional studies, and also investigate their

distribution in rat models for kidney disease like the ZDF model.

Methods

All animal procedures were performed in accordance with the

U. S. Public Health Service Guide for the Care and Use of

Laboratory Animals through an animal use protocol (WO-2006-

52) approved by the White Oak Animal Program Institutional

Animal Care and Use Committee in an AAALAC-accredited

facility on the White Oak Campus of the U. S. FDA, Silver Spring,

MD.

Specimen characteristics
Urine samples from rats in a previously described cis-platin

study [11] were analyzed. Rats were given a single i.p. injection of

cis-platin (3 or 6 mg/kg). Urine samples were collected at 0, 24, 48

and 72 hrs after dosing. Details on this sample cohort are given in

table S1 sheet 1. In addition, urine samples were obtained from

rats following gentamicin administration [12]. Saline treated

controls were included with animals receiving intramuscular

injection of 150 or 300 mg/kg gentamicin once a day for up to

3 consecutive days. Urine samples were collected 24 hours

following a single dose (day 1), two consecutive daily doses (day

2), or three consecutive daily doses (day 3). Subsequently, urine

samples were collected following a recovery time (no additional

treatments) at 7,10,15,18,22,29,36 or 44 days following the first of

the three consecutive daily gentamicin doses. For each dose group,

3–4 samples were analyzed at each time point. Three control

animals from which no samples were obtained were tested as

sentinels. One control and one treated animal were removed from

the study due to non-treatment related complications. Table S1
sheet 2 includes all samples, doses and collection days for the

gentamicin study.

CE-MS analysis
150 ml urine were mixed with 150 ml of 2 M urea, 100 mM

NaCl, 10 mM NH4OH containing 0.02% SDS. Samples were

ultrafiltered using a Centristat 20 kDa cut-off centrifugal filter

(Satorius, Göttingen, Germany) to eliminate high molecular

weight compounds. The filtrate was desalted using a NAP-5 gel

filtration column (GE Healthcare Bio Sciences, Uppsala, Sweden)

to remove urea and electrolytes. The sample was lyophilized in a

Christ Speed-Vac RVC 2-18/Alpha 1-2 (Christ, Germany) and

Figure 3. Time course of nephrotoxicity classification by the urinary models composed of gentamicin-sensitive polypeptide
markers. Mean classification factors obtained with the linear (left row) and SVM (right row) model variants of the marker panels AKI_rat_lin_101
(upper panel) and AKI_rat_lin_54seq (lower panel) for urine samples from untreated animals (green curve) and animals treated with 150 (blue curve)
and 300 mg/kg (red curve) gentamicin once daily for three consecutive days over time.
doi:10.1371/journal.pone.0034606.g003
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Table 3. Correlation of urinary peptide biomarkers, as well as the biomarker models with histopathology changes and other
investigated kidney injury biomarkers.

histopathology
score necrosis score apoptosis score

regeneration
score BUN

serum
creatinine albumin

UniProt name
(start AA- stop AA) rho p-value rho p-value rho p-value rho p-value rho p-value rho p-value rho p-value

