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ABSTRACT

Numerous studies have shown that repetitive re-
gions in genomes play indispensable roles in the evo-
lution, inheritance and variation of living organisms.
However, most existing methods cannot achieve sat-
isfactory performance on identifying repeats in terms
of both accuracy and size, since NGS reads are too
short to identify long repeats whereas SMS (Single
Molecule Sequencing) long reads are with high er-
ror rates. In this study, we present a novel identi-
fication framework, LongRepMarker, based on the
global de novo assembly and k-mer based multiple
sequence alignment for precisely marking long re-
peats in genomes. The major characteristics of Lon-
gRepMarker are as follows: (i) by introducing bar-
code linked reads and SMS long reads to assist the
assembly of all short paired-end reads, it can identify
the repeats to a greater extent; (ii) by finding the over-
lap sequences between assemblies or chomosomes,
it locates the repeats faster and more accurately; (iii)
by using the multi-alignment unique k-mers rather
than the high frequency k-mers to identify repeats
in overlap sequences, it can obtain the repeats more
comprehensively and stably; (iv) by applying the par-
allel alignment model based on the multi-alignment
unique k-mers, the efficiency of data processing can
be greatly optimized and (v) by taking the corre-
sponding identification strategies, structural varia-
tions that occur between repeats can be identified.
Comprehensive experimental results show that Lon-
gRepMarker can achieve more satisfactory results
than the existing de novo detection methods (https:
//github.com/BioinformaticsCSU/LongRepMarker).

INTRODUCTION

The genomes of all eukaryotes contain a certain proportion
of repetitive elements, particularly mammalians in which
repeats account for 25–50% of their entire genomes (1,2).
Repetitive regions can be caused by various mechanisms,
such as chromosome translocations, transposons, errors in
replication and recombination, etc (3). Numerous studies
have shown that the repetitive elements in the genome play
indispensable roles in the evolution, inheritance, variation,
gene expression, transcriptional regulation, chromosome
construction, and physiological metabolism of living organ-
isms (4–7), and they are one of the principal causes of ge-
nomic instability (8). How to quickly, accurately and com-
pletely identify repetitive regions in genomes has become an
important research topic in bioinformatics.

According to the arrangement, the repeats in eukaryotic
and certain prokaryotic genomes can be divided into two
types: tandem repeats and interspersed repeats (9) (Supple-
mentary Table S1). Tandem repeats are arrays in which re-
peating elements consisting of 1–500 bp sequences are con-
nected end to end to form multiple repeats. They are ar-
ranged in clusters in the telomere, the centromere periph-
eral region or the heterochromatin region on the chromo-
some arm (10). On the contrary, repeating elements of in-
terspersed repeats are not connected, but are doped with
other unrelated repeats or single copy sequences. They are
dispersed throughout the genome and are usually referred
to as transposons, including retrotransposons and DNA
transposons (11). There are two main types of retrotrans-
posons: (i) long-terminal repeat retrotransposons (LTRs),
the length of which generally ranges from 100 bp to 25 kb
(12,13) and (ii) non-long terminal repeat retrotransposons
(Non-LTRs), which are divided into long interspersed nu-
clear elements (LINEs) and short interspersed nuclear ele-
ments (SINEs) (14). The detailed classification of repeats is
shown in Supplementary Section S1.1.

*To whom correspondence should be addressed. Tel: +86 0731 88830212; Email: jxwang@mail.csu.edu.cn
Correspondence may also be addressed to Xin Gao. Tel: +966 12 808 0323; Email: xin.gao@kaust.edu.sa

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-0061-1317
http://orcid.org/0000-0002-4593-9332
http://orcid.org/0000-0002-7108-3574
http://orcid.org/0000-0003-1516-0480
https://github.com/BioinformaticsCSU/LongRepMarker


e100 Nucleic Acids Research, 2021, Vol. 49, No. 17 PAGE 2 OF 18

Many computational methods have been proposed to
identify repeats in genomes, which can be classified into
three categories, including homology-based, structure-
based and de novo methods (15–17) (Supplementary Fig-
ure S1 and Table S2). The homology-based identification
methods are based on a certain database for the homology
search, so as to find and mask the repeats. RepeatMasker
(18) is a representative method of this category, which
performs a similarity search based on local alignment with
AB-BLAST (19) or Crossmatch (20). RepeatMasker has its
own library (RepBase and Dfam) of repetitive sequences
and has become a gold standard of this field in terms of ac-
curacy. Most other similar methods use RepeatMasker as
the main reference library. The homology-based methods
have high search efficiency and can be used to discover fam-
ilies with small numbers of copies. However, such methods
can only be used to search for known repeats, and cannot
be used to discover novel ones. Typical methods based on
the homologous search also include Censor (21), TESeeker
(22), Greedier (23) and T-lex (24). Among them, CENSOR
is a program designed to identify and eliminate fragments
of DNA sequences homologous to any chosen reference se-
quence, which uses RepBase as the homologous database;
TESeeker implements an automated homology-based ap-
proach for identifying transposable elements, which uses
Tefam and RepBase as the homologous databases; Greedier
effectively solves the problem of embedded duplications by
using greedy algorithms and local alignment methods; and
T-lex is a tool for fast and accurate assessment of transpos-
able element presence in high-throughput sequencing data,
which can use data from a large number of strains and re-
turn estimates of population frequencies of individual TE
(transposable element) insertions in a reasonable time.

The structure-based identification methods are based on
the prior information of the sequence and structure fea-
tures, using a heuristic algorithm to find and identify the re-
peat sequences. Typical structure-based identification meth-
ods include: LTRharvest (25), MASiVE (26), MGEScan-
LTR (27), FINDMITE (28), MUST (29), detectMITE (30),
MITE-Hunter (31), MITE-Digger (32) and MITE Tracker
(33). Among them, LTRharvest implements several steps
of filtering based on structural features of sequences, de-
termines the boundary position of the LTR, and anno-
tates the LTR with LTRdigest. MASiVE is a tool specifi-
cally designed to analyze specific LTR transposons in plant
genomes. MGEScan-LTR uses approximate string match-
ing and protein domain analysis methods to determine in-
tact LTR retrotransposons. TEs are a type of repeat se-
quences abundant in eukaryotic genomes. TEs play im-
portant roles in genome organization and evolution. Com-
monly, TEs in genomes can be classified into two ma-
jor categories, retrotransposons (Class I) and DNA trans-
posons (Class II). Miniature inverted repeat transposable
elements (MITEs) are a special type of DNA transposons.
MITE-Hunter, detectMITE, FINDMITE, MUST, MITE-
Digger and MITE-Hunter are six typical structure-based
methods for MITE identification, among which FIND-
MITE requires users to predefine the TSD sequences, TIR
length and the minimum and maximum distances between
the TIRs. MITE-Hunter is a program pipeline that can
be used to identify MITEs as well as other small Class II

non-autonomous TEs from genomic DNA datasets. Com-
pared to FINDMITE and MUST, MUST-Hunter has a
much lower false-positive rate and the output is easier to be
checked and classified. Both MITE-Hunter and MITE Dig-
ger utilize a mixture of both de novo and structural-based
methods in MITE detection. Although they have success-
fully reduced false positive rates in MITE detection, neither
of them can detect all MITEs hidden in the genomes.

