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The paucity of microbiome studies at intestinal tissues has contributed to a yet

limited understanding of potential viral and bacterial cofactors of colorectal

cancer (CRC) carcinogenesis or progression. We analysed whole-genome

sequences of CRC primary tumours, their corresponding metastases and

matched normal tissue for sequences of viral, phage and bacterial species. Bac-

teriome analysis showed Fusobacterium nucleatum, Streptococcus sanguinis,

F. Hwasookii, Anaerococcus mediterraneensis and further species enriched in

primary CRCs. The primary CRC of one patient was enriched for F. alocis,

S. anginosus, Parvimonas micra and Gemella sp. 948. Enrichment of

Escherichia coli strains IAI1, SE11, K-12 and M8 was observed in metastases

together with coliphages enterobacteria phage φ80 and Escherichia phage

VT2φ_272. Virome analysis showed that phages were the most preponderant

viral species (46%), the main families being Myoviridae, Siphoviridae and

Podoviridae. Primary CRCs were enriched for bacteriophages, showing five

phages (Enterobacteria, Bacillus, Proteus, Streptococcus phages) together with

their pathogenic hosts in contrast to normal tissues. The most frequently

detected, and Blast-confirmed, viruses included human endogenous retrovirus

K113, human herpesviruses 7 and 6B, Megavirus chilensis, cytomegalovirus

(CMV) and Epstein–Barr virus (EBV), with one patient showing EBV enrich-

ment in primary tumour and metastases. EBV was PCR-validated in 80 pairs

of CRC primary tumour and their corresponding normal tissues; in 21 of these

pairs (26.3%), it was detectable in primary tumours only. The number of viral

species was increased and bacterial species decreased in CRCs compared with

normal tissues, and we could discriminate primary CRCs from metastases and

normal tissues by applying the Hutcheson t-test on the Shannon indices based

on viral and bacterial species. Taken together, our results descriptively support

hypotheses on microorganisms as potential (co)risk factors of CRC and extend

putative suggestions on critical microbiome species in CRC metastasis.
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1. Introduction

Colorectal cancer (CRC) is the third most prevalent

form of cancer worldwide, with a global incidence of

over 1.4 million cases annually [1]. In Europe, it repre-

sents the second most frequent cause of death among

people who have cancer and its incidence is increasing

among young adults, who are not included yet in

screening campaigns [2,3]. About 3–5% of CRC cases

show hereditary transmission [4–6], implying that the

vast majority of patients develop this disease by accu-

mulating molecular changes and further CRC-

promoting factors during their lifetime. Every person

has a four per cent lifetime risk of developing sporadic

CRC [7] but several studies have indicated the possibil-

ity of a microbial cofactor to increase such a risk [8–
10]. In particular, it has been proposed that some bacte-

rial species (microbial ‘drivers’), which carry genes

encoding proteins that can induce chromosomal insta-

bility, might be able to initiate the oncogenic cascade in

the intestinal cells [11–13]. Subsequently, other oppor-

tunistic bacteria (‘passengers’) could become more

prevalent in this pretumour microenvironment, boosting

inflammation and fostering oncogenesis or even pro-

gression. So far existing studies differ in drivers and

passenger definitions, but the species Fusobacterium nu-

cleatum, Bacteroides fragilis, Streptococcus bovis and

Enterococcus faecalis are the most frequently cited [14].

Moreover, viruses could play a yet underestimated

role in the carcinogenic process. In the past decades,

several studies have pointed out an increased preva-

lence of viral infections in patients suffering from

CRC or associated inflammatory conditions, such as

inflammatory bowel disease (IBD), which include

Crohn’s disease (CD) and ulcerative colitis (UC) [15].

IBD is a risk factor for CRC whose prevalence is cur-

rently increasing worldwide also [16,17]. Among the

viruses most frequently investigated for their possible

association with CRC and IBD are Epstein–Barr virus
(EBV, also known as human herpesvirus type 4,

HHV-4), cytomegalovirus (also known as human her-

pesvirus type 5, HHV-5), human papillomavirus

(HPV) and several members of the Polyomaviridae

family [18–21]. Nevertheless, a causative involvement

of viruses in CRC oncogenesis or progression is still

unclear [21].

Recent microbiome work has expanded beyond

human-infecting viruses and has highlighted, for exam-

ple, the importance of bacteria-infecting viruses

(phages) in CRC and IBD. For instance, an increased

prevalence of phage species belonging to the order of

Caudovirales (which includes the families Siphoviridae,

Myoviridae and Podoviridae) has been observed in

patients affected by these diseases [22–25]. Phages can

indirectly contribute to CRC development by modulat-

ing the prevalence of driver and passenger bacteria

[26–32]. Diet is also crucial in this context because it

can alter the bacterial composition and, consequently,

that of the phages [33]. This association can, at least

in part, explain the epidemiological link observed

between a western type of nutrition, which is usually

poor in fibres but rich in fats and red meat, and a

higher risk of CRC [10]. Furthermore, most micro-

biome studies have been based upon faecal samples,

which can be considered a proxy to the actual micro-

bial community present within the intestinal tissue.

Since mucus covers the intestine walls, acting as a bar-

rier to the microorganisms [34,35], faecal and tissue

specimens do not necessarily bear the same microbial

species [36]. The few microbiome studies based on

tumour tissues have shown a higher prevalence of

phages in inflammatory lesions than in normal

matched sections [37,38].

The paucity of microbiome studies based on intes-

tine tissues has contributed to the poor understanding

of the conditions that foster CRC. Specifically, there is

certainly a lack of research based on metastases.

About one-quarter of CRC cases progress towards

metastasis [39,40]; thus, understanding whether

microorganisms modulate this progression could help

to determine cofactors and consequently improve the

diagnosis and treatment of metastases.

In this study, we (re-)analysed whole-genome

sequences (WGS), which we generally described in pre-

vious work [41], to assess whether we could detect the

enrichment of particular microbial sequences in pri-

mary colorectal carcinomas in comparison to matched

control tissues, and whether metastases show addi-

tional microbial sequences that could potentially set

them aside from colorectal primary tumours. This

metagenomic analysis might help not only to further

understand, or suggest, putative microbial cofactors in

the oncogenic and metastatic process, but support in

the diagnosis or even risk prediction for CRC carcino-

genesis or metastasis.

2. Materials and methods

2.1. Tissues

All of the samples were completely anonymized and

handled exclusively in strictly anonymized conditions.