CO1A1_RAT (1009–1030) 0.358 4.1E205 0.416 1.4E206 0.384 9.9E206 0.199 2.6E202 0.147 1.0E201 0.340 1.0E204 0.210 1.9E202

FETUA_RAT (307–323) 0.195 2.9E202 0.239 7.2E203 0.250 4.9E203 0.229 1.0E202 0.070 4.4E201 0.135 1.3E201 0.250 4.9E203

CO1A1_RAT (1039–1060) 0.398 4.4E206 0.430 5.5E207 0.377 1.5E205 0.220 1.4E202 20.009 9.2E201 0.346 7.8E205 0.395 5.3E206

CO3A1_RAT (624–638) 0.418 1.2E206 0.468 3.9E208 0.445 1.9E207 0.296 7.9E204 0.092 3.1E201 0.310 4.3E204 0.347 7.5E205

CO1A1_RAT (220–238) 0.306 5.2E204 0.309 4.6E204 0.284 1.4E203 0.192 3.2E202 0.081 3.7E201 0.362 3.3E205 0.374 1.8E205

CO1A1_RAT (539–556) 0.396 4.8E206 0.432 4.8E207 0.391 6.7E206 0.182 4.2E202 0.164 6.7E202 0.306 5.1E204 0.289 1.1E203

CO1A1_RAT (809–825) 0.424 8.4E207 0.461 6.3E208 0.431 5.2E207 0.301 6.4E204 0.114 2.1E201 0.307 4.9E204 0.269 2.4E203

EGF_RAT (501–514) 0.379 1.3E205 0.425 7.6E207 0.406 2.6E206 0.272 2.1E203 0.146 1.0E201 0.328 1.9E204 0.223 1.2E202

CO1A1_RAT (1024–1038) 0.249 5.1E203 0.254 4.2E203 0.240 6.9E203 0.247 5.5E203 0.081 3.7E201 0.284 1.3E203 0.203 2.3E202

HBB1_RAT (44–60) 0.188 3.6E202 0.208 2.0E202 0.161 7.3E202 0.078 3.9E201 0.126 1.6E201 0.171 5.6E202 0.174 5.2E202

ACTS_RAT (53–63) 0.391 6.3E206 0.415 1.5E206 0.350 6.3E205 0.278 1.7E203 20.040 6.6E201 0.153 8.9E202 0.207 2.1E202

CO1A1_RAT (820–832) 0.362 3.3E205 0.391 6.6E206 0.341 1.0E204 0.089 3.3E201 0.118 1.9E201 0.395 5.3E206 0.383 1.1E205

TPM1_RABIT (272–284) 0.293 9.0E204 0.239 7.3E203 0.290 1.0E203 0.205 2.2E202 0.193 3.1E202 0.063 4.9E201 0.176 5.0E202

CO1A1_RAT (1010–1030) 0.563 8.6E212 0.618 1.6E214 0.633 2.4E215 0.509 1.4E209 0.149 9.7E202 0.378 1.4E205 0.255 4.0E203

CO1A1_RAT (580–594) 0.416 1.4E206 0.446 1.8E207 0.463 5.3E208 0.271 2.2E203 0.143 1.1E201 0.198 2.7E202 0.208 2.0E202

FIBB_RAT (43–59) 0.282 1.5E203 0.335 1.3E204 0.263 3.1E203 0.149 9.6E202 0.331 1.7E204 0.241 6.8E203 0.183 4.2E202

CO1A1_RAT (901–921) 0.244 6.1E203 0.260 3.4E203 0.230 9.9E203 0.144 1.1E201 20.002 9.9E201 0.288 1.1E203 0.288 1.1E203

CO1A1_RAT (1038–1060) 0.316 3.4E204 0.319 2.8E204 0.313 3.8E204 0.151 9.2E202 0.052 5.6E201 0.283 1.4E203 0.176 5.0E202

CO1A1_RAT (1041–1060) 0.532 1.8E210 0.533 1.6E210 0.529 2.3E210 0.297 7.8E204 0.126 1.6E201 0.376 1.5E205 0.381 1.2E205

CO1A1_RAT (222–238) 0.250 4.9E203 0.270 2.3E203 0.285 1.3E203 0.109 2.3E201 0.102 2.6E201 0.341 1.0E204 0.280 1.6E203

CO1A1_RAT (222–238) 0.272 2.2E203 0.315 3.5E204 0.298 7.5E204 0.094 3.0E201 0.178 4.7E202 0.407 2.5E206 0.309 4.6E204

CO1A1_RAT (579–594) 0.399 4.1E206 0.419 1.2E206 0.408 2.3E206 0.232 9.3E203 0.382 1.1E205 0.214 1.6E202 0.246 5.7E203

CO1A1_RAT (633–648) 0.278 1.7E203 0.384 1.0E205 0.346 7.6E205 0.063 4.9E201 0.008 9.3E201 0.449 1.6E207 0.462 5.9E208

CO3A1_RAT (878–894) 0.357 4.4E205 0.488 8.0E209 0.479 1.6E208 0.355 4.9E205 0.261 3.2E203 0.246 5.7E203 0.148 9.9E202

CO1A1_RAT (963–976) 0.235 8.3E203 0.237 7.8E203 0.205 2.2E202 0.305 5.5E204 0.032 7.2E201 0.266 2.7E203 0.207 2.1E202