The de novo methods require no prior information of the
repeat structure or similarity to the known repeat sequences,
and tend to be more flexible than the other two methods
(34). The de novo methods can also be divided into three
categories (Supplementary Figure S1). The first category re-
lies on the multiple sequence alignment to identify repeats,
which mainly include RPT(Repeat Pattern Toolkit) (35),
RECON (36), PILER (37) and LTRdigest (38). Such meth-
ods are usually designed based on a search tree structure
with a complete genome as input, and the algorithm finds
repeat sequences by copying the genome and comparing the
similarity between the genome and its copy. The methods in
the second category rely on k-mer and space seed extension
strategies to identify repetitive sequences. These methods
convert the sequences in the genome into k-mers of a certain
length, select the k-mers whose frequency exceeds a certain
threshold as a seed, search for the locations of these seeds
in the genome, and perform the sequence extension to both
ends of the genome and get the expended sequences. Dur-
ing the extension process, it always judges whether the ex-
tended sequences are consistent at multiple locations in the
genome. If yes, it continues the extension, otherwise stops
the extension. EDTA (39), RepeatFinder (40), RepeatScout
(41), ReAS (42), Generic Repeat Finder (GRF) (43) and Re-
peatmodelerl2 (44) are representatives of this category. They
start with a library of high-frequency k-mers that are used in
initial identification, alignment and extension of sequence
substrings. The methods in the third category rely on se-
quence assembly and similarity network to identify repeats,
which mainly include RepARK (45), REPdenovo (46) and
RepLong (47). Among these three methods, the first two
are based on the NGS short reads, and both of them ob-
tain repetitive sequences by the assembly of the high fre-
quency k-mers. The last method is currently the only de-
tection method suitable for the third generation sequencing
reads, which constructs the similarity network by getting the
overlaps between the long reads, and then uses the commu-
nity discovery algorithm to get the detection results. The
community discovery algorithm in RepLong is developed
based on modularity optimization (48–50). Introduction of
various tools and the community discovery algorithms are
shown in Supplementary Sections S1.2 and S1.4.4, respec-
tively.

In the process of NGS sequence assembly, the paired-end
reads with large insert sizes are mainly used to resolve the
ambiguity paths generated by the repeated regions in the
assembly graph and determine the successive positions of
contigs in the process of scaffolding. The assembly-based
detection methods are based on the high-frequency k-mer
assembly to obtain repetitive sequences. Due to the lack
of support for long sequence fragments that can span the
repetitive regions, the assembler will inevitably make misas-
semblies when processing these short and highly repetitive
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sequences. On the other hand, they depend too much on
the threshold of the high frequency k-mers, which is diffi-
cult to obtain accurately due to the sequencing bias. The
SMS long reads are more likely to cover repetitive regions
completely, which are more favorable for recognizing long
repeats. However, the high error rate of SMS long reads has
a great impact on the accuracy of this method. In addition,
such methods construct the similarity network by compar-
ing the long reads, and then use the community discovery
algorithm to get the detection results, which has a higher
computational complexity when processing large datasets.
In summary, it is often difficult for existing de novo detec-
tion methods to achieve satisfactory results in terms of both
accuracy and size.

In order to overcome these bottlenecks, we propose
a novel identification framework called LongRepMarker
based on assembly of Illumina short paired-end reads and
barcode linked reads or SMS long reads, and multiple se-
quence alignment for accurately detecting the long repeti-
tive regions in genomes. In addition, as the development of
the third generation sequencing, the SMS long reads have
been widely applied in various fields of bioinformatics. In
order to better comply with the market demand and further
expand the application scope of this system, we further de-
velop a detection mode based on only SMS long reads un-
der the LongRepMarker framework (Supplementary Fig-
ure S2). The overall workflow of LongRepMarker is shown
in Figure 1.

OVERVIEW

Working modes of LongRepMarker

LongRepMarker provides two different working modes:
(i) reference-assisted mode and (ii) de novo mode (Figure
1). The detailed description of these two different working
modes are shown in Supplementary Section S1.3.

(i) The reference-assisted mode. Since the sequencing data
of large genomes is massive, it is difficult for the de novo
methods to handle them. LongRepMarker provides a
reference-assisted mode. If there is a reference sequence,
a rough assembly of a species or a reference sequence
of similar species, it can quickly and accurately derive a
repeat library for that species. The detailed description
of this mode is shown in Supplementary Section S1.3.1.

(ii) The de novo mode. Repeats are present in the genomes of
all organisms. The DNA sequence organization of eu-
karyotic genomes consists of numerous repeats, some
of which are clustered in structural regions of chromo-
somes particularly in the cetromeric and telomeric re-
gions. This organization has been elucidated through
renaturation rate studies of denatured DNA. Prokary-
otic genomes contain a variety of low-copy-number re-
peated sequences, such as insertion elements, rRNA
operons, tRNA genes, and other genes such as those
belonging to the rhs gene family. These sequences
may contribute to the evolution of chromosome struc-
ture through DNA rearrangements such as chromoso-
mal deletions, duplications, and inversions. However,
most existing de novo identification methods (such as
RepARK, Repdenovo and RepLong) cannot achieve

Figure 1. The workflow of LongRepMarker. The directed path on the left
shows the pipeline of the reference-assisted mode. The directed path on the
right shows the pipeline of the de novo modes which can also be divided into
the detection mode based on the mixed sequencing data and the detection
mode based on only short reads or long reads.

satisfactory results for detecting these repetitive se-
quences as the NGS reads are too short and the SMS
long reads are with high error rates. According to the
different input data, de novo mode can be divided into
the following sub-modes.

(i) Sub-mode based on only NGS short reads. In this
mode, the proposed framework produces detec-
tion results based on only NGS short paired-end
reads (Supplementary Sections S1.3.2). By calling
SPAdes (51) which adopts some better repeat pro-
cessing strategies and has superior assembly per-
formance than other similar tools (such as SOAP-
denovo2 (52), Abyss (53), Velvet (54) and IDBA-
UD (55)), the framework can recover the repetitive
sequences contained in the sequencing data to the
greatest extent. The reasons for choosing SPAdes
as the assembler and the performance comparison
analysis of it and other similar tools are shown in
Section S1.4.3 of the supplementary.

(ii) Sub-mode based on NGS + barcode linked reads.
In this mode, the proposed framework introduces
barcode linked reads into the assembly process of
Illumina short paired-end reads, assists the assem-
bler in resolving the ambiguity path caused by re-
peats in the assembly graph (Supplementary Fig-
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ure S3), and uses multi-alignment unique k-mers
based identification strategy to fully and accurately
recover the repeats in the genome. The detailed de-
scription of this mode is shown in Supplementary
Sections S1.3.3.

(iii) Sub-mode based on NGS + SMS long reads. An
important advantage of the third generation se-
quencing is the read length. PacBio RS II system
with C4 chemistry boasts average read lengths over
10 kb, with an N50 of more than 20kb and maxi-
mum read lengths over 60kb. In this mode, the pro-
posed framework introduces the SMS long reads
into the assembly process of Illumina short paired-
end reads, and makes full use of the advantages of
long reads in span to effectively resolve the ambi-
guity formed by repetitive sequences in the assem-
bly process of short reads (Supplementary Figure
S4). The detailed description of this mode is shown
in Supplementary Sections S1.3.3. The advantages
of using SPAdes to assemble Illumina short paired-
end reads and barcode linked reads or corrected
SMS long reads in repetitive sequences identifica-
tion are described in Section S1.4.2 of the Supple-
mentary.

(iv) Sub-mode based on only SMS long reads. In order
to further expand the application scope of this sys-
tem, we have developed a detection mode based
on only SMS long reads. The input of this mode
is SMS long reads and the output is the repeat li-
brary of the genome. The workflow of this mode
can be divided into the following steps: (i) getting
the overlap sequences between SMS long reads; (ii)
estimating the average coverage of the overlap se-
quences; (iii) filtering the overlap sequences with
low coverage; (iv) getting the filtered overlap se-
quences with the high copy number in SMS long
reads (e.g. the copy number is more than 1.5 × Av-
erageCoverage); (v) identifying the genetic varia-
tions existing in the detected repetitive regions and
(vi) generating the final repeat library. The detailed
workflow of this mode is shown in Supplementary
Section S1.3.4.

The main differences between the reference-assisted
mode and de novo mode, and the advantages of barcode
linked reads and SMS long reads in assisting the assembly
of Illumina short paired-end reads are shown in Supplemen-
tary Sections S1.4.1 and Section S1.4.2, respectively.

Main improvements of LongRepMarker

Compared with the existing de novo detection methods, the
major improvements of LongRepMarker are as follows:

(i) The repeats obtained by LongRepMarker are more com-
prehensive and accurate.
� By assembling all paired-end reads and barcode

linked reads or SMS long reads instead of assembling
the high frequency k-mers, the algorithm can identify
the repeats in the genomes to a greater extent.

Figure 2. The illustration of overlap relationships within and between
chromosomes and contigs. Repetition relation is a special kind of overlap
relation. All possible repetition relationships can be found by identifying
overlap relationships.