Tissues had been generally obtained from the biobank

of the Medical Faculty Mannheim (Dept. of Surgery),

University of Heidelberg, Germany, and the biobanking
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and tissue sampling approved by the Ethical Committee

of this institution. The primary colorectal tumours,

matched healthy colorectal tissues, and corresponding

metastases re-analysed here were described previously

[41], the analysis having been undertaken with the

understanding and written consent of each subject (or

relatives if deceased), and the Declaration of Helsinki

was followed. Samples were processed and anonymized

data stored within the EGA database (accession num-

ber EGAS00001002717) as already described [41].

Genomic DNA had been isolated from frozen tissue

sections with the QIAamp DNA mini kit (Qiagen, Hil-

den, Germany), according to the manufacturer’s

instructions. The extracted DNA had been quality con-

trolled and sequenced as described previously [41] at the

Genomics and Proteomics Core Facility of the German

Cancer Research Center (DKFZ), Heidelberg, Ger-

many, on the Illumina HiSeq2000 platform.

2.2. Virome analysis

Genomic sequences from the human assembly issue

38 built 12 (GChr38) were obtained from the

Ensembl database. Viral reference sequences

(n = 10 384) were retrieved from the National Center

for Biotechnology Information (NCBI) database

using Entrez utilities (https://www.ncbi.nlm.nih.gov/

books/NBK25497/) and were concatenated into a

single sequence (viral chromosome) using MINGLE v.

2.3 [42]. Human and viral chromosomes were com-

bined into a single fusion reference genome indexed

with BWA v. 0.7.17 [43].

Sequencing adapters and reads with quality below

33 phred-score units were removed with TRIMMOMATIC

v. 0.38 [44–46]. The remaining reads were aligned

against the composite human/virus reference genome

with BWA-MEM v. 0.7.17 [47]. De-duplication was car-

ried out with SAMBAMBA v. 0.6.7 [48], and only reads

mapping to the virus chromosome, and with mapping

quality of at least ten phred-score units, were retained.

The starting point of the remaining reads was used in

combination with the index file provided by Mingle to

determine the corresponding viral species. Reads map-

ping to phage φX174, which was used as quality con-

trol in the libraries’ preparation, were discarded.

The quality of the alignment and sample coverage

was assessed with SAMTOOLS v. 1.9-18 and QUALIMAP v.

2.2.1 [49,50]. BLAST+ v. 2.9.0 [51,52] was used to align

the remaining reads against the human chromosome,

the composite viral chromosome alone, or the individ-

ual virus genomes. Reads that aligned preferably to

the human genome were removed. For each sample,

overlapping reads belonging to the same viral species

were merged into a single consensus sequence using

CLUSTAL OMEGA v. 1.2.4 [53]. To further remove possi-

ble false-positive results, these consensuses were

aligned against the NCBI protein database with BLASTX

v. 2.9.0 [54]. Sequences identified as nonviral were dis-

carded. For each specimen, remaining consensus

sequences belonging to the same virus were concate-

nated into a single viral species. Structural variation

(SV) was investigated with DELLY v. 0.8.3 [55].

In a series of 80 colorectal primary tumours and

corresponding normal colorectal tissues, EBV DNA

was detected as a validation by end-point PCR target-

ing EBNA1 as previously described [56]. Briefly, total

cellular RNA was isolated with RNeasy Mini Kit

(Qiagen) according to the manufacturer’s instruction

and the cDNA generated using SuperScript III

(Thermo Fisher Scientific, Karlsruhe and Dreieich,

Germany) as recommended by the manufacturer.

Amplification of the cDNA was accomplished with the

Taq polymerase kit provided by Thermo Fisher Scien-

tific (Cat. No. EP0401) with the following conditions:

2.5 lL of reaction buffer 109, 2 mM of each dNTP,

1 lM of forward primer (5´-CCGCTCCTACCTGCA

ATATCA-3´), 1 lM of reverse primer (5´-CAATAAC

GGCAGCAAGCTTG �3´), 1 mM MgCl2, 1.25 units

of enzyme, 100 ng template DNA and water to 25 lL.
The amplification conditions were as follows: 5 min at

95 °C followed by 30 cycles of 1 min at 95 °C, 1 min

at 58 °C, 1 min at 72 °C and final extension for 7 min

at 72 °C.
To address the question of cell types primarily

affected within these tissues, the presence of EBV was

detected by in situ hybridization with an EBER-

specific peptide nucleic acid probe, in conjunction with

a PNA detection kit (Dako) following the manufac-

turer’s protocol as described [57]. Images were taken

with a camera attached to a light microscope (M2500;

Leica).

2.3. Bacteriome analysis

Reads not mapping to either the human chromosomes

or the composite virus chromosomes were assembled

with SPADES v. 3.13.0 [58]. Sequence assemblies smaller

than 1000 base pairs were discarded; assembled

sequences identified as metazoan, artificial or environ-

mental sequences were removed. The classification of

the obtained sequences was kept at the species level

and subspecies and strains were merged together. The

bacteria-phage infection network was assessed by

inquiring the Virus-Host Database (VHD) [59]. Classi-

fication of phages as lytic or virulent was based on the

PhageAI database [60].
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2.4. Statistical analysis

Data processing was performed with JULIA v. 1.3.1

(https://julialang.org/) and BASH v. 5.0.3 languages.

Plotting, statistical analysis and hierarchical clustering

were performed with R v. 3.6.1 [61]. The Shannon

index (or, more appropriately, Shannon-Wiener index

or entropy) [62] and its variance were computed with

the R package Qsutils [63]. Species richness analysis

[64,65] was obtained with the R package iNEXT [66].

Statistical comparison between sample groups was car-

ried out by paired t-test. The Hutcheson t-test [67] was

used to compare Shannon indices, and it was imple-

mented in R with the package ECOLTEST (https://

github.com/hugosal/ecolTest).

3. Results

3.1. Virome analysis

Twelve cases previously described [41] with matched

primary colorectal tumours, corresponding liver (or

lung in one case) metastasis and normal colorectal tis-

sues were available for the present analysis. After

sequencing, the subset of reads mapping to viral gen-

omes had a mean coverage of 28.33 � 16.21

(Table S1). We initially identified 662 viral species of

which 272 (41.1%) were phagial with the families

Myoviridae (n = 154), Siphoviridae (n = 79) and

Podoviridae (n = 29) as the most represented (Fig. 1,

Table 1). The most prevalent species were human

endogenous retrovirus K113 (HERV-K113), Syne-

chococcus phage S-SM2, Enterobacteria phage k and

autographa californica nucleopolyhedrovirus

(AcMNPV). Among the most represented DNA

viruses, human herpesvirus 7 (HHV-7) was observed in

eight, and HHV-6B in six specimens, besides Ebstein-

Barr virus (EBV, HHV-4) and Cytomegalovirus (CMV

or HHV-5). Several genotypes of torque teno (TT)

virus were identified: 5, 9, 16, 24, 7, 11 and 5. One

sample showed sequences of simian virus 40 (SV40)

and another bore human polyomavirus 7 (HPyV7).