CO1A2_RAT (457–474) 0.317 3.2E204 0.318 3.0E204 0.330 1.7E204 0.365 2.9E205 0.079 3.8E201 0.202 2.4E202 0.236 7.9E203

CO1A2_RAT (457–475) 0.310 4.3E204 0.374 1.7E205 0.362 3.3E205 0.280 1.5E203 0.055 5.4E201 0.316 3.2E204 0.238 7.5E203

CO3A1_RAT (536–554) 0.265 2.9E203 0.224 1.2E202 0.313 3.9E204 0.218 1.5E202 20.060 5.0E201 0.163 6.9E202 0.204 2.3E202

CO2A1_RAT (1135–1149) 0.179 4.6E202 0.195 2.9E202 0.152 9.0E202 0.180 4.5E202 0.178 4.7E202 0.229 1.0E202 0.185 3.9E202

CO1A1_RAT (885–901) 0.390 6.9E206 0.455 9.5E208 0.423 9.2E207 0.146 1.0E201 0.202 2.4E202 0.439 3.0E207 0.374 1.7E205

CO1A1_RAT (810–825) 0.325 2.2E204 0.381 1.2E205 0.437 3.4E207 0.135 1.3E201 0.292 9.7E204 0.254 4.3E203 0.199 2.6E202

CO1A1_RAT (576–594) 0.370 2.1E205 0.389 7.3E206 0.336 1.3E204 0.198 2.7E202 0.235 8.4E203 0.316 3.2E204 0.305 5.4E204

SPA3N_RAT (306–313) 0.310 4.4E204 0.352 5.7E205 0.291 9.8E204 0.182 4.2E202 0.135 1.3E201 0.333 1.5E204 0.092 3.1E201

OSTP_RAT (305–317) 0.273 2.1E203 0.300 6.9E204 0.260 3.4E203 0.017 8.5E201 0.275 1.9E203 0.381 1.2E205 0.154 8.7E202

O35802_RAT (651–661) 0.141 1.2E201 0.135 1.3E201 0.105 2.4E201 0.105 2.4E201 20.016 8.6E201 0.197 2.8E202 0.087 3.3E201

SPA3L_RAT (156–167) 0.311 4.2E204 0.260 3.4E203 0.274 2.0E203 0.179 4.5E202 0.205 2.2E202 0.114 2.0E201 0.281 1.5E203

CO1A1_RAT (218–238) 0.335 1.4E204 0.373 1.8E205 0.339 1.1E204 0.363 3.1E205 0.169 5.9E202 0.269 2.4E203 0.295 8.6E204

CO1A2_RAT (497–508) 0.306 5.1E204 0.281 1.5E203 0.334 1.4E204 0.244 6.1E203 0.178 4.7E202 0.264 3.0E203 0.229 1.0E202

CO1A1_RAT (421–442) 0.565 6.8E212 0.573 3.0E212 0.501 2.6E209 0.326 2.1E204 0.184 4.0E202 0.450 1.4E207 0.302 6.2E204

CO1A1_RAT (536–549) 0.271 2.2E203 0.292 9.6E204 0.307 5.0E204 0.253 4.4E203 0.131 1.5E201 0.184 4.0E202 0.119 1.9E201

CO1A1_RAT (907–921) 0.423 8.9E207 0.415 1.5E206 0.353 5.4E205 0.249 5.1E203 0.179 4.6E202 0.223 1.2E202 0.283 1.4E203

CO1A1_RAT (907–927) 0.462 5.9E208 0.438 3.3E207 0.377 1.4E205 0.246 5.6E203 0.045 6.2E201 0.347 7.3E205 0.312 3.9E204

CO1A1_RAT (878–898) 0.408 2.3E206 0.432 4.9E207 0.404 2.9E206 0.253 4.4E203 0.182 4.2E202 0.372 1.9E205 0.259 3.5E203

CO1A1_RAT (878–900) 0.434 4.2E207 0.463 5.4E208 0.418 1.2E206 0.246 5.7E203 0.204 2.2E202 0.480 1.5E208 0.395 5.2E206

THRB_RAT (342–359) 0.205 2.2E202 0.258 3.6E203 0.220 1.4E202 0.097 2.8E201 0.212 1.8E202 0.301 6.4E204 0.178 4.7E202

CO3A1_RAT (453–467) 0.479 1.6E208 0.496 4.0E209 0.471 3.0E208 0.256 3.9E203 0.142 1.1E201 0.413 1.7E206 0.450 1.4E207

CO1A1_RAT (902–920) 0.242 6.5E203 0.291 1.0E203 0.231 9.4E203 0.147 1.0E201 0.147 1.0E201 0.146 1.0E201 0.284 1.3E203

Rat Proteomic Biomarkers of Drug Nephrotoxicity

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e34606



stored at 4uC until use. Shortly before CE-MS analysis, the

samples were re-suspended in 10 mL HPLC grade H2O.

CE-MS analysis was performed using a P/ACE MDQ capillary

electrophoresis system (Beckman Coulter, Fullerton, USA) on-line