� The repetitive sequences are a special kind of overlap
sequences, and the overlap sequences occupy only a
small partion of the overall sequences (Figure 2). By
finding the overlap sequences between assemblies or
chomosomes, the algorithm locates the repetitive re-
gions faster and more accurately.

� Due to the sequencing bias, the high frequency
threshold is often difficult to obtain accurately, which
has a great impact on the range of the high frequency
k-mers. By using the multi-alignment unique k-mers
to identify repeats in overlap sequences, the algorithm
can obtain the repeats in the genomes more compre-
hensively and stably.

(ii) The parallel alignment model based on the multi-
alignment unique k-mers can greatly optimize the ef-
ficiency of data processing in LongRepMarker (Sup-
plementary Figure S19). LongRepMarker has superior
computing efficiency when dealing with large genomes
such as human and mouse. For example, it takes only
264.05 min to obtain the whole repeat library of the
human genome (hg38) in the reference-assisted mode
and 2.86 hours to obtain the whole repeat library of the
mouse genome in the de novo mode.

(iii) The structural variations that occur between repetitive
regions can be identified by LongRepMarker. The study
and analysis of genomic structural variations that oc-
cur within the repetitive regions can provide a new per-
spective for understanding life processes and analyzing
life mechanisms. In order to identify structural varia-
tions in the repetitive regions, the proposed algorithm
also designs corresponding identification strategies.

(iv) The new detection mode based on only SMS long reads
has been integrated into LongRepMarker. As the devel-
opment of the third generation sequencing, the SMS
long reads have been widely applied in various fields of
bioinformatics. A new detection mode based on only
SMS long reads has been developed in the LongRep-
Marker framework. Compared with the existing de-
tection methods based on SMS long reads, this mode
has the advantages of low memory consumption, high
speed and high detection accuracy.

MATERIALS AND METHODS

The pipeline of LongRepMarker is illustrated in Figure 3.
The entire workflow of LongRepMarker can be divided
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Figure 3. The pipeline of LongRepMarker. (A) shows five working modes of LongRepMarker, which are reference-assisted mode, de novo mode based
on only NGS short paired-end reads, de novo mode based on NGS short paired-end reads + barcode linked reads, de novo mode based on NGS short
paired-end reads + SMS long reads and de novo mode based on only SMS long reads. (B) shows the principle of finding overlaps between chromosomes
and contigs by using minimap2. (C) Transforming overlaps into unique k-mers by DSK. (D) Using minimap2 to obtain multi-alignment unique k-mers and
the regions on chromosomes and contigs that can be covered by these unique k-mers. (E) Using minimap2 to obtain multi-alignment regions and single-
alignment regions on chromosomes, contigs and long reads, and the sequences marked in multi-alignment regions are saved in the final repeat library. (F)
Single-alignment regions are cut into several smaller segments, and some multi-alignment segments are saved in the final repeat library. (G) Analyzing
the relationship and spacing between these saved sequences, combining some saved sequences and their gaps that meet certain conditions to a complete
fragment and replacing the corresponding saved sequences in the final detection results by this fragment. (H) Components of the final repeat library. (A),
(B), (B1), (C1), (D1), (F), (G) and (H) illustrate the workflow of the detection mode based on only the SMS long reads.

into the following modules. The detailed description of each
module is shown in Supplementary Section S2.

Identification of overlap sequences

As illustrated in Figure 2, the repetition relation is a spe-
cial case of the overlap relation. Thus all possible repetition
relationship can be found by searching overlap sequences.
By searching for overlaps between and within chromosomes
or assemblies (contigs), the search space of the algorithm
can be greatly narrowed, and the computational complex-
ity of the algorithm can also be greatly reduced. In this

step, minimap2 (56) is used for generating the overlap se-
quences between and within chromosomes or contigs. The
specific commands and parameters for obtaining the over-
lap sequences are shown in Supplementary Section S2.1.

Conversion of overlap sequences into unique k-mers

DSK (disk streaming of k-mers) (57) is a new streaming al-
gorithm for k-mer counting, which only requires a fixed,
user-defined amount of memory and disk space. In this step,
DSK is used for generating the unique k-mers. Assuming
that there are n overlap sequences, which respectively cor-
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respond to n fragments in an overlap file. Let ci be the ith
fragment (i = 1, 2, ..., n) and lci be the length of ci. Given a
fix length k of k-mers (k << lci), ci can be represented as a
list of (lci-k + 1) k-mers. Therefore, the total number of k-
mers (Numk) that are transferred from all overlap sequences
can be expressed as Numk = ∑n

i=1(lci − k + 1).
When the value of lc is large and the value of k is

small, the total number of k-mer generated from these over-
lap sequences is very large (58). In order to further re-
duce the total number of k-mers, DSK converts all k-mers
to their canonical representation with respect to reverse-
complementation which is called the unique k-mers, so that
the actual number of converted unique k-mers is much
smaller than the actual number of k-mers directly con-
verted from the original overlap sequences. Therefore, us-
ing unique k-mers instead of k-mers for mapping can fur-
ther greatly reduce the complexity of the alignment. The de-
tailed analysis of the quantitative relationship among reads,
k-mers and the unique k-mers, and the complexity of the
alignment is shown in Supplementary Section S2.2.

Generation of multi-alignment unique k-mers and their cov-
erage regions on overlap sequences

LongRepMarker uses the multiple sequence alignment to
find the unique k-mers which can be aligned to differ-
ent locations on overlap sequences and the regions on
overlap sequences that can be covered by these multi-
alignment unique k-mers. The process of generating the
multi-alignment unique k-mers is described in Supplemen-
tary Algorithm S1, and the process of generating the re-
gions on overlap sequences that can be covered with these
multi-alignment unique k-mers is described in Supplemen-
tary Algorithm S2. The time complexity of these two algo-
rithms is O(n). The results of the multiple sequence align-
ment are stored in a sam file. Once LongRepMarker receives
the sam file, it first filters the file, and keeps the multiple
alignment records and the ID of multi-alignment unique
k-mers. It then converts the filtered sam file into a depth
file via the samtools (59). Finally, based on the informa-
tion provided by the depth file and the ID records of multi-
alignment unique k-mers, it extracts the regions on overlap
sequences that can be covered with these multi-alignment
unique k-mers, and forms several sequence fragments which
are called sequence fragments with high probability of be-
ing repetitive regions. This procedure is illustrated in (B),
(C), (D) and (E) of Figure 3. The detailed description of
generation of multi-alignment unique k-mers and their cov-
erage regions on overlap sequences is shown in Supplemen-
tary Section S2.3, and the detailed description of the com-
bination of multiple threads parallel computing model and
k-mer based multiple sequence alignment is shown in Sup-
plementary Section S2.4.

Classification of regions on overlap sequences that can be cov-
ered by multi-alignment k-mers

The regions on original sequences (chromosomes or con-
tigs) covered by the multi-alignment k-mers can be divided
into two categories (Supplementary Figure S19). The re-
gions in the first category can be aligned to different lo-
cations (≥2 locations) of the overlap sequences, which are

highly likely to be repeats, so they are stored into the final re-
peat library directly. The regions in the second category can-
not be aligned to the overlap sequences mutiple times, but
some sub-segments of them can, which are probably caused
by coupling matches due to sequencing errors (e.g. the two
sequences are originally not repetitive sequences, due to
sequencing errors that form some coupled alignments un-
der error-tolerant conditions, resulting in multiple subse-
quences within them that can be aligned with each other.
Thus the two sequences should be removed) or the genetic
variations (e.g. the two sequences are originally repetitive se-
quences, due to structural variations, multiple subsequences
within them cannot be aligned with each other. Thus the
two sequences should be retained). The characteristic of
coupling alignment due to the sequencing errors is that the
alignment region is short and scattered, and it accounts for a
relatively small proportion of the entire sequence fragment.
On the contrary, the distribution of structural variation re-
gions on the sequence fragment is relatively concentrated,
and all have a certain length (e.g. greater than 50bp). Based
on these obvious features, we can further filter these non-
multiple aligned sequences. The detailed description of clas-
sification of regions on overlap sequences that can be cov-
ered by multi-alignment k-mers is shown in Supplementary
Section S2.5.