We also identified several giant viruses such as Pando-

ravirus salinus and dulcis, Megavirus chiliensis, Cafete-

ria roenbergensis and Acanthamoeba polyphaga.

Among the phages, we observed the uncultured

crAssphage in six tissues. There were also several

RNA species (n = 189), including the aforementioned

HERV-K113 (an endogenous retrovirus) and

encephalomyocarditis virus (EMCV). There were 73,

404 and 24 viral species present either in normal tis-

sues, primary colorectal tumours, or metastases only,

respectively, and an additional three (27.3%) were

Fig. 1. Stratification of viral species sequences observed in the present sample set. Venn diagram showing the number of virus species

present within each tissue type (normal tissue, primary tumour and metastasis) based on the Blast-filtered data. The number of species

observed prior to this filtering step is given in parentheses. For each group, the most representative species are reported.
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Table 1. Selection of the most represented viral species based on raw data (reads aligned only by BWA-MEM) and assignment to their

respective families.

Group Virus Family Type

Normal, tumour and metastasis HERV-K113 Retroviridae Endogenous retrovirus

AcMNPV Baculoviridae DNA virus

Enterobacteria phage k Siphoviridae Bacteriophage

Synechococcus phage S-SM2 Myoviridae Bacteriophage

Escherichia phage TL-2011b Podoviridae Bacteriophage

Pandoravirus neocaledonia Pandoraviridae Giant virus

HHV-7 Herpesviridae DNA virus

Cafeteria roenbergensis virus Mimiviridae Giant virus

Pandoravirus salinus Pandoraviridae Giant virus

Phage cdtI DNA Siphoviridae Bacteriophage

HHV-6B Herpesviridae DNA virus

Pandoravirus dulcis Pandoraviridae Giant virus

Normal and metastasis Torque teno midi virus 5 Anelloviridae DNA virus

Torque teno midi virus 9 Anelloviridae DNA virus

Encephalomyocarditis virus Picornaviridae RNA virus

Hepatitis C virus genotype 1 Flaviviridae RNA virus

Enterobacteria phage VT2φ_272 Podoviridae Bacteriophage

Shigella phage SfII Myoviridae Bacteriophage

Escherichia phage pro483 Myoviridae Bacteriophage

Shigella phage SfIV Myoviridae Bacteriophage

Enterobacteria phage mEp460 Siphoviridae Bacteriophage

Normal and tumour Megavirus chiliensis Mimiviridae Giant virus

Uncultured crAssphage Unassigned Bacteriophage

Aeromonas phage PX29 Myoviridae Bacteriophage

Enterobacteria phage P88 Myoviridae Bacteriophage

Enterobacteria phage P2 Myoviridae Bacteriophage

Acanthamoeba polyphaga mouvirus Mimiviridae Giant virus

Tumour only CMV Herpesviridae DNA virus

Streptococcus phage φARI0462 Adenoviridae Bacteriophage

Bacillus phage PfEFR-5 Siphoviridae Bacteriophage

Proteus phage vB_PmiM_Pm5461 Myoviridae Bacteriophage

Streptococcus phage φARI0923 Siphoviridae Bacteriophage

Simian virus 40 Polyomaviridae DNA virus

Acinetobacter phage Acj61 Myoviridae Bacteriophage

Clostridium phage phiCT9441A Myoviridae Bacteriophage

Escherichia phage PBECO 4 Myoviridae Bacteriophage

Lactobacillus phage Lb338-1 Herelleviridae Bacteriophage

Lymphocystis disease virus Iridoviridae DNA virus

Mycobacterium phage Myrna Myoviridae Bacteriophage

Prochlorococcus phage P-SSP7 Autographiviridae Bacteriophage

Staphylococcus phage StB20-like Siphoviridae Bacteriophage

Streptococcus phage A25 Siphoviridae Bacteriophage

Streptococcus phage PH15 Siphoviridae Bacteriophage

Streptococcus phage phiNJ2 Siphoviridae Bacteriophage

Torque teno virus 16 Anelloviridae DNA virus

Torque teno virus 24 Anelloviridae DNA virus

Metastasis only Enterobacteria phage HK629 Siphoviridae Bacteriophage

Enterobacteria phage HK97 Siphoviridae Bacteriophage

Enterobacteria phage M13 Inoviridae Bacteriophage

Enterobacteria phage P1 Myoviridae Bacteriophage

Enterobacteria phage φ80 Siphoviridae Bacteriophage

Tumour and metastasis EBV Herpesviridae DNA virus

Tipula oleracea nudivirus Nudiviridae DNA virus

Qinghai Himalayan marmot astrovirus Astroviridae RNA virus
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common to both primary colorectal tumours and

metastases: EBV, Qinghai Himalayan marmot astro-

virus and Tipula oleracea nudivirus. EBV was present

in the lung metastasis together with AcMNPV, Syne-

chococcus phage S-SM2 and HERV-K113.

To avoid the possibility of false-positive detection, we

further filtered the data with the highly sensitive Blast

alignment (see Materials and methods, [51,52]). After

Blast filtering, we found 61 viral species across all of

the tissue entities that passed the threshold, correspond-

ing to 9.2% of the initial species identified, of which 28

(45.9%) were phages, with the families Siphoviridae

(n = 11), Myoviridae (n = 10) and Podoviridae (n = 7)

as the most represented (Fig. 1). Of the 28 phagial spe-

cies, 10 (35.7%) had E. coli as a host (coliphages) and

15 (53.6%) were observed in primary colon tumours.