coupled to a MicrOTOF MS (Bruker Daltonic, Bremen,

Germany). The ESI-sprayer (Agilent Technologies, Palo Alto,

CA, USA) was grounded, and the ion spray interface potential was

set 24.5 kV. Data acquisition and MS acquisition methods were

automatically controlled by the CE via contact-close-relays.

Spectra were accumulated every 3 s, over a range of m/z 350 to

3000. The analytical characteristics of the CE-MS system were

extensively investigated by Theodorescu et al. [38] and Kolch

et al. [39].

Data processing
Mass spectral ion peaks representing identical molecules at

different charge states were deconvoluted into single masses using

MosaiquesVisu software [40]. We defined ‘‘rat urinary house-

keeping polypeptides’’ and calibrated the CE-MS data utilizing

545 migration time data points, 108 mass data points by applying

local and global linear regression, respectively. References of 37

highly abundant peptides were used as ‘‘internal standard

peptides’’ for ion signal intensity (amplitude) calibration using

global linear regression. The procedure to use ‘‘internal standard’’

for amplitude normalization, was shown to be a reliable method to

address both analytical and dilution variances [41]. The resulting

peak list characterizes each polypeptide by its molecular mass

[Da], normalized migration time [min] and signal intensity. All

detected peptides were deposited, matched, and annotated in a

Microsoft SQL database, allowing further analysis and compar-

ison of multiple samples. Polypeptides within different samples

were considered identical if the mass deviation was lower than

650 ppm for masses ,4.000 Da, for masses between 4.000 and

6.000 Da gradually increasing to 6150 ppm, and 150 ppm for

features .6 kDa. Acceptable migration time deviation was

,61 minutes for 19 min, gradually increasing to ,62.5 min at

50 min.

Statistical analysis
The reported P-values were calculated using the natural

logarithm transformed intensities and the Wilcoxon test. Only

peptides that were found at frequencies .30% in either case or

control group were examined. The false discovery rate (FDR)

adjustments of Banjamini-Hochberg [42] were employed to

correct for multiple testing. Receiver operator characteristic

(ROC) curves have been constructed and the area under the

ROC curve (AUC) has been calculated using MedCalc version

8.1.1.0 (MedCalc Software, Belgium, www.medcalc.be).

Sequencing
Urine samples were analysed on a Dionex Ultimate 3000 RSLS

nano flow system (Dionex, Camberly UK). After loading (5 ml)

onto a Dionex 0.1620 mm 5 mm C18 nano trap column at a

flowrate of 5 ml/min in 0.1% formic acid and 2% acetonitrile,

sample was eluted onto an Acclaim PepMap C18 nano column

75 mm615 cm, 2 mm 100 Å at a flow rate of 0.3 ml/min. The trap

and nano flow column were maintained at 35uC. The samples

were eluted with a gradient of solvent A: 0.1% formic acid verses

solvent B: 80% acetonitrile starting at 5% B rising to 50% B over

100 min.

