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Abstract Many antibiotics target the assembly of cell wall peptidoglycan, an essential,
heteropolymeric mesh that encases most bacteria. In rod-shaped bacteria, cell wall elongation is
spatially precise yet relies on limited pools of lipid-linked precursors that generate and are
attracted to membrane disorder. By tracking enzymes, substrates, and products of peptidoglycan
biosynthesis in Mycobacterium smegmatis, we show that precursors are made in plasma membrane
domains that are laterally and biochemically distinct from sites of cell wall assembly. Membrane
partitioning likely contributes to robust, orderly peptidoglycan synthesis, suggesting that these
domains help template peptidoglycan synthesis. The cell wall-organizing protein DivIVA and the
cell wall itself promote domain homeostasis. These data support a model in which the
peptidoglycan polymer feeds back on its membrane template to maintain an environment
conducive to directional synthesis. Our findings are applicable to rod-shaped bacteria that are
phylogenetically distant from M. smegmatis, indicating that horizontal compartmentalization of
precursors may be a general feature of bacillary cell wall biogenesis.

Introduction

The final lipid-linked precursor for peptidoglycan synthesis, lipid Il, is made by the glycosyltransfer-
ase MurG in the inner leaflet of the plasma membrane. Lipid Il is then flipped to the outer leaflet by
MurJ where its disaccharide-pentapeptide cargo is inserted into the existing cell wall by membrane-
bound transglycosylases and transpeptidases (Zhao et al., 2017). Early in vitro work in Staphylococ-
cus aureus and Escherichia coli indicated that a fluid microenvironment might stimulate the activities
of MurG and the upstream, lipid | synthase MraY (Norris and Manners, 1993). More recent in vivo
data has localized Bacillus subtilis MurG to regions of increased fluidity (RIFs, Miiller et al., 2016;
Strahl et al., 2014), one of three classes of membrane domains that have been described in bacteria
to date. In mycobacteria, intracellular membrane domains (IMD, formerly called PMf, Morita et al.,
2005) can be separated from the conventional plasma membrane (PM-CW, for plasma membrane
associated with cell wall) by sucrose density gradient fractionation. The proteome and lipidome of
IMD are distinct from those of the PM-CW (Hayashi et al., 2016; Morita et al., 2005). Reanalysis of
our proteomics data (Hayashi et al., 2016) suggested that Mycobacterium smegmatis MurG is
enriched in the IMD while sequentially acting transglycosylases and transpeptidases associate with
the PM-CW. While PM-CW-resident proteins distribute along the perimeter of live mycobacteria,
IMD-resident proteins are enriched toward sites of polar cell elongation with additional presence
along the sidewalls (Hayashi et al., 2016; Hayashi et al., 2018). We also noted that the polar enrich-
ment of MurG-RFP resembles that of the validated IMD marker mCherry-GIfT2 or GIfT2-GFP
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Figure 1. MurG is enriched in the IMD, and PBPs associate with PM-CW. (A) Membrane-bound steps of peptidoglycan synthesis with hypothesized
partitioning into IMD and PM-CW. (B) Bacteria are lysed by nitrogen cavitation, and cell lysate is sedimented on a sucrose density gradient. (C) Lysates
from wild-type or MurG-Dendra2-expressing M. smegmatis were fractionated as in (B) and separated by SDS-PAGE. Top, in-gel fluorescence shows
MurG-Dendra2 association with the IMD. Treatment with benzyl alcohol (BA) redistributed the protein across the fractions. Bottom, wild-type M.
smegmatis membrane fractions were incubated with Bocillin-FL prior to SDS-PAGE. Labeled PBPs are enriched in PM-CW. Band intensities are
quantitated in Figure 1—figure supplement 4.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. MurG-Dendra2 is functional.

Figure supplement 2. Fluorescent fusions do not change the cell length of M. smegmatis.

Figure supplement 3. Immunoblot analysis of the IMD and the PM-CW membrane fractions separated by sucrose density sedimentation.

Figure supplement 4. Membrane-bound MurG-Dendra?2 (fractions 4-12) is enriched in the IMD (fractions 4-5), (A), and Bocillin-FL-labeled PBPs are
enriched in the PM-CW (fractions 7-12), (B).