Stratification of the phagial species by tissue type

showed that one species (Enterobacteria phage k) was

common to all tissues types, one (Shigella phage SfII)

was common to normal colorectal tissues and liver

metastases. Enterobacteria phage VT2φ_272 and enter-

obacteria phage φ80, Shigella phage SfIV and enter-

obacteria phage mEp460 were confirmed specifically in

one metastasis each. An additional 16 species were pre-

sent only in primary carcinomas, and six were observed

only in normal colorectal tissues. Overall, 87.5%,

70.6% and 100.0% of phages in in normal tissues, pri-

mary colorectal tumours and liver metastases were tem-

perate, respectively. Filtering confirmed HERV-K113,

AcMNPV, phage k (but not Synechococcus phage S-

SM2) as the most preponderant viral species across all

tissue entities. HHV-7 was present collectively in five

patients, and specifically in the normal colorectal tissue

and primary colorectal carcinomas of two patients as

well as in the primary colorectal carcinoma and liver

metastasis of another patient. HHV-6B was confirmed

collectively in four patients, and specifically in the nor-

mal colon tissue and primary colorectal carcinoma of

one patient as well as the normal colon tissue and liver

metastasis of another patient. CMV was present specifi-

cally in the primary colorectal carcinoma tissues of two

patients. Torque teno (TT) viruses 16 and 24 were also

confirmed in primary colorectal carcinomas. We also

confirmed SV40 and HPyV7 in one case each (in a pri-

mary colorectal tumour and one normal colon tissue,

respectively). EMCV was specifically present in liver

metastasis tissue. Of the aforementioned giant viruses,

only megavirus chiliensis was confirmed in two patients.

The phage crAssphage was confirmed in the normal

colon tissues and the primary colorectal tumours of

three patients. EBV was confirmed after BLAST filter-

ing in the primary colorectal tumour and the lung

metastasis of the same patient. Himalayan marmot

astrovirus and Tipula oleracea nudivirus were not con-

firmed in the lung metastasis after Blast filtering.

Given the recognized oncogenic potential of EBV,

we further investigated, and sought to validate, the fre-

quency of presence of EBV by PCR on a group of 80

independent primary colorectal tumour and matched

corresponding normal colorectal tissues (Table 2). Of

41 tumour samples positive in PCR, in 21 cases

(51.2%) EBV was detectable specifically in the primary

colorectal carcinomas but not in corresponding normal

tissues, with a significant paired t-test (P = 0.048). To

gain additional information on putative cell types

infected with EBV within colorectal carcinoma tissues,

the presence of EBV was further investigated in a sub-

set of 5 samples using EBER staining (ISH) (represen-

tative examples shown in Fig. 2). EBER staining of

individually positive EBV-cases (in PCR) showed posi-

tivity for the ISH probe in isolated cells with a small

nucleus, which were tightly associated with neoplastic

CRC glands. These images suggest infection of cancer-

associated lymphocytes, without definite evidence for

epithelial cell infection, although, in a few instances,

staining appeared projected onto single epithelial cells.

Next, we sought to determine whether we could dif-

ferentiate primary colorectal tumour tissues, corre-

sponding normal colorectal tissues, and metastases

based on the viral content. We used rarefaction analy-

sis to calculate the estimated number of species

Table 1. (Continued).

Group Virus Family Type

Normal only Enterobacteria phage IME10 Podoviridae Bacteriophage

Enterobacteria phage SfI Myoviridae Bacteriophage

Human polyomavirus 7 Polyomaviridae DNA virus

Table 2. Prevalence of EBV by PCR, n = 80 validation cases.

Tissue entity

Presence of EBV

Yes No

Primary tumour 41 39

Normal tissue 30 50
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normalized for the sample size, and the Shannon index

to have a comparative value. Overall, there were an

estimated 124 (95% CI: 60–296), 232 (95% CI: 99–
674) and 57 (95% CI: 26–157) normalized viral spe-

cies, in the normal, primary colorectal tumour and

metastatic tissues, respectively (Fig. 3). The respective

species richness corresponded to Shannon indices of

2.56, 3.31 and 1.99, respectively. The Hutcheson t-test

allowed to discriminate the normal colorectal tissues

from the primary colorectal tumours (P-value < 0.001)

and either liver or lung metastases (P-value = 0.006) as

well as primary colorectal tumours from either liver or

lung metastases (P-value < 0.001).

3.2. Bacteriome analysis

We identified 518 bacterial species, corresponding to

143 bacterial families in our sample set. Overall, there

were 391, 217 and 10 bacterial species in normal col-

orectal tissues, primary colorectal tumours and liver

metastases, respectively, corresponding to a ratio of

phages over bacteria of 0.02, 0.08 and 0.60. There were

122 species present only in primary colon tumour tis-

sues, four strains of Escherichia coli specifically in liver

metastasis (IAI1, K-12, M8 and SE11) and Klebsiella

pneumoniae concomitantly in primary colon tumour

and liver metastasis. There were no bacterial species

observed in the lung metastatic tissue. We found

Fusobacterium nucleatum enriched only in the primary

colorectal tumour sections of three patients in contrast

to corresponding normal colorectal tissues, whereas

Fusobacterium hwasookii was present in the primary

colorectal tumour sections of two patients. Porphy-

romonas gingivalis was present in the normal colorectal

tissue and primary colon carcinoma sections of one

patient. Anaerococcus mediterraneensis and

Prevotella denticola were observed in the primary col-

orectal tumours of two patients, as opposed to corre-

sponding normal tissues. Among the 122 species

observed only in primary colorectal tumours, the fami-

lies Bacillaceae and Clostridiaceae represented the most

represented, with 20 species each (16.4%), followed by

the Streptococcaceae with 17 species (13.9%).

Bacteroides fragilis was prevalent in normal colorectal

tissues and also present in primary colorectal tumour

sections. Streptococcus anginosus was observed in the

normal colorectal tissue of one patient, and in the pri-

mary colorectal tumours as opposed to their matched

normal tissues of two patients. Furthermore, among

the species observed only in primary colorectal

tumours, S. sanguinis, Filifactor alocis, Gemella sp.

oral taxon 928 and Parvimonas micra were present in

high frequency in one patient and were represented by

a number of sequence assemblies in the range of 468–
147, compared to a mean of 5.7, indicating their highly

specific representation.

The normalized species count, obtained by rarefac-

tion analysis, was 2370 (95% CI: 1701–3383), 1011

(95% CI: 693–1543) and 40 (95% CI: 14–209) for the

normal, primary colorectal carcinoma and metastatic

tissues (Fig. 4), corresponding to Shannon indices of

5.87, 5.27 and 1.95, respectively. The Hutcheson t-test

allowed discriminating normal tissues from both pri-

mary colorectal tumours (P-value < 0.001) and metas-

tases (P-value < 0.001); similarly, primary colorectal

tumours could be discriminated from metastases

(P-value < 0.001).