The eluant was ionized using a Proxeon nano spray ESI source

(Thermo Fisher Hemel UK) operating in positive ion mode into an

Orbitrap Velos FTMS. Ionization voltage was 2.5 kV and the

capillary temperature was 200uC. The mass spectrometer was

operated in MS/MS mode scanning from 380 to 2000 amu. The

top 10 multiply charged ions were selected from each scan for

MS/MS analysis using HCD at 35% collision energy. The

resolution of ions in MS1 was 60,000 and 7,500 for HCD MS2.

Data files were searched against the IPI rat non-redundant

database using the Open Mass Spectrometry Search Algorithm

(OMSSA, http://pubchem.ncbi.nlm.nih.gov/omssa) and SE-

QUEST (by using Thermo Proteome Discoverer), without any

enzyme specificity. No fixed modification and oxidation of

methionine and proline as variable modifications were selected.

Mass error window of 10 ppm and 0.05 Da were allowed for MS

Table 3. Cont.

histopathology
score necrosis score apoptosis score

regeneration
score BUN

serum
creatinine albumin

UniProt name
(start AA- stop AA) rho p-value rho p-value rho p-value rho p-value rho p-value rho p-value rho p-value

CO1A1_RAT (902–921) 0.294 8.9E204 0.288 1.1E203 0.283 1.4E203 0.193 3.1E202 0.125 1.7E201 0.304 5.6E204 0.392 6.0E206

CO1A1_RAT (755–775) 0.310 4.4E204 0.388 7.8E206 0.357 4.4E205 0.247 5.4E203 0.123 1.7E201 0.447 1.7E207 0.302 6.2E204

CO1A1_RAT (530–549) 0.140 1.2E201 0.201 2.5E202 0.169 5.9E202 20.019 8.3E201 20.050 5.8E201 0.327 2.0E204 0.299 6.9E204

CO1A1_RAT (821–832) 0.287 1.2E203 0.342 9.4E205 0.293 9.3E204 0.091 3.1E201 0.078 3.9E201 0.246 5.6E203 0.288 1.1E203

APOA4_RAT (211–220) 0.333 1.5E204 0.381 1.1E205 0.370 2.1E205 0.317 3.2E204 0.141 1.2E201 0.206 2.1E202 0.220 1.4E202

CO1A2_RAT (351–373) 0.281 1.5E203 0.341 9.8E205 0.327 2.0E204 0.127 1.6E201 0.350 6.3E205 0.159 7.6E202 0.135 1.3E201

CO1A1_RAT (596–613) 0.354 5.0E205 0.423 9.0E207 0.377 1.5E205 0.342 9.6E205 0.050 5.8E201 0.411 2.0E206 0.296 8.2E204

Model

AKI_rat_lin_101 0.531 1.8E210 0.577 1.8E212 0.567 5.6E212 0.229 1.0E202 0.320 2.7E204 0.489 7.2E209 0.409 2.1E206

AKI_rat_lin_54seq 0.488 7.8E209 0.528 2.6E210 0.532 1.8E210 0.250 4.9E203 0.241 6.8E203 0.398 4.2E206 0.379 1.3E205

AKI_rat_SVM_101 0.568 5.0E212 0.570 3.8E212 0.492 5.6E209 0.261 3.2E203 0.406 2.7E206 0.360 3.7E205 0.385 9.0E206

AKI_rat_SVM_54seq 0.314 3.6E204 0.373 1.9E205 0.366 2.7E205 0.241 6.8E203 0.254 4.2E203 0.135 1.3E201 0.111 2.2E201