Identification of the genetic variations existing in the repeti-
tive regions

The genomic variations between repeating segments are
also an important component of repeating regions, and also
an important manifestation of repetitive regions polymor-
phism (60). In addition, the study and analysis of genomic
structural variations that occur within the repetitive regions
can provide a new perspective for understanding life pro-
cesses and analyzing life mechanisms. Therefore, we de-
signed a module in LongRepMarker to detect genomic vari-
ations that occur in the repetitive regions. The detailed de-
scription of identification of genetic variations existing in
detected repetitive sequences are shown in Supplementary
Sections S2.5 and S3.7.

Merging fragments with duplication or inclusion relation-
ships

There may exist some duplication and inclusion relation-
ships between the detected fragments obtained by multi-
ple sequence alignment. The repetitive sequences generated
from the detection tool should be as pure as possible with-
out any impurities and redundancy. In order to achieve this
goal, LongRepMarker merges the detected repetitive frag-
ments with duplication and inclusion relationships, and re-
mains only one copy of them in the final detection results.

RESULTS

We use the reference genomes of six species to evaluate the
performance of LongRepMarker in the reference-assisted
mode: Homo sapiens (hg38), Gallus, Mouse, Drosophila
melanogaster, Glycine max and Leafcutter ant. The refer-
ence genome sequences of these six species are downloaded
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Figure 4. The demonstration of an practical example of alignment between
the reference genome of Human(hg38) and 20 repetitive fragments ran-
domly selected from the detection results of the Human dataset which were
generated from the reference-assisted mode of LongRepMarker.

from the NCBI website (https://www.ncbi.nlm.nih.gov/).
Details of the genomes of these six species are shown in Sup-
plementary Table S13. In order to illustrate the effectiveness
of the de novo mode of LongRepMarker, five groups of
NGS short reads (Leafcutter Ant, D.melanogaster,
Mouse, Human-chr14 and HG003 24149 father), three
groups of barcode linked reads (HG003 24149 father,
HG004 NA24143 mother and HG002 NA24385 son),
three groups of CCS long reads (HG003 24149 father,
HG004 NA24143 mother and HG002 NA24385 son)
and four groups of PacBio long reads (dro 100k, hu-
man 100k, dmel filtered and human polished) are used to
test the performance of the four different de novo modes
of LongRepMarker (Supplementary Table S13). The main
evaluation results are shown in Figures 4–10 and Tables
1, 2, 3 and 4. The detailed evaluation results are shown in
Supplementary Section S3.5.

Benchmarking methods

In order to illustrate the effectiveness of LongRepMarker,
we compared the reference-assisted mode with RepeatScout
(41), RepeatModeler2 (44) and RepeatMasker (20), and
compared the de novo mode with RepARK (45), REP-
denovo (46) and RepLong (47). RepARK and REPden-
ovo are used as the benchmarking methods in effective-
ness evaluation of the de novo mode based NGS short
reads, and RepLong is used as the benchmarking method
in effectiveness evaluation of the de novo mode based on
only SMS long reads (Supplementary Table S11). The
detailed configurations of hardware (Supplementary Fig-
ure S21), benchmarking methods and evaluation met-
rics are shown in Supplementary Sections S3.1 , S3.2
and S3.3.

Performance of LongRepMarker in the reference-assisted
mode

It is well known that repeat sequences are present in the
genomes of all living organisms. Identifying repetitive se-
quences in the eukaryotic and prokaryotic genomes pro-
vides important basic information for the research of evolu-
tion. Repeated genes also provide mechanisms to enhance
bacterial virulence, such as antigenic variation (61). How-
ever, due to the lack of a known library of eukaryote repet-
itive sequences, homology-based and structure-based iden-
tification methods do not work well. In addition, most ex-
isting de novo detection methods are not well suited for
large and complex genomes such as mammalian and plant
genomes.

In order to overcome these bottlenecks, LongRepMarker
provides a reference-assisted mode. In this mode, users
only need to input the reference sequence of some organ-
isms, and LongRepMarker can identify the repetitive se-
quences comprehensively, accurately and rapidly. We evalu-
ated the performance of LongRepMarker in the reference-
assisted mode on the six eukaryote genomes (Supplemen-
tary Table S13). The reference sequence sizes of these six
species are 3.196Gb (H.sapiens(hg38)), 2.752Gb (Mouse),
289Mb (Leafcutter Ant), 168Mb (D.melanogaster), 956Mb
(soybean) and 1.040Gb (Gallus). We compared the perfor-
mance of reference-assisted mode of LongRepMarker with
RepeatScout, RepeatMasker and RepeatModeler2, and the
representative detection results are shown in Figures 4, 5,
and Tables 1, 2 and 3. The complete experimental results
are shown in Supplementary Section S3.5.1.

Since RepeatMasker can only be used to mask the re-
peats in the genome, it cannot classify the masked repeats
in detail, so we can only compare the performance of Lon-
gRepMarker with RepeatMasker by detecting the size and
alignment rate of detected fragments as shown in Supple-
mentary Table S14. LongRepMarker is superior to Repeat-
Masker in terms of running time, memory consumption,
fragment size and alignment rate. For example, the N50
of fragments detected by LongRepMarker on the human
dataset is 1034kb, while the corresponding value of Repeat-
Masker is only 7.228 kb. In addition, the multiple alignment
rate of the fragments detected by LongRepMarker on this
dataset is 88.25%, while the corresponding value of Repeat-
Masker is only 7.37% . In order to further analyze the dif-
ference between the detection results of these two tools, we
carried out two comparative experiments, the representa-
tive results are shown in Tables 1, 2 and 3, and the com-
plete results are shown in Supplementary Tables S61 and
S62 of Section S3.8. Among them, Table 1 shows the re-
peat families found by LongRepMarker on Human-chr14
dataset that cannot be found by RepeatMasker, and Ta-
bles 2 and 3 show the comparison of some repeats found
by LongRepMarker and RepeatMasker on Drosophila and
Ant datasets and their classification. Comparative exper-
iments show that LongRepMaker can find some new re-
peat families which cannot be found by RepeatMasker. For
example, LongRepMarker found 4 repeated families la-
beled LTR/DIRs, 40 repeated families labeled LINE/I, 7
repeated families labeled LINE/R2-NeSL and 81 repeated
families labeled DNA/Kolobok-Hydra on the Ant dataset.