We further investigated the relationship between

phages and bacteria by enumerating them in the tis-

sues. The phagial hosts of the observed phages were

derived from the Virus-Host Database (VHD). Our

Fig. 2. Visualization of EBV in primary colorectal cancer tissues with

EBER staining. The pictures show an in situ hybridization with an

Epstein–Barr expression region (EBER)-specific probe performed on

histological sections. EBV-infected cells are depicted in black

(examples shown with arrows). Magnification 4009, scale bar 20 lM.
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results indicated a certain level of parallelism between

the presence of the host and that of the associated

phage (Table 3). Half of the eight phages observed

most frequently had E. coli as a host. Enterobacteria

phage k was observed in all tissue types with a peak in

the primary colorectal tumour sections. Enterobacteria

phage P2 and φ80 were observed concomitantly with

their host E. coli in one primary colorectal carcinoma

and one liver metastasis, respectively. The primary

tumour tissues also contained Bacillus phage PfEFR-5

together with its host Bacillus cereus, as well as Strep-

tococcus phage φARI0462 and φARI0923 together

with their host Streptococcus pneumoniae.

4. Discussion

The present work is one of the very few, if not the first

so far, that carried out microbiome analysis on pri-

mary colorectal carcinoma and corresponding metas-

tases in comparison to matched normal tissues.

Although, certainly, our analysis from whole genomes

so far is largely bioinformatic, our study suggests that

some microorganisms, at least their sequences, are

more prevalent in some primary colorectal tumours

or metastases, this pertaining to viruses and bacteria,

and—potentially most interesting since these were

not yet systematically investigated in such a setting—
(bacterio-)phages.

In both primary colorectal cancers and metastases,

we observed several species of phages, for example

phage k or crAssphage, crAssphage having been

reported as the most common virus in the colon

[68–70]. The high prevalence of phages in general and,

specifically, their enrichment in primary colorectal

tumours matches previous studies indicating an

increased prevalence of phages in CRC and IBD

[22–25,37,38]. The majority (over 45%) of the phages

we observed had E. coli as a host, for example enter-

obacteria phage φ80 and Escherichia phage VT2φ 272

which, after Blast filtering, we even found specifically

in metastatic tissues. We observed over half of the

most frequent phages especially in primary tumours,

two of which (Bacillus prophage PfEFR-5 and

Streptococcus phage φARI0462) showing their specific

host (Bacillus cereus and Streptococcus pneumoniae,

respectively) in primary tumour tissues only, not in

corresponding normal tissues, which suggests that this

might not have been due to contamination. This is

hypothesized since the primary colorectal cancers and

corresponding normal colorectal tissues were both

acquired simultaneously, being exposed to the same

microbiologic milieu of the same intestinal lumen within

the same patient under the same settings, and therefore,

they would have been exposed to the same contami-

nants. Interestingly, some of the hosts of the phages

specifically observed in primary colorectal tumour

Fig. 3. Viral richness. Rarefaction analysis of the viral species normalized for the sample size. Rarefaction is a bootstrap method that allows

the direct comparison of samples by giving a count of species normalized for the sample size. The curves represent the mean measures of

the number of species identified during the sampling process; the shaded areas depict the 95 confidence intervals of the measurements.

Subspecies and strains were merged within the same species.
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tissues are known pathogens. For instance, Bacillus

prophage PfEFR-5 infects Bacillus cereus, a pathogen

associated with food poisoning [71]. The observation of

B. cereus and S. pneumoniae in tumour samples only, in

contrast to the corresponding normal colorectal tissue

of the very same patient, suggested a sort of ‘linkage

disequilibrium’ between these tissue types.

The bacterial species we observed enriched, or exclu-

sively, in primary colorectal carcinomas have been

reported to show oncogenic or pro-inflammatory

potential. Our tumour-specific findings of F. nuclea-

tum, S. anginosus and F. alocis, S. sanguinis, P. micra

and Gemella oral taxon 928 confirm the results of

other research groups [72–80]. In particular, a recent

Fig. 4. Bacterial richness. Rarefaction analysis of the bacterial species normalized for the sample size. Rarefaction is a bootstrap method that allows the

direct comparison of samples by giving a count of species normalized for the sample size. The number of bacterial species in themetastases ismuch less

than in normal colorectal and colorectal carcinoma tissues, reducing the curve to close to the coordinates 0, 0. The curves represent themeanmeasures of

the number of species identified during the sampling process; the shaded areas depict the 95 confidence intervals of themeasurements. Subspecies and

strainsweremergedwithin the same species.
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microbiome analysis of CRC tissues found the species

F. nucleatum, S. anginosus and S. sanguinis at high

prevalence in cancer tissues (false discovery rate lower

than 105) [81]. Fusobacterium spp. are included in the

passenger/driver model of CRC and have been

reported to promote the formation of metastases

[11,82]. F. nucleatum and P. micra are commonly

enriched in CRC sections [83–85], and a recent micro-

biome study reported the enrichment of Fusobac-

terium hwasookii and Porphyromonas gingivalis in

colorectal cancer tissues, together with high prevalence

of Fusobacteria and Bacteroidetes [86]. F. alocis and

P. micra are prevalent at sites of periodontitis (a

chronic inflammation of the gum that results in tooth

loss) and in oral squamous cell carcinomas [79,87,88].

S. sanguinis has been reported in cases of occult colon

carcinomas [89–91]. Prevotella denticola was enriched

in colorectal cancer tissues [92]. Klebsiella pneumo-

niae, although commonly associated with pneumonia,

has been reported as a risk factor for colorectal can-

cer [93,94]. S. anginosus is an opportunistic bac-

terium commonly observed in the oral and intestinal

flora, but it is also enriched in esophageal and gas-

tric cancers [95,96], and has been reported in a case

of rectal adenocarcinoma [97]. Gemella is a genus of

commensal bacteria of the mouth and gut whose

main members (G. morbillorum and G. haemolysans)

are usually isolated in abscesses and endocarditis

[98–100]. Anaerococcus mediterraneensis has been

recently isolated in a case of vaginosis [101], suggest-

ing a potential pathogenic role or an association

with dysbiosis.