Figure supplement 5. MurG-Dendra2 is spatially coincident with the IMD reporter mCherry-GIfT2.

Figure supplement 6. Visualization of PonA1 using Bocillin-FL.

(Hayashi et al., 2016, Meniche et al., 2014), but that nascent peptidoglycan at the mycobacterial
poles primarily abuts rather than colocalizes with mCherry-GIfT2 (Hayashi et al., 2018). These obser-
vations suggested a model where lipid Il synthesis is segregated from subsequent steps of cell wall
assembly (Figure 1A).

Results and discussion

To test this model, we first expressed a functional MurG-Dendra2 fusion in M. smegmatis (Figure 1—
figure supplements 1 and 2) and assayed its distribution in membrane fractions that had been sepa-
rated by a sucrose density gradient (Figure 1B). MurG-Dendra2, a peripheral membrane protein,
was enriched in both the cytoplasmic and IMD membrane fractions (Figure 1C, top; Figure 1—fig-
ure supplements 3A and 4). In intact cells, polar enrichment of MurG-Dendra2 was coincident with
that of the IMD marker mCherry-GfT2 (Figure 1—figure supplement 5). This spatial relationship
was similar to that previously observed for other MurG and GIfT2 fluorescent fusion proteins
(Hayashi et al., 2016; Hayashi et al., 2018; Meniche et al., 2014).

Enzymes from the penicillin-binding proteins (PBPs) and shape, elongation, division, and sporula-
tion (SEDS) families integrate the disaccharide-pentapeptide from lipid Il into peptidoglycan
(Zhao et al., 2017). While our proteomics did not detect many polytopic membrane proteins, includ-
ing SEDS proteins, our PM-CW dataset was enriched for all known PBPs (Hayashi et al., 2016). Fluo-
rescent derivatives of B-lactam antibiotics, such as Bocillin-FL, bind to PBPs and report
transpeptidase-active enzymes. We incubated subcellular fractions from wild-type M. smegmatis
with Bocillin-FL and identified fluorescent proteins in the PM-CW (Figure 1C, bottom; Figure 1—fig-
ure supplements 3B and 4). As expected for PBPs, the signal from these bands was diminished by
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Figure 2. Lipid Il is synthesized in the IMD and trafficked to the PM-CW. (A) Left, conventional microscopy of M. smegmatis coexpressing PonA1-mRFP
and MurG-Dendra?2 treated +/- benzyl alcohol (BA). Right, fluorescence distribution of the fusion proteins. a.u., arbitrary units. r denotes the Pearson’s
correlation value. 42>n>57. (B) Top, detection of lipid-linked peptidoglycan (PG) precursors from membrane fractions. Bottom, metabolic labeling of
mycobacterial cell wall synthesis (Garcia-Heredia et al., 2018). (C) PG precursors are labeled as in (B), top. The labeled precursors are in the IMD and
PM-CW of wild-type M. smegmatis but accumulate in the IMD upon MurJ depletion (Garcia-Heredia et al., 2018). While we do not yet understand the
loss of signal from fraction 10, we note that there are precursors present but in low abundance (see Figure 2—figure supplement 3B). (D) M.
smegmatis-expressing MurG-Dendra2 were incubated with alkDADA. Surface-exposed alkynes on fixed cells were detected by CuAAC (Garcia-
Heredia et al., 2018). Bacteria were imaged by SIM-E.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. PonA1-mRFP is functional.
Figure supplement 2. PimE-GFP is functional and has a similar subcellular localization to PonA1-mRFP.
Figure supplement 3. MurJ is critical to comparmentalize both vertical and lateral cell wall synthesis.

pre-treatment with ampicillin (Figure 1—figure supplement 6). We focused on characterizing
PonA1, an essential bifunctional transglycosylase/transpeptidase in M. smegmatis (Hett et al., 2010;
Kieser et al., 2015; Baranowski et al., 2018). Depletion of PonA1 (Hett et al., 2010) resulted in
the loss of the higher molecular band (Figure 1—figure supplement 6), confirming this protein is
present and active in the PM-CW (Figure 1C, bottom). We next expressed a functional PonA1-mRFP
fusion in M. smegmatis (Figure 1—figure supplement 2 and Figure 2—figure supplement 1,
Kieser et al., 2015; Baranowski et al., 2018). Although we detected potential breakdown products
of the fusion protein by anti-RFP immunoblot (Figure 2—figure supplement 1), we found that it,
like native PonA1, was active in the PM-CW and distributed along the sidewall in a manner similar to
the functional PM-CW marker PimE-GFP (Figure 2—figure supplements 1 and 2, Hayashi et al.,
2016). Coexpression of MurG-Dendra2 and PonA1-mRFP confirmed that the proteins have different
subcellular localization (Figure 2A). Together, our data show that MurG and PonA1 occupy mem-
brane compartments that are biochemically and likely spatially distinct.