https://www.ncbi.nlm.nih.gov/
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Figure 5. Comparison between the detection results generated from the reference-assisted mode of LongRepMarker based on the six species (Drosophila,
Ant, Gallus, Soybean, Human and Mouse) and the corresponding detection results of benchmarking methods (RepeatScout and RepeatModeler2) in terms
of the proportion of covering the RepBase library and the repetitive regions on the reference genome. The label All represents the total coverage ratio,
which is the sum of the proportion of detection results covering all kinds of repetitive sequences in the corresponding library. The label SINEs indicates
the proportion of the detection results covering the SINEs-type repetitive sequences in the corresponding library, label LINEs indicates the proportion of
the detection results covering the LINEs-type repetitive sequences in the corresponding library, label LTR indicates the proportion of the detection results
covering the LTR-type repetitive sequences in the corresponding library, and label DNA indicates the proportion of the detection results covering the DNA
transposon elements-type repetitive sequences in the corresponding library. Sub-figures (A) to (F) show the comparison of the ratio of the detection results
of the three tools on the 6 species covering the corresponding RepBase libraries. Sub-figures (G) to (L) show the comparison of the ratio of the detection
results of the three tools on the 6 species covering the repetitive sequences on the corresponding reference genomes.
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Figure 6. Comparison between the detection results generated from the de novo mode of LongRepMarker based on only NGS short reads over five species
(Drosophila, Ant, Mouse, Human-chr14 and HG003 NA14149 father) and the corresponding detection results of benchmarking methods (RepARK and
REPdenovo) in terms of the proportion of covering the RepBase library and the repetitive regions on the reference genome. The label All represents the
total coverage ratio, which is the sum of the proportion of detection results covering all kinds of repetitive sequences in the corresponding library. The label
DNA indicates the proportion of the detection results covering the DNA transposon elements-type repetitive sequences in the corresponding library, label
LINEs indicates the proportion of the detection results covering the LINEs-type repetitive sequences in the corresponding library, label LTR indicates
the proportion of the detection results covering the LTR-type repetitive sequences in the corresponding library, label RC? indicates the proportion of the
detection results covering the RC?-type repetitive sequences in the corresponding library, and label Satellite indicates the proportion of the detection results
covering the Satellite-type repetitive sequences in the corresponding library. Sub-figures (A) to (E) show the comparison of the ratio of the detection results
of the three tools on the 5 groups of NGS short reads covering the corresponding RepBase libraries. Sub-figures (F) to (J) show the comparison of the ratio
of the detection results of the three tools on the 5 groups of NGS short reads covering the repetitive sequences on the corresponding reference genomes.
Sub-figures (K) and (L) show the comparison of the number of repetitive fragments detected by LongRepMarker and RepeatMasker on Drosophila and
Ant datasets, in which ‘LongRepMarker-Ref’ represents the detection results are generated based on the reference-assisted mode of LongRepMarker, and
‘LongRepMarker-DeNovo’ represents the detection results are generated based on the de novo mode of LongRepMarker.
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Figure 7. Comparison between the detection results generated from the de novo mode of LongRepMarker based on three groups of NGS short reads +
barcode linked reads (HG004 NA24143 father, HG004 NA24143 mother and HG002 NA24385 son) and the detection results generated from the de novo
mode of LongRepMarker based on three groups of NGS short reads + SMS long reads (CCS) in terms of the proportion of covering the human RepBase
library and the repetitive regions on the reference genome of human. The label All represents the total coverage ratio, which is the sum of the proportion
of detection results covering all kinds of repetitive sequences in the corresponding library. The label DNA indicates the proportion of the detection results
covering the DNA transposon elements-type repetitive sequences in the corresponding library, label LINEs indicates the proportion of the detection results
covering the LINEs-type repetitive sequences in the corresponding library, label LTR indicates the proportion of the detection results covering the LTR-
type repetitive sequences in the corresponding library, label lc indicates the proportion of the detection results covering the low complexity-type repetitive
sequences in the corresponding library, and label Satellite indicates the proportion of the detection results covering the Satellite-type repetitive sequences
in the corresponding library. Sub-figures (A) to (C) show the comparison of the ratio of the detection results of these two models on the three groups of
hybrid sequencing data covering the human RepBase library. Sub-figures (D) to (F) show the comparison of the ratio of the detection results of these two
models on the three groups of hybrid sequencing data covering the repetitive sequences on the reference genome of human.

These repeated families did not appear in the detection re-
sults of RepeatMasker. The analysis of the difference be-
tween the detection results of LongRepMarker and Repeat-
Masker is carried out in the discussion section.

Comparison of the detection results of LongRepMaker
with that of RepeatScout and RepeatModeler2 is shown in
Figures 4, 5, 9, Supplementary Figures S22 to S23 and Ta-
bles S15 to S26. From Figure 4, we can find that most of
the detected fragments can be aligned to several different
locations on the reference genome of human (hg38). For ex-
ample, the fragment labeled ‘0’ can be aligned to chr1 and
chr19, respectively. Figure 5 shows the proportion and rep-
resentative classification of the detection results generated
from the three tools on the six species covering the cor-
responding RepBase library and the repetitive regions on
the reference genome. From the perspective of the cover-
age of the total base ratio, LongRepMarker has certain ad-
vantages compared with the latter two tools. For example,
LongRepMarker’s detection results on the Human dataset
cover 82.45% of the bases in the Human’s RepBase library
as compared to 73.70% for RepeatScout, and 63.33% for
RepeatModeler2. Figure 9 and Supplementary Figure S22
show that the repetition frequency and length distribution
of the fragments detected by LongRepMarker have signifi-
cant advantages over the latter two methods. For example,
the length of the longest fragment in LongRepMarker’s de-

tection results on the Drosophila dataset is 32.600 kb, as
compared to 20.200 kb for RepeatScout, and 10.000 kb for
RepeatModeler2.

Detection results of the de novo mode based on only NGS
short reads

The representative detection performance of LongRep-
Marker based on only NGS short reads is shown in Fig-
ures 6 and 9, and the detailed detection results of this mode
are shown in Supplementary Figure S24 and Supplemen-
tary Tables S30 to S39. Five NGS datasets (Drosophila,
Ant, Mouse, Human-chr14 and HG003 NA24149 father
(WGS)) are used in this test, and the performance of Lon-
gRepMarker is compared with two state-of-the-art tools
(RepARK and REPdenovo). From Figure 6, we can see that
LongRepMarker has certain advantages compared with the
latter two tools in the coverage of the total base ratio.
For example, the detection results of LongRepMarker on
the Mouse dataset cover 69.48% of the bases in the corre-
sponding RepBase library, while the corresponding ratios
of RepARK and REPdenovo are 51.62% and 22.70%, re-
spectively. In addition, from the perspective of repetitive se-
quence classification, LongRepMarker can find more repet-
itive fragments and families in most datasets than the latter
two methods. For example, on the mouse dataset, the detec-
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Figure 8. Comparison between the detection results generated from the de novo mode of LongRepMarker based on four groups of SMS long reads
(dro 100k, dmel filtered, human 100k and human polished) and the corresponding detection results of benchmarking method RepLong in terms of the
proportion of covering the RepBase library and the repetitive regions on the reference genome. The label All represents the total coverage ratio, which is the
sum of the proportion of detection results covering all kinds of repetitive sequences in the corresponding library. The label DNA indicates the proportion of
the detection results covering the DNA transposon elements-type repetitive sequences in the corresponding library, label LINEs indicates the proportion of
the detection results covering the LINEs-type repetitive sequences in the corresponding library, label LTR indicates the proportion of the detection results
covering the LTR-type repetitive sequences in the corresponding library, label low complexity indicates the proportion of the detection results covering
the low complexity-type repetitive sequences in the corresponding library, and label Satellite indicates the proportion of the detection results covering the
Satellite-type repetitive sequences in the corresponding library. Sub-figures (A) to (D) show the comparison of the ratio of the detection results of two tools
on four groups of SMS long reads covering the corresponding RepBase libraries. Sub-figures (E) to (H) show the comparison of the ratio of the detection
results of two tools on four groups of SMS long reads covering the repetitive sequences on the corresponding reference genomes. Sub-figure (I) shows the
comparison of the total number of bases in the corresponding RepBase library masked by the detection results of the two tools on four detasets.

tion result of LongRepMarker can cover 27.05% of the total
length of the LINEs-type repetitive sequence in the corre-
sponding RepBase library, while the proportions of the lat-
ter two tools are only 19.88% and 17.85%, respectively. De-
tailed classification of detection results of LongRepMarker
based on only NGS short reads is shown in Supplementary
Section S3.5.3.

From Figure 9 and Supplementary Figure S24, we can
find that the distribution range of length and repetition

frequency of the repetitive sequences found by LongRep-
Marker is larger than that of those two compared tools,
which also implies that the detection results of LongRep-
Marker are more comprehensive and complete than that of
the two compared tools. For example, the detected repetitive
fragment length of LongRepMarker on the Mouse dataset
ranges from 1bp to 23.6 kb, while that of RepARK and
REPdenovo ranges from 1 bp to 16.4kp and from 1 bp to
6.1 kp, respectively. Tables S30 to S39 show the proportion
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Figure 9. Comparison between the size distribution range of the detected fragments generated from the five detection modes of LongRepMarker on 21
groups of real datasets and the size distribution range of the detected fragments of benchmarking methods. For the hybrid mode (i.e. NGS short reads +
barcode linked/SMS reads), since there is no existing methods take the same type of inputs, we only compared the two modes of LongRepMarker.