Although E. coli was commonly observed in our

samples, we also observed an enrichment of some

E. coli strains specifically in metastatic tissue. E. coli is

both a commensal of the human gut but also an

opportunistic species [102]. Thus, lytic phages might

remove commensal strains of E. coli, unbalancing the

gut microbiome. On the other hand, phages can piggy-

back pathogenic species invading inner tissues. There-

fore, our detection of coliphages might reflect these

scenarios, and further data are needed to discriminate

between these possibilities. Interestingly, it has been

shown that this bacterium can use a-haemolysin to

invade the colon epithelium in a process known as ‘fo-

cal leak’ [103]. Specific strains of E. coli (C25 and

HBTEC-1) have been reported to transcytose colonic

cells [104]. The portal vein directly connects the human

gut to the liver, establishing a special connection

between these two organs [105]. It has been shown that

dysbiosis and inflammation enhance bacterial translo-

cation, that is, the movement of bacteria and their

products from the intestinal lumen to the mesenteric

lymph nodes, the bloodstream and, consequently, the

liver [106]. The intestinal barrier is also negatively

affected by excessive food intake [107,108], which also

can trigger dysbiosis [109]. In turn, increased bacterial

translocation can affect the liver, for instance by causing

cirrhosis [110]. An impaired intestinal barrier can facili-

tate, alongside bacteria, the translocation of phages as

well, an event that is believed to occur naturally [111].

The gut and the liver share a special relationship

due to their connection via the portal vein, the biliary

tract and systemic circulation. Hence, the presence of

pathogenic bacteria in the gut might be reflected in the

liver especially if there are leakages in the mucosal bar-

rier in the intestine. Such a hypothesis is backed by

extensive literature, demonstrating a linkage between

intestinal dysbiosis and liver disease due to an

increased permeability of the intestinal barrier. If cer-

tain bacteria or phages (viruses), or their disbalance,

can be pathogenic for the colorectal tissue, they might

affect the liver, too, in a similar or also slightly differ-

ent way as compared to the intestinal tissue. Specifi-

cally, if particular pathogens, or their interaction, are

able to induce inflammation in the gut, they might also

induce inflammatory processes in the liver. However,

with the exception of some specific systemically infect-

ing viruses such as HCV, EBV, and others which are

able to induce pro-oncogenic pathways in cells including

hepatocytes [112–114], still very little data are available

showing how microbiobal pathogens translocated into

the liver might foster cancer or cancer metastasis.

Nevertheless, the implications for the presence of

bacteria and phages in the liver are still poorly

Table 3. Parallelism between phages and their hosts. The

simultaneous presence of sequences belonging to phages and

their host within the same patient is reported.

Phage Host

Enterobacteria phage k (N, T, M) Escherichia coli (N, T, M)

Enterobacteria

phage P88

(N) Escherichia coli (N)

Enterobacteria

phage P2

(T) Escherichia coli (T)

Enterobacteria

phage φ80

(M) Escherichia coli (M)

Bacillus phage PfEFR-5 (T) Bacillus cereus (T)

Proteus phage

vB_PmiM_Pm5461

(T) Proteus mirabilis (T)

Streptococcus phage

phiARI0462

(T) Streptococcus

pneumoniae

(T)

Streptococcus phage

phiARI0923

(T) Streptococcus

pneumoniae

(T)

M, liver metastasis; N, normal colon tissue; T, primary colon

tumour.
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understood. It is feasible to assume that these microor-

ganisms might induce a chronic inflammation that can

foster liver disease, albeit more experimental data are

required to determine whether microorganisms might

also induce metastasis. The fact that the ratio of

phages to bacteria was much higher in metastases than

in colorectal tissues might reflect the fact that phages

are more likely to cross the gut epithelial barrier.

Recent metagenomic analysis suggested that the induc-

tion of temperate phages might be responsible for

propagating intestinal dysbiosis, resulting in an

increased amount of phages in relation to bacteria

[27,115,116]. The higher phage-to-bacteria ratio

observed in primary colorectal tumours and liver

metastases, including 100% temperate phages in the

latter, might be explained in this context. Further

experiments might help determine the phage-to-

bacteria ratio with greater accuracy than the present

work.

Furthermore, recent metagenomic studies have

reported the increased prevalence of members of the

Enterobacteriaceae family (thus, including E. coli) in

the inflamed gut [117]. Our observations, therefore,

can be explained in such a context, but more experi-

mental work is needed to prove that such presence is

not coincidental or to analyse whether the transmis-

sion of suchlike species, including possibly their

phages, through leaky gut situations into other organs

is contributing to the ‘seed’ or ‘soil’ component within

any metastatic process. Along these lines, strains of

E. coli, in addition to B. fragilis, E. faecalis and F. nu-

cleatum, all of which we found represented in our tis-

sues analysed, have been suggested to be able to act as

pathogens, questioning their in part uncritical use as

probiotics [78,118–121]. Several members of the Enter-

obacteriaceae family, including strains of E. coli and

K. pneumoniae, have been shown to release a geno-

toxin (colibactin) able to induce genetic damage, fos-

tering the insurgence of cancer [122,123].

The oncogenic potential of these bacteria, together

with, at least in part, an enrichment in primary colorec-

tal carcinomas we observed herein, suggest a putatively

complex scenario of several infectious components

which, in their interaction, might lead to a netto sup-

port of carcinogenesis and/or CRC progression.

Towards this end, phages such as the ones we identified

here could further support the growth of pathobionts,

which can cause damage to intestinal cells, local inflam-

mation and more. Thus, phages are increasingly

acknowledged as a putative risk factor for CRC, whose

importance has been underestimated in the past [31]. As

to further mechanisms, phages might change homeosta-

sis of the bacterial microbiome, targeting bacterial

species or commensals, that are not pathogenic or onco-

genic per se, favouring the expansion of bacteria that

promote inflammation or even carcinogenesis [30].

Again, several studies indicate that phages are capable

of inducing a ‘leaky gut’ [124], areas of increased

intestinal permeability that enable the infiltration of

pathogenic bacteria, further promoting chronic inflam-

mation and possibly contributing to a spread of some

species to immediate metastatic target organs that gen-

erally are considered to be sterile (see below) [124].

Finally, it has been shown that phage-induced bacteriol-

ysis causes the release of cellular debris into the

microenvironment, inducing inflammation, whereby

bacterial DNA and lipopolysaccharides are able to act

as a pathogen-associated molecular pattern (PAMP)

that triggers immune response [30]. Phages, therefore,

could represent an immunogenic stimulus in their own

right and be associated with the release of PAMPs that

further stimulate the immune system. Specifically,

PAMPs will reach the liver first, inducing inflammation

[125,126]. The phage-mediated bacteriolysis might

induce a wave of endotoxins able to ignite the immune

response, albeit its extent is not completely understood.