The association of MurG with the IMD and of PonA1 with the PM-CW implies that the IMD is the
site of lipid Il synthesis, while the PM-CW is where peptidoglycan assembly takes place. We refined
an in vitro p-amino acid exchange assay to detect lipid-linked peptidoglycan precursors from mem-
brane fractions (Figure 2B, Garcia-Heredia et al., 2018; Qiao et al., 2014). In wild-type cells, we
detected biotinylated molecules in both the IMD and PM-CW (Figure 2C; Figure 1—figure
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supplement 3B). We hypothesized that the labeled species comprise precursors in both the inner
and outer leaflets of the plasma membrane. We and others have shown that depletion of MurJ
results in accumulation of biotinylated precursors (Garcia-Heredia et al., 2018; Qiao et al., 2017).
By performing the p-amino acid exchange reaction on membrane fractions obtained from MurJ-
depleted M. smegmatis (Figure 2—figure supplement 3A), we found that precursors accumulate in
the IMD (Figure 2C; Figure 1—figure supplement 3C; Figure 2—figure supplement 3B). These
results suggest that lipid Il is made in the IMD and transferred to the PM-CW in a MurJ-dependent
manner.

Based on our biochemical data, we hypothesized that lipid Il incorporation into the cell wall is lat-
erally segregated from its synthesis. We previously showed that alkynyl and azido p-amino acid
dipeptides (Liechti et al., 2014) incorporate into lipid-linked peptidoglycan precursors in M. smeg-
matis (Garcia-Heredia et al., 2018) and that metabolic labeling with alkynyl dipeptide (alkDADA or
EDA-DA, Liechti et al., 2014) is most intense in regions adjacent to the IMD marker mCherry-GIfT2
(Hayashi et al., 2018). We labeled MurG-Dendra2-expressing M. smegmatis with alkDADA and
detected the presence of the alkyne by copper-catalyzed azide-alkyne cycloaddition (CuAAC, Gar-
cia-Heredia et al., 2018). To distinguish extracellular alkynes present in periplasmic lipid Il and newly
polymerized cell wall from alkynes originating from cytoplasmic lipid Il, we selected picolyl azide-
Cy3 as our label because of its poor membrane permeability (Figure 2B, Yang and Hinner, 2015).
Using this optimized protocol, we observed nascent peptidoglycan deposition at the polar tip,
whereas MurG-Dendra2 was proximal to this site (Figure 2D). Our data suggest that lipid Il synthesis
is laterally partitioned from the subsequent steps of peptidoglycan assembly. MurJ depletion
reduced and delocalized alkDADA-derived fluorescence (Figure 2—figure supplement 3C), consis-
tent with a gatekeeper role for the flippase in both lateral membrane compartmentalization and flip-
ping across the inner membrane.