Figure 10. Visualization of the longest detection fragment obtained by LongRepMarker on the dataset of Human 100k. Sub-graph(a) shows the align-
ment of the longest fragment (NODE 6520 Length 25778) detected by LongRepMarker with the reference genome of human (hg38) using MUMmer
and LINKVIEW. Sub-graph(b) shows the self-alignment of chromosome NC 000011.10 of the reference genome of human (hg38) using MUMmer and
LINKVIEW. It can be seen from the sub-graph(a) that the longest detection fragment can be aligned to multiple different locations on the chromosome
NC 000011.10 many times, and the intricate cross lines in the sub-graph(b) also indicate that there are a large number of complex repetitive sequences
within chromosome NC 000011.10. This experiment proved that the longest detection fragment obtained by LongRepMarker is a real repeating unit
which appears repeatedly inside the chromosome NC 000011.10.

and detailed classification of the detection results generated
from the three tools on these five NGS datasets covering
the corresponding RepBase library and reference genome.
Some practical examples show the completeness and cover-
age of the repetitive sequences detected by LongRepMarker,
RepARK and REPdenovo in the same region of the mouse
genome (Supplementary Figure S25 to S28).

Performance of the de novo mode based on NGS short reads
+ barcode linked reads/SMS long reads

In order to verify that long sequencing fragments can
effectively resolve the problem of repetitive regions that
cannot be solved during the assembly of short se-
quencing fragments, we used four well-known assem-
blers to perform the assembly task on three real datasets
of HG003 24149 father, HG004 NA24143 mother and
HG002 NA24385 son. The test results are shown in Sup-
plementary Tables S40 to S45. Assembly effect comparison
of several tools before and after using barcode linked reads
is shown in Supplementary Section S3.5.2.

Up to date, de novo detection methods are all proposed
based on a single type of sequencing data (e.g. RepARK
and REPdenovo are proposed based on NGS short reads,

and RepLong is proposed based on the third-generation
sequencing long reads). The de novo mode of LongRep-
Marker is currently the only detection method proposed
based on the multi-source sequencing data fusion strate-
gies (e.g. NGS short reads + barcode linked reads or NGS
short reads+SMS long reads). To verify the performance
of the de novo mode based on NGS short reads + barcode
linked reads/SMS long reads, we tested these two types of
de novo detection modes using three sets of real hybrid se-
quencing datasets respectively (Supplementary Table S13).
The NGS short paired-end reads, barcode linked reads and
SMS long reads used in this experiment are downloaded
from the NCBI website (https://ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data). The detection results are shown in Fig-
ures 7, 9 and Supplementary Figure S29, and Supplemen-
tary Tables S40 to S45.

To our knowledge, LongRepMarker is the first method
that can be taken both short and long fragment reads (bar-
code linked and SMS reads) as inputs. Therefore, we did
not compare LongRepMarker with other methods in this
experiment. However, the experimental results here demon-
strate that (i) LongRepMarker provides more flexible op-
tions to users and cope better with the increasing popu-
larity of long reads. (ii) This detection mode can make full

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data
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Table 1. Compared with RepeatMasker, LongRepMarker found new re-
peat families and their detailed numbers on the Human-chr14 dataset

Human-chr14

Super-Family Family amount

LTR ERVL-MaLR 2
LTR ERV1 4
LTR Gypsy 6
LTR Pao 1
LTR Copia 4
LTR ERVK 1
LTR ERVL 1

LINE L1 7
LINE R2-NeSL 1
LINE L2 3

DNA MULE-MuDR 1
DNA hAT-Charlie 3
DNA PiggyBac 1
DNA CMC-EnSpm 2
DNA MuLE-MuDR 1
DNA Ginger 1
DNA Other 1

SINE MIR 2

scRNA - 1

Simple repeat - 2

Satellite telomeric 1

Unknown - 2551

use of the advantages of mixed sequencing data and make
the detection results more superior than those obtained by
using the single source sequencing data. For example, we
can take HG003 NA24149 father dataset as an example to
compare and analyze the test results of single source se-
quencing data and that of mixed sequencing data. The test
results on single-source data cover the number and base
length of DNA transposon elements in the human RepBase
library as 448 and 121.106 kp, respectively, whereas the cor-
responding test results on mixed data are 529 and 157.331
kp, respectively (Supplementary Tables S34 and S40).

Performance of the de novo mode based on only SMS long
reads

In order to better comply with the market demand and fur-
ther expand the application scope of this system, we have
developed a new detection mode based on only the SMS
long reads under the LongRepMarker framework. Com-
pared with the existing detection methods based on the
SMS long reads, this mode has the advantages of longer
fragments, lower memory consumption, higher speed and
higher detection accuracy. The input of this mode is only
SMS long reads, and the output is the detection results
which contain the final repeat library and some reports.

RepLong is a novel de novo repeat element identification
method based on PacBio long reads. RepLong can handle
lower coverage data and serve as a complementary solution
to the existing methods to promote the repeat identification
performance on long read sequencing data. In order to ver-
ify the detection performance of the de novo detection mode
based on only the SMS long reads, we carried out a per-

formance comparison between LongRepMarker and Rep-
Long on four sets of real Pacbio datasets, and the represen-
tative detection results are shown in Figures 8 and 9. The
complete experimental results are shown in Supplementary
Section S3.5.5.

From the results shown in Figure 9, the longest fragment
of detected results generated from LongRepMarker based
on the human 100k dataset is 25.800 kb, while the corre-
sponding value of RepLong is 14.600 kb, and the propor-
tion of detected fragments of LongRepMarker covering the
RepBase library is 73.24%, as compared to 20.90% for Re-
pLong. From the results shown in Figure 9 and Supple-
mentary Figure S24, we can find that the longest fragment
of detected results generated from LongRepMarker based
on the drosophila 100k dataset is 31.400kb, while the cor-
responding value of RepLong is 14.800 kb, and the pro-
portion of detected fragments of LongRepMarker covering
the RepBase library is 37.29%, as compared to 19.56% for
RepLong. The data selected in the experiment comes from
the RepLong website (Supplementary Table S13), where
the coverage of the first two datasets is low, and the cov-
erage of the latter two datasets is relatively high. In order
to compare with RepLong under the low and high cover-
age conditions, we also chose the same datasets for test-
ing. The evaluation results displayed in Figures 8, 9, Sup-
plementary Figure S30, and Supplementary Tables S46 to
S53 all show that LongRepMarker can produce superior de-
tection performance than RepLong on both low-coverage
sequencing data and high-coverage sequencing data. Fur-
thermore, to verify the authenticity of the longest repet-
itive sequence detected by LongRepMarker, we selected
the longest fragment of detected repeat from the dataset
of Human 100k. The visualization is shown in Figure 10,
and the alignment tool MUMmer (62) and the visualiza-
tion tool LINKVIEW (https://github.com/YangJianshun/
LINKVIEW) are used in this test. The visualization proved
that the longest detected repeat fragment by LongRep-
Marker is a real repeating unit which appears repeatedly in-
side the chromosome NC 000011.10.

DISCUSSIONS

Linked-reads provide the long range information missing
from standard approaches, which builds on the Illumina
sequencing technology to provide indexing and barcod-
ing information along with short reads to localize the lat-
ter on long DNA fragments (barcode linked-reads), thus
benefiting the economies of a high throughput platform.
There have been some barcode linked genomics datasets.
For example, one can download the real barcode linked
reads of human from the NCBI website (ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/data/). However, the available barcode
linked data is still limited. In order to fully validate the
performance of LongRepMarker based on the NGS short
reads + real barcode linked reads, we can also use the
method introduced in Supplementary Section S1.4.5 to sim-
ulate the required barcode linked reads.