Nevertheless, it has been hypothesized that such stimu-

lation might be involved in establishing chronic inflam-

mation [127–130]. Tetz and Tetz [124] are the principal

advocates of the possible pathogenic consequences of

phage activity, and given the preliminary state of

research on phage interaction with human physiology,

it is not surprising that there is little literature besides

the one cited of these two authors. Moreover, most of

the descriptions of phage immunity have been rather

inferred than clinically demonstrated. Still, it is logical

to assume that phage-mediated bacteriolysis will release

endotoxins (including bacterial DNA, LPS, and pepti-

doglycan) in the intestinal lumen that are capable of

activating immune cells of, for example of the intestinal

wall. In contrast, intact whole bacteria, being adapted

to their environment within their host, might minimize

their immunogenicity to cause a low as possible activa-

tion of the immune system. Thus, we believe it to be

more likely that the consumption of whole bacteria due

to phage-mediated bacteriolysis will rather increase than

reduce the number of immunogens, and inflammation,

in the intestinal milieu, although it is certainly acknowl-

edged that other theories might be true as well, this

maybe also depending on the type of phage and corre-

sponding type of bacterial host.

Taken together, there are several mechanisms by

which phages, and phage-host interactions, impact the

microbiome and pro-inflammatory, or even pro-

carcinogenic/-metastatic, conditions in the intestine.

Thus, our findings can encourage mechanistic studies
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on particular bacteriophages as to their putative func-

tion in CRC carcinogenesis or progression in the future,

especially since, despite the intense research ongoing to

describe the microbial communities in the human

intestinal tract of CRC and IBD [22,24,36,38,131], the

characterization of the microbial ecosystem itself is still

poorly understood.

Similar to the bacteria, many of the viral species we

observed enriched in primary colorectal tumours and

liver metastases, besides phages, have been reported to

possess oncogenic and/or pro-inflammatory potential.

This is certainly true for EBV which we found in

whole-genome sequencing, including even in one

metastasis after Blast filtering, and also by PCR in an

independent series in which about a quarter of the

analysed primary tumour/normal colorectal tissue sam-

ple pairs showed a specific positivity in the carcinomas.

Regarding putative pro-carcinogenic mechanisms, EBV

has been reported to act several fold [132,133]: it pro-

duces oncogenic proteins and micro-interfering RNAs

(miRNAs) which could cause pro-oncogenic pathway

switches within a human cell. Moreover, EBV can

induce ‘hit-and-run mutagenesis’, thereby increasing

frequencies of genetic mutations in the infected cell,

hyper-methylate tumour suppressor genes and disrupt

cellular miRNA expression [132,133]. In particular,

EBV activates the Wnt/b-catenin signalling pathway

which is fundamental in CRC carcinogenesis and pro-

gression [134,135]. Certainly, our own data are descrip-

tive only and do not give experimental or functional

evidence for EBV causing or promoting CRC, and in

general, it is known that EBV infects up to 90% of the

population [136]. Still, it is estimated that about 10%

of all gastric carcinomas are causally associated with

EBV infection [137]. In CRC primary tumour tissues,

EBV has been recovered by others with a prevalence

of between 5% and 60%, depending on the sensitivity

of the method used [138–140], thus in ranges we have

found in our sets. This is not surprising as the gut has

been found to be an important reservoir of infected

resting B cells [141]. These cells usually do not prolifer-

ate, but can be periodically reactivated in that they

start producing virus, or initiate a short burst of cell

growth during which viral products with oncogenic

properties are generated [142]. Based on our data, we

still consider it unlikely that, in most instances, EBV

directly infects CRC cells and contributes to transfor-

mation through endogenous expression of viral onco-

genes or of viral noncoding RNAs. However, EBV-

infected cells are known to secrete microvesicles that

contain many viral products including LMP1, the

main EBV oncogene, as well as noncoding RNAs such

as the EBERs [143,144]. Thus, it is theoretically

possible that microvesicles laden with EBV-derived

molecules are captured by the neighbouring colonic

epithelial cells and contribute to the acquisition of the

malignant phenotype. Such a scenario remains entirely

speculative but is worth investigating experimentally.

Regarding further (microenvironmental) interactions

of EBV, interestingly, it has been reported that EBV

increases the infectivity of torque teno (TT) virus, a

feature that might contribute to multiple sclerosis

[145]. In our analysis, we retrieved torque teno virus

sequences in a few CRC liver metastases and, even

confirmed after stringent Blast filtering, primary

CRCs, and although biases such as the known high

blood volume in the liver could have impacted on

these observations, a potential long-term cooperation

between these two viruses in the CRC context might

be an interesting speculation, which needs to be inves-

tigated in future functional studies, especially since

both torque teno virus and EBV can be present in the

blood without causing obvious clinical symptoms of

infection [146–150]. Indeed, TT virus is commonly

encountered in both blood and faecal samples, and it

is reported to be more prevalent in CRC and chronic

inflammation than in normal tissues [151,152].

We observed other viruses with oncogenic potential.

CMV infects preferentially neoplastic epithelium,

where it can reach a prevalence of over 40% compared

to < 6% in the surrounding normal tissues [153], and

tumour tissues have a much higher risk of being

infected with CMV than normal tissues (OR = 6.6)

[154]. CMV infection activates Wnt signalling path-

ways, promoting cell proliferation and migration [155].

HHV-6B infects over 90% of the human population,

can cause gastroenteritis, and it is detected in about

6% of colon carcinomas and 4% of rectal adenocarci-

nomas [156]. HHV-6B infects mainly T lymphocytes

(but also macrophages, dendritic cells, fibroblasts and

epithelia) and has been associated with lymphoprolifer-

ative diseases as well as oral and cervical carcinomas

[157]. HHV-6 has a prevalence of about 90%

[158,159], but its association with IBD is controversial.

For example, no significant difference has been

reported for the prevalence of this virus between IBD

patients and healthy controls [160]. Further studies

also indicated a nonsignificant difference in HHV-6

prevalence between IBD and controls, but, interest-

ingly, co-infection with EBV was significantly higher in

IBD cases [161]. Other studies reported a prevalence of

4–44% in IBD [162,163] and in five out of eight

(62.5%) patients with colonic adenomas [164] but in

none of healthy matched controls. HPyV7 has been

isolated about one decade ago from the sera of healthy

volunteers [165] and not extensively associated with
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human diseases yet; still, one study reported its pres-

ence in 54–62% of 37 thymic tumours, with 17 sam-

ples associated with a high expression of the large T

antigen, as compared to no evidence for this virus in

20 fetal thymic tissues [166]. Although this compar-

ison, certainly, might be biased by the use of non-

matched controls, it provides a first hint for a possible

oncogenic role of HPyV7, potentially mediated by the

large T antigen. Our observation of this virus in CRC

in our present work certainly needs to be extended,

and validated, by epidemiological and functional stud-

ies in the future [167]. Polyomavirus large T (which

increases the stability of b-catenin and, consequently,

the activation of the Wnt signal pathway) and small t

antigens (which can affect the expression of several

modulators of the cell cycle including cyclin D, c-myc,

and survivin) [168], mediate the oncogenic ability of

these viruses. Another polyomavirus, SV40, has been

associated directly with colorectal cancer. A survey of

94 colon cancers identified the presence of SV40 in 6%

of them while it was absent in the colon tissues of

healthy controls, but infection was not statistically sig-

nificant as a risk factor (OR = 3.91, P-value = 0.115)

[169].