Next, we wanted to understand the significance of membrane architecture for cell wall synthesis.
We perturbed the membrane with benzyl alcohol, a compound that preferentially inserts into disor-
dered membrane regions in vitro (Muddana et al., 2012) and has been used to fluidize membranes
from mammalian and bacterial cells (Friedlander et al., 1987; Ingram, 1976; Konopasek et al.,
2000; Nagy et al., 2007, Strahl et al., 2014; Zieliriska et al., 2020). In B. subitilis, benzyl alcohol dis-
rupts RIFs (Miiller et al., 2016). In M. smegmatis, we found that benzyl alcohol reduced the cellular
material associated with the IMD (Figure 3A, Figure 3—figure supplement 1, Figure 1—figure
supplement 3D) and altered the distribution of FM4-64, a non-specific lipophilic dye (Figure 3—fig-
ure supplement 2), and of plasma membrane glycolipids (Figure 3—figure supplement 3). How-
ever, the fluidizer did not alter labeling by N-AIkTMM or O-AIkTMM (Figure 3—figure supplement
4), probes that, respectively, mark the noncovalent and covalent lipids of the outer ‘myco’ mem-
brane (Foley et al., 2016). These observations suggest that benzyl alcohol primarily affects the
plasma membrane in M. smegmatis. MurG-Dendra2 was also less enriched in the IMD fraction fol-
lowing benzyl alcohol treatment (Figure 1C, top; Figure 1—figure supplements 3E and 4) and, in
live cells, at the poles (Figure 2A). By contrast, benzyl alcohol produced subtle changes in the sub-
cellular distribution of active PBPs (Figure 1C, bottom; Figure 1—figure supplements 3D and
4), although PonA1 shifted toward the poles in live cells (Figure 2A). Disruption of plasma mem-
brane architecture was accompanied by dampening and delocalization of peptidoglycan assembly
(Figure 3B, Figure 3—figure supplement 5) as well as a reduction in lipid precursor synthesis
(Figure 3C) and halt in polar elongation (Figure 3—figure supplement 4). The effects of benzyl
alcohol were reversible, as indicated by colony-forming units and prompt recovery of peptidoglycan
synthesis (Figure 3—figure supplement 6). Dibucaine, a compound that preferentially disrupts
ordered membrane regions in vitro (Kinoshita et al., 2019) and can fluidize membranes from
eukaryotic cells (Kim et al., 1997), also delocalized IMD-resident proteins (Figure 3—figure supple-
ment 7) and delocalized and reduced peptidoglycan synthesis (Figure 3B, Figure 3—figure supple-
ment 5).

Our data suggest that membrane architecture contributes to peptidoglycan synthesis and cell
growth in M. smegmatis. While we cannot rule out pleiotropic effects of chemical fluidizers on mem-
brane potential or membrane protein activity, we note that benzyl alcohol decreases peptidoglycan
precursor accumulation (Figure 3C), rather than increasing it as occurs with protonophore treatment
(Rubino et al., 2018) or MurJ depletion (Figure 2C; Garcia-Heredia et al., 2018; Qiao et al.,
2017); MurG and PonA1 are retained in the membrane upon benzyl alcohol treatment (Figure 1C,
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Figure 3. Membrane perturbations disrupt peptidoglycan biogenesis in M. smegmatis and phylogenetically-distant bacilli. (A) Lysates from wild-type
M. smegmatis treated +/- benzyl alcohol (BA) were sedimented in a sucrose density gradient. Density of the cellular material is quantified in Figure 3—
figure supplement 1. (B) Top, wild-type M. smegmatis was incubated or not with benzyl alcohol or dibucaine, then labeled with alkDADA; merged
images correspond to fluorescent image with the corresponding phase contrast. Bottom, the distribution of peptidoglycan labeling from wild-type M.
smegmatis that was incubated with BA or dibucaine (DB) for the indicated time was quantitated as in Figure 2A, except that signal intensity was not
normalized. The changes in fluorescence are further quantified by flow cytometry in Figure 3—figure supplement 5. (C) Top left, DivIVA-eGFP-ID M.
smegmatis was either treated with benzyl alcohol, depleted of DivIVA, or both, and the peptidoglycan precursors from whole cells were biotinylated as
in Figure 2C. Bottom left, biotin-derived chemiluminescence was quantified by densitometry; signal is expressed as % of untreated DivIVA-eGFP-ID
(first lane). Right, DivIVA-eGFP-ID M. smegmatis was treated as in the left panel but labeled with alkDADA, subjected to CUAAC, and analyzed by flow
cytometry. MFI, median fluorescence intensity values for a representative experiment. Error bars denote standard deviation of technical triplicates. (D)
Phylogenetic tree constructed with 16S rDNA sequences (rate of mutation not considered). Taxonomic groups matched with colors to their levels with
only diverging points shown. Shapes and growth modes illustrated for select species. (E) Left, different bacteria treated +/- benzyl alcohol followed by
alkDADA incubation. Arrowheads highlight irregular patches of peptidoglycan. Insets are magnified. Where applicable, E. coli was pre-incubated with
A22. Right, bacteria were treated with benzyl alcohol, translation-inhibiting kanamycin, or peptidoglycan-acting phosphomycin or ampicillin and then
labeled as in (B) and analyzed by flow cytometry (see Materials and methods). MFI values were normalized to untreated controls. Experiments were
performed three to nine times in triplicate. Error bars denote standard deviation of biological replicates. *p<0.05; **p<0.005; ***p<0.0005;
**%5<0.00005, ratio paired t-tests and one-way ANOVA with Dunnet’s test for non-normalized MFI of biological replicates. Scale bars, 5 um.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The effects of benzyl alcohol, DivIVA depletion, and spheroplasting on IMD and PM-CW abundance.