LongRepMarker can discover some new repetition types
(include new families and novel repetitive sequences) that
RepeatMasker cannot find. In order to prove this, we con-
ducted two experiments: (i) classifying the detection re-

https://github.com/YangJianshun/LINKVIEW
https://ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/


e100 Nucleic Acids Research, 2021, Vol. 49, No. 17 PAGE 14 OF 18

Table 2. Compared with RepeatMasker, LongRepMarker found repeat families and their detailed numbers on the Ant dataset

LongRepMarker (reference-assisted mode) LongRepMarker (de novomode) RepeatMasker

Super-Family Family Amount Super-Family Family Amount Super-Family Family Amount

LTR Copia 150 LTR Copia 18 LTR Copia 4
LTR Gypsy 1608 LTR Gypsy 145 LTR Gypsy 17
LTR Pao 981 LTR Pao 69 LTR Pao 17
LTR DIRs 4 LTR DIRs 1 LTR DIRs 0
LTR ERV1 2 LTR ERV1 1 LTR ERV1 3
LTR Gypsy-Cigr 1 LTR Gypsy-Cigr 1 LTR Gypsy-Cigr 1
LTR Caulimovirus 1 LTR Caulimovirus 1 LTR Caulimovirus 0
LTR Ngaro 1 LTR Ngaro 1 LTR Ngaro 1
LTR ERVL-MaLR 1 LTR ERVL-MaLR 1 LTR ERVL-MaLR 1
LTR Other 4 LTR Other 1 LTR Other 0

LINE Penelope 1007 LINE Penelope 172 LINE Penelope 5
LINE CR1 6 LINE CR1 5 LINE CR1 9
LINE I 40 LINE I 6 LINE I 0
LINE R1 269 LINE R1 34 LINE R1 5
LINE RTE-X 20 LINE RTE-X 12 LINE RTE-X 6
LINE R2-NeSL 7 LINE R2-NeSL 11 LINE R2-NeSL 0
LINE Other 5 LINE Other 1 LINE Other 3

DNA Maverick 2381 DNA Maverick 136 DNA Maverick 4
DNA Kolobok-Hydra 81 DNA Kolobok-Hydra 5 DNA Kolobok-Hydra 0
DNA Kolobok-T2 1122 DNA Kolobok-T2 97 DNA Kolobok-T2 26
DNA TcMar-Mariner 2275 DNA TcMar-Mariner 257 DNA TcMar-Mariner 2228
DNA TcMar-Tc4 185 DNA TcMar-Tc4 78 DNA TcMar-Tc4 3
DNA TcMar 49 DNA TcMar 21 DNA TcMar 1
DNA TcMar-Tc1 1317 DNA TcMar-Tc1 227 DNA TcMar-Tc1 136
DNA Merlin 16 DNA Merlin 18 DNA Merlin 1
DNA hAT 14 DNA hAT 16 DNA hAT 8
DNA hAT-Blackjack 37 DNA hAT-Blackjack 41 DNA hAT-Blackjack 2
DNA Other 119 DNA Other 96 DNA Other 10

RC Helitron 153 RC Helitron 37 RC Helitron 16

Unknown Other 13308 Unknown Other 7400 Unknown Other 8332

sults of the two tools by RepeatModeler2, and then com-
paring the classification results, and (ii) removing Lon-
gRepMarker’s detection results that are covered by Re-
peatMasker, and classifying the remainders by RepeatMod-
eler2. Those two specific experiments are carried on the
three species including Drosophila, Ant and Human-chr14.
In order to fully demonstrate the high specificity of re-
peat sequences detected by LongRepMarker, the work-
ing modes are set to reference-assisted and de novo, re-
spectively. The input of these two modes are reference
genome and sequencing reads, respectively. The detailed
steps of experiments 1 and 2 are described in Supplementary
Section S3.8.

The results in Tables 1 to 3, and Supplementary Tables
S61 and S62 show that LongRepMarker can find some new
repetitive sequence types that cannot be found by Repeat-
Masker. For example, the results in Supplementary Table
S61 show that LongRepMarker found DNA transposon
elements such as hAT-hATm, IS, MULE-NOF and hAT-
hobo on the Drosophila dataset, which are not found by
RepeatMasker. In addition, in terms of the number of re-
peats in some categories, LongRepMarker can find more
repeats than that of RepeatMasker under the same condi-
tion. For example, LongRepMarker found 277 DNA trans-
poson elements with subclass name tcmar-tc1 in the ant
dataset, whereas RepeatMasker only found 136 such ele-
ments. Furthermore, it can be seen from the results shown
in Supplementary Table S62 that LongRepMarker can find
many unique repetitive sequences which do not appear in
RepeatMasker’s detection results. For example, LINE ele-

ments such as R1, R1-LOA, Jockey, I-Jockey, CR1, I, LOA,
R2 and L2 on the Drosophila dataset only appear in the de-
tection results of LongRepMarker. It is worth noting that
the results of the two experiments here are different from the
classification of the detection results on the two sppecies of
Ant and Drosophila in the supplementary. The main reason
is that the two experiments here are based on the Repeat-
Classifier module in RepeatModeler2 to classify the detec-
tion results of LongRepMarker and RepeatMasker, that is,
to label the attribution of each detected fragment based on
RepBase and Dfam libraries (each fragment has a unique
repetition type corresponding to it). The classification in
supplementary refers to the number and ratio of the corre-
sponding types of repetitive sequences in the RepBase and
Dfam libraries, and reference genome covered by the de-
tection results (each fragment is RepBase may have multi-
ple detection fragments corresponding to it, which means
that as long as the detection fragment can be aligned with
the sequence in the library, it will be counted). Further
more, from the data shown in these tables, we also found
that many repeated fragments are labeled as unknown. It
means that these fragments cannot find their category in the
corresponding RepBase and Dfam libraries. By definition,
these fragments should belong to the novelly discovered
repetitive sequences, but it is still unclear what type they
should be. According to the number of the unknown frag-
ments, LongRepMarker can find more such kind of frag-
ments than RepeatMasker. It can be seen from Table 4 that
these fragments can also be aligned to different locations in
the genome.
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Table 3. Compared with RepeatMasker, LongRepMarker found repeat families and their detailed numbers on the Drosophila dataset

LongRepMarker (reference-assisted mode) LongRepMarker (de novomode) RepeatMasker

Super-Family Family Amount Super-Family Family Amount Super-Family Family Amount

LTR Gypsy 7941 LTR Gypsy 560 LTR Gypsy 171
LTR Pao 2076 LTR Pao 130 LTR Pao 5
LTR Copia 577 LTR Copia 44 LTR Copia 7
LTR Viper 39 LTR Viper 0 LTR Viper 0
LTR ERVK 1 LTR ERVK 1 LTR ERVK 1
LTR Gypsy-Cigr 1 LTR Gypsy-Cigr 0 LTR Gypsy-Cigr 0
LTR ERVL-MaLR 1 LTR ERVL-MaLR 1 LTR ERVL-MaLR 8
LTR ERV1 1 LTR ERV1 1 LTR ERV1 6
LTR ERVL 1 LTR ERVL 1 LTR ERVL 3
LTR Other 12 LTR Other 2 LTR Other 2

LINE I-Jockey 1483 LINE I-Jockey 152 LINE I-Jockey 62
LINE CR1 398 LINE CR1 24 LINE CR1 11
LINE Jockey 1396 LINE Jockey 94 LINE Jockey 52
LINE R1 2178 LINE R1 174 LINE R1 304
LINE R1-LOA 55 LINE R1-LOA 11 LINE R1-LOA 0
LINE I 170 LINE I 19 LINE I 5
LINE LOA 100 LINE LOA 20 LINE LOA 1
LINE R2 223 LINE R2 2 LINE R2 0

DNA hAT-hobo 100 DNA hAT-hobo 4 DNA hAT-hobo 0
DNA TcMar-Tc1 231 DNA TcMar-Tc1 17 DNA TcMar-Tc1 5
DNA hAT-Tip100 5 DNA hAT-Tip100 1 DNA hAT-Tip100 2
DNA P 812 DNA P 101 DNA P 1
DNA CMC-Transib 144 DNA CMC-Transib 7 DNA CMC-Transib 6
DNA TcMar-Pogo 46 DNA TcMar-Pogo 4 DNA TcMar-Pogo 8
DNA MULF-NOF 67 DNA MULF-NOF 4 DNA MULF-NOF 0

RC Helitron 173 RC Helitron 12 RC Helitron 2

Unknown Other 2967 Unknown Other 933 Unknown Other 2863

Table 4. Partial INDEL variation statistics of detection results generated by the de novo mode of LongRepMarker on the Mouse dataset