HERV-K113 is an endogenous retrovirus with a

prevalence of up to 30% [170], and, unlike many other

viruses of this class, it is still capable of reactivation

and production of infectious virions [171]. Increased

prevalence of HERV-K113 has been reported in breast

cancer tissues (16.7%) in comparison to matched nor-

mal tissues (12.7%) [172] and in multiple sclerosis

(11.9%) compared to 4.6% in healthy controls, sug-

gesting a role in cancer as well as in autoimmunity

[173]. Reactivation of a related virus (HERV-K-

T47D), measured by the expression of its reverse tran-

scriptase, has been suggested as a biomarker for breast

cancer [174]. Given the potential reactivation of this

virus and its connection to cancer, it would have been

interesting to measure the expression of HERV-K113

at the protein level but, unfortunately, we had no tis-

sue material left to perform this additional analysis. It

is also possible to foresee HERV-K113 and further

infection-associated markers being included in examin-

ing circulating tumour cells (CTC). These cells are

gaining popularity as CRC diagnostic indicators [175].

Potentially, a study on the methylation status of

HERV-K113 genes or HERV-K113 mRNAs within

CTCs might help with cancer precursor diagnosis.

Likewise, identifying genetic material belonging to

oncoviruses either in the bloodstream or inside CTCs

might help to stratify patients with CRC. Nevertheless,

extensive clinical research is needed to sustain such

possibilities.

We also observed EMCV, a zoonotic pathogen that

has a seroprevalence ranging from two per cent to

over 30% [176,177]. EMCV is not known to cause

cancer but it has been shown that it can induce

autoimmune reactions against T cells, fostering the

development of type 1 diabetes [178]. It can also inter-

fere with the cellular E3 ubiquitin ligase E6-associated

protein (E6AP) [179], which regulates cell proliferation

via the PI3K-AKT signalling pathway [180]. In the

present study, the detection of EMCV sequences in

liver metastasis again raises the question whether this

virus might be contributing to aspects of inflammation,

carcinogenesis or microenvironmental interactions in

CRC.

Taking advantage of the observed presence of

microorganisms within our samples, we tried to apply

statistical methods to distinguish between normal col-

orectal, primary colorectal carcinoma and metastasis

tissue types. Previous studies have applied the Shan-

non index for diagnostic purposes, for instance apply-

ing the genetic variability of c-MYC to identify breast

cancer patients at a higher risk of mortality [181–183].

In our attempt, both viral and bacterial species proved

to be useful in differentiating primary colorectal carci-

noma from normal paired colorectal tissues, which

supports the notion that our microbial findings in

CRC primary tumours were not due to mere contami-

nation by contents of the intestinal lumen or normal

tissue fractions, but that microbial or metagenomic

findings might aid in the differential diagnosis of

malignant versus normal colorectal tissues.

The much lower Shannon indices observed in meta-

static sections was unsurprising since these tissues are

expected to be rather sterile. Thus, the presence of

some microorganisms in liver metastases still appears

counter-intuitive. Only HERV-K113, an endogenous

retrovirus, displayed a profile characterized by high

sequence coverage associated with integration in the

host’s chromosomes (Fig. S1), thus, the other microor-

ganisms must have gained access to the liver cells by

means other than vertical transmission. The species we

observed in metastases were not reported as environ-

mental contaminants [184,185]. Thus, the most likely

explanation, as already indicated above, is systemic

access through conditions like a ‘leaky gut’ or ‘focal

leak’ (see above) and/or general access via the blood

stream (see above). Indeed, an increasing number of

studies is reporting the presence of, for example,

phages in tissues previously considered sterile [30,186–
188]. We could not compare our results in metastases

with previously existing metagenome/microbiome stud-

ies in these tissues since, to the best of our knowledge,

our study has pioneering character in this regard so
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far. Therefore, future studies at also larger metastasis

sample sizes are mandatory.

Certainly, our study has limitations, including

methodological ones. First, it was initially designed for

whole-genome screening. Consequently, no viral

enrichment, or general enrichment for microbial gen-

omes, had been carried out, nor included, in the pro-

cessing of the samples. Thus, the low microbial

biomass could have introduced a bias in the results,

generating lower than expected findings in sequence

copies, or in individual sequence coverage, of micro-

bial sequences as compared to sequences from human

chromosomes [185]. Lower sensitivity might also have

led to a lower than expected detection of some species,

for example JCV or HPV, or a lower detection of pos-

itivity as compared to other methods such as PCR,

although, still, our results on EBV correspond to the

range of frequencies reported by others [138,139,189–
191]. Second, except for EBV we had no further tissue

available to perform further wet laboratory valida-

tions. Nonetheless, the fact that the species we

observed have not been reported as contaminants, and

that some of the species have been observed by others

with similar frequencies, still strengthen our findings.

Also, the parallelism between the presence of some

bacterial hosts and phages in the same specimens sup-

port the validity of our results, since it is highly likely

that host and guest species are present simultaneously

in the same tissue. Such parallelism would not be

expected if the sequences were mapped randomly or

derived from environmental contaminants.

5. Conclusion

In conclusion, this is the first work carrying out metage-

nomic analysis on CRC metastases as compared to cor-

responding primary CRC tumours and normal

colorectal tissues and that attempted to apply microbial

richness calculations to differentiate these tissues. We

showed that the microbial landscape might be used to

differentiate primary colorectal tumours from nonma-

lignant tissue and metastases, in particular by using the

Shannon index. Moreover, we highlighted particular

species, especially including the previously not exten-

sively considered species of (bacterio-)phages, for future

functional studies as to how they could contribute to

colorectal carcinogenesis or even progression and

metastasis, for example by creating permissive or non-

permissive microbial environments. Extending this anal-

ysis to broader sets of available samples, for example in

multicentre approaches, could foster a better under-

standing of infectious agents as a potentially complex

interplay of cofactors for CRC carcinogenesis and

progression, and assess whether the use of microbial

analysis could support precision medicine to pinpoint

patients at increased risk for CRC or CRC metastasis.
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