Given are short protein name of the UniProt database with the position of the firs and last amino acid in parenthesis, for the sequenced biomarkers and names of the
biomarker models, rank correlation coefficients (and p-values) between histopathology, necrosis, apoptosis, regeneration scores, classical clinical chemistry endpoints
(BUN, serum creatinine, albumin) and the detection level of the sequenced candidate biomarkers and the biomarker models\ classification scores.
doi:10.1371/journal.pone.0034606.t003
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and MS/MS, respectively. Peptide data were extracted using high

peptide confidence and top one peptide rank filters. The OMSSA

results were further optimized using COMPASS [43], 1% FDR

was used as a cut-off value. The correlation between peptide

charge at the working pH of 2 and CE-migration time was utilized

to minimize false-positive identification rates [44]: Calculated CE-

migration time based on the number of basic amino acids was

compared to the experimental migration time. Accepted were only

those peptides which were found with both search algorithms

(OMSSA and SEQUEST) and having a mass deviation below

650 ppm and a CE-migration time deviation below 62 min.

Establishment of biomarker-based classifiers
For generation of disease-specific polypeptide patterns two

different algorithms were used: Support vector machine (SVM)-

based MosaCluster software [45] and a linear combination of log-

transformed, normalized data, as described [46,47]. MosaCluster

(version 1.7.0) was developed for discrimination between different

patient groups in the high-dimensional parameter space by using

SVM learning. It generates high dimensional models, which rely

on features (biomarkers) displaying statistically significant differ-

ences between data from patients with a specific disease to controls

or other diseases. Each feature allegorizes one dimension in the n-

dimensional parameter space [48–51].

For linear combination, normalized signal intensity values

below 1 were substituted with a value of 1 to avoid negative values

by log-transformation. The average signal intensity for a specific

biomarker over all cases was compared to the average intensity for

the biomarker over all controls. To avoid artificial weighting of

specific biomarkers in the set due to the difference in observed

signal intensities for case and control, the relative distance between

the two averages (case and control) was set to a value of 2. This

relative distance of signal intensities between the disease and

control samples was provided using the formula:

Ai
k{meanaverages

� � 2

�xxcase{�xxcontrolj j ,

Ai
k is the log-transformed signal intensity of the ith biomarker in

the kth sample in either set, meanaverages is the average of the mean

intensity of all possible markers for test set samples, �XXcase

represents the mean observed signal intensity of the possible

biomarker from all �XXcontrol cases samples and represents the mean

signal intensity of the possible biomarker from the combined

control samples.

Supporting Information

Figure S1 Capillary electrophoresis coupled to mass
spectrometry profiling of rat urine. The compiled data sets

of urine samples from gentamicin-treated rats at different doses

and sampling days are shown. Molecular mass of the analyzed

polypeptides (kDa) in logarithmic scale is plotted against CE

migration time (min). The mean signal intensity is represented in

arbitrary units on the z-axis of the 3D plot.

(PDF)

Figure S2 Time course of mean signal intensities of all
defined (n = 147) nephrotoxicity peptide maker candi-
dates. Mean signal intensities of the respective peptide in urine

samples from untreated animals and animals treated once daily for

three consecutive days with 150 and 300 mg/kg gentamicin over

time are shown. The first 39 diagrams depict the selected cis-platin

markers and the subsequent figures the additional 108 gentamicin

markers.

(PDF)

Table S1 Characteristics of sample cohorts. (A) cis-
Platin cohort. The animal ID, evaluation ID, the cis-platin

dosage, time of treatment (* urine sample collected before

treatment) and the group (usage as), are given. (B) gentamicin
cohort. The animal ID, evaluation ID, the gentamicin dosage,

time of treatment and group usage, are given.

(XLS)

Table S2 Characteristics of the 101 cis-platin- and/or
gentamicin-specific polypeptides. Shown are the peptide

identification number in the dataset (Peptid ID), molecular mass

(in Da) and normalized migration time (in min). Given are the p-

values (adjusted according to Benjamini-Hochberg), AUC-values

and the regulation factor for the case group compared to the

control group for gentamicin and for cis-platin. In addition, amino

acid sequence (modified amino acids: p = hydroxyproline; k = hy-

droxylysine; m = oxidized methionine), parent protein name with

the position of the first (start) and last (stop) amino acid, and Swiss-

Prot entry numbers are given.

(XLS)

Table S3 Classification scores of gentamicin-treated
rats as determined by different biomarker models.
(XLS)
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