Repeat Fragment id
Location on

fragment
Fragment

length (bp)
Repeat
family Reference id

Location on
Ref. Variation/length

NODE 1612 10359 7177 10359 LTR / ERV1 CM001014.2 2839743 Deletion/513bp
NODE 1612 10359 3281 10359 LTR / ERV1 CM001014.2 3296769 Deletion/509bp
NODE 1612 10359 7179 10359 LTR / ERV1 CM001014.2 3780992 Deletion/469bp
NODE 6694 4510 4027 4510 LINE / L1 CM000995.2 176220701 Deletion/483bp
NODE 6694 4510 493 4510 LINE / L1 CM000995.2 176933206 Deletion/483bp
NODE 6694 4510 490 4510 LINE / L1 CM000995.2 177403768 Deletion/483bp
NODE 6694 4510 4026 4510 LINE / L1 CM000995.2 177753322 Deletion/483bp
NODE 820 17868 5685 17868 Unknown KQ030486.1 22319 Deletion/454bp
NODE 820 17868 12222 17868 Unknown GL456077.1 69596 Deletion/454bp
NODE 820 17868 5679 17868 Unknown CM000997.2 60686584 Deletion/453bp
NODE 820 17868 5685 17868 Unknown CM000997.2 61171930 Deletion/454bp
NODE 3948 6574 3828 6574 Unknown JH584324.1 2589865 Deletion/471bp
NODE 3948 6574 3827 6574 Unknown CM000994.2 8193887 Deletion/471bp
NODE 3948 6574 3827 6574 Unknown CM001001.2 90385973 Deletion/471bp
NODE 3948 6574 3828 6574 Unknown CM000997.2 131225987 Deletion/471bp
NODE 4884 6041 1320 6041 Unknown JH584293.1 28699 Deletion/467bp
NODE 4884 6041 4901 6041 Unknown CM000997.2 42146528 Deletion/467bp
NODE 4884 6041 4774 6041 Unknown CM000997.2 42643739 Deletion/467bp
NODE 9286 2926 508 2926 Unknown CM001013.2 124364290 Deletion/521bp
NODE 9286 2926 508 2926 Unknown CM001013.2 125562337 Deletion/521bp
NODE 9286 2926 510 2926 Unknown CM001013.2 125299304 Deletion/521bp
NODE 1162 13541 4229 13541 LINE / L1 KZ289068.1 113232 Deletion/588bp
NODE 1162 13541 4229 13541 LINE / L1 CM000997.2 146196060 Deletion/588bp
NODE 1162 13541 4210 13541 LINE / L1 CM000997.2 146718666 Deletion/587bp
NODE 1162 13541 4262 13541 LINE / L1 GL456053.2 123786 Deletion/587bp
NODE 1790 9471 1929 9471 Unknown GL456350.1 180728 Insertion/467bp
NODE 1790 9471 7117 9471 Unknown CM000997.2 41935405 Insertion/467bp
NODE 1790 9471 7141 9471 Unknown CM000997.2 42287518 Insertion/467bp
NODE 5808 5209 3213 5209 LINE / L1 KQ030486.1 22317 Deletion/454bp
NODE 5808 5209 2013 5209 LINE / L1 GL456077.1 69568 Deletion/454bp
NODE 5808 5209 3208 5209 LINE / L1 CM000997.2 60845802 Deletion/454bp
NODE 5808 5209 3216 5209 LINE / L1 CM000997.2 60686589 Deletion/453bp
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The size of k-mers has a certain impact on the processing
efficiency of LongRepMarker, because the smaller the size
of k, the easier it is for k-mers to aggregate into unique k-
mers (k-mers to their canonical representation with respect
to reverse-complementation which are called the unique k-
mers), which makes the final unique k-mer set smaller, thus
reducing the time and computational overhead of the sub-
sequent alignment process. Theoretically, the influence of
k-mers size on the accuracy of the test results is not sig-
nificant, because LongRepMarker finds candidate repeti-
tive sequences by looking for multiple alignment unique k-
mers and their coverage regions on the reference genome
or assembly results. Theoretically, the size of k-mers does
not affect the acquisition of multiple alignment unique k-
mers and their coverage regions on the reference genome
or assemblies. However, in fact, due to the existence of se-
quencing errors, the size of k-mers will have a certain im-
pact on the accuracy of detection results, which is mainly
manifested in the small size of k (such as less than 11 bp).
The main reason for this effect is that when the size of k-
mer is small, it is easy to cause coupling alignment under
the combined effect of sequencing error and alignment fault
tolerance strategy, which leads to the ordinary unique k-mer
which are not in the range of multiple alignment unique k-
mers to be screened into the process of detection, resulting in
the final detection results containing a large number of non-
repetitive elements. In order to solve this problem, we need
to limit the minimum value of k. In practice, the formula
in Supplementary Section S1.4.7 is usually used to limit the
size of k.

There are some reports generated in the detection results
of LongRepMarker (Supplementary Section S1.4.6). First
of all, LongRepMarker generates a repetitive sequence li-
brary with annotation information, as shown in Supple-
mentary Figure S8. In this file, the first line starting with
the angle bracket records the fragment ID and the repeat
type of this fragment (e.g. the repeat type of the 4603-th
fragment is satellite DNA). The second line is composed
of A–T–G–C bases, which records the specific repetitive se-
quence. Secondly, LongRepMarker generates a report that
records the detailed distribution of repetitive sequences in
the genome, as shown in Supplementary Figure S9. The re-
port includes the fragment ID, the starting position and
ending position of the repetitive region on the fragment,
the starting position and ending position of the repetitive
region aligned to the reference sequence, the detailed align-
ment (cigar string), and the identity value of the alignment.
The multiple occurrence of the same fragment ID in the
report indicates that there are multiple copies of the frag-
ment in the genome, and the number of occurrences is the
number of copies. Thirdly, LongRepMarker generates a sta-
tistical report which records the details about the number
of repeats, the proportion and the covered bases of each
type of repeats, as shown in Supplementary Figure S10.
This report is obtained by mapping the records in the Rep-
Base and Dfam libraries to the detection results generated
by LongRepMarker through RepeatMasker. Finally, Lon-
gRepMarker generates a VCF format structural variation
statistical report in the detection results, just as shown in
Supplementary Figure S11. VCF (Variant Calling Format)
is a tab-delimited text file that is used to describe single nu-

cleotide variants (SNVs) as well as insertions, deletions, and
other sequence variations.

The genomic variation regions between repeating seg-
ments generate a chimeras, which can negatively affect the
alignment of the entire segment. Chimeras consist of two
or more repetitive regions and some genomic variation re-
gions, which cannot be aligned to overlap sequences many
times. However, the genomic variation regions between re-
peating segments are also the important component of re-
peating regions, and they are an important manifestation of
repetitive regions polymorphism (63). In addition, the study
and analysis of genomic structural variations that occur
within the repetitive regions can provide a new perspective
for understanding life processes and analyzing life mecha-
nisms (64). LongRepMarker is designed based on technolo-
gies of the de novo sequence assembly and multiple sequence
alignment to identify repetitive regions in a genome. From
the perspective of implementation principles, it can identify
the genomic structural variations contained in the repetitive
sequences, as shown in Table 4. In this table, the number of
repetitions of a fragment tag in the first column is equal to
the number of copies of the repetitive sequence that the tag
corresponds to in the genome, and the last column records
the detailed type and size of the variation in each repetitive
sequence. Based on the above reasons, we have completely
preserved the genomic variations that occur inside the repet-
itive fragments (Supplementary Section S3.7).

CONCLUSION

Various studies have demonstrated the important of repet-
itive elements in genomes. However, existing methods are
not able to provide robustly satisfactory performance be-
cause NGS reads are too short and long reads often have
high error rates. In this study, we proposed a novel identi-
fication framework, LongRepMarker, based on the global
de novo assembly of Illumina short paired-end reads and
barcode linked reads or SMS long reads, and the k-mer-
based multiple sequence alignment for precisely marking
long repetitive sequences in genomes. LongRepMarker pro-
vides three different workflows: (i) the reference-assisted
mode can quickly and accurately derive a repeat library for
large species when the reference genomes are provided; (ii)
the de novo modes based on NGS short reads + barcode
linked reads/SMS long reads can identify the repeats in the
genomes to a greater extent by assembling mixed sequenc-
ing reads of different spans; (iii) the de novo mode based on
only SMS long reads is one of the few tools that only rely
on third generation sequencing reads for repetitive sequence
detection, and has the advantages of low memory consump-
tion, high speed and high detection accuracy. Our com-
prehensive experimental results show that LongRepMarker
can not only identify the repetitive sequences comprehen-
sively, accurately and rapidly in the reference-assisted mode,
but also achieve more satisfactory results than state-of-the-
art de novo detection methods.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkab563#supplementary-data
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