Figure supplement 2. Benzyl alcohol alters FM4-64FX distribution.

Figure supplement 3. Benzyl alcohol and depletion of DivIVA affect the distribution of membrane glycolipids.

Figure supplement 4. Benzyl alcohol halts cell elongation but does not otherwise impact the localization of mycomembrane probes.
Figure supplement 5. Benzyl alcohol and dibucaine decrease peptidoglycan synthesis over time.

Figure supplement 6. M. smegmatis survives benzyl alcohol (BA) treatment.

Figure supplement 7. Polar enrichment and spatial coincidence of MurG-Dendra2 and mCherry-GIfT2 decrease upon dibucaine treatment.
Figure supplement 8. Benzyl alcohol does not delocalize DivIVA-eGFP.

Figure 1—figure supplement 4); and at least a subset of membrane-bound PBPs remain competent
for Bocillin-FL binding (Figure 1C, Figure 1—figure supplement 4). Moreover, benzyl alcohol and
dibucaine delocalize nascent peptidoglycan from the poles to the sidewall (Figure 3B), an effect that

Garcia-Heredia et al. eLife 2021;10:€60263. DOI: https://doi.org/10.7554/eLife.60263 50f 16


https://doi.org/10.7554/eLife.60263

ELife Short report

Biochemistry and Chemical Biology

cannot be explained by diminished synthesis alone. In the case of benzyl alcohol, redistribution of
new cell wall occurs within minutes (Figure 3B, Figure 3—figure supplement 5), consistent with
rapid fluidization (Konopdsek et al., 2000; Yano et al., 2016), and likely prior to changes in gene
expression. Nevertheless, it is possible that chemical fluidizers directly disrupt the activity of cell wall
synthesis proteins in addition to altering the milieu in which these proteins function.

The impacts of benzyl alcohol and dibucaine on MurG-Dendra2 localization were subtly different
(compare Figure 2A to Figure 3—figure supplement 7) as was the time frame for disruption of cell
wall synthesis by these chemicals (Figure 3B, Figure 3—figure supplement 5). In model mem-
branes, benzyl alcohol promotes phase separation by further fluidizing disordered regions
(Muddana et al., 2012), while dibucaine disrupts phase separation by fluidizing ordered regions
(Kinoshita et al., 2019). In more-complex cellular membranes, the effects of these compounds may
be influenced by the presence of pre-existing mechanisms that establish and maintain membrane
organization. For example, the architecture of eukaryotic membranes is influenced by transient links,
or pinning, to the cytoskeleton (Fujimoto and Parmryd, 2016; Liu et al., 2015). In B. subtilis and E.
coli, actin homologs like MreB direct peptidoglycan synthesis along the lateral cell surface
(Daniel and Errington, 2003; Iwai et al., 2002; Shi et al., 2018; Zhao et al., 2017). They also orga-
nize the membrane into domains of increased (Oswald et al., 2016; Strahl et al., 2014) and
decreased fluidity (Wagner et al., 2020). Global reductions in membrane fluidity interfere with the
assembly and motion of B. subtilis MreB (Zieliriska et al., 2020; Gohrbandt et al., 2019,
Kurita et al., 2020), potentially indicating a feedback loop between the physical state of the mem-
brane and MreB-directed cell wall elongation. We found that benzyl alcohol delocalized or damp-
ened cell wall assembly in rod-shaped bacteria with divergent envelope composition and modes of
growth (Figure 3D,E). Peptidoglycan synthesis was less affected by benzyl alcohol in coccoid spe-
cies, which lack MreB or obvious RIFs (Wenzel et al., 2018), and in rounded, A22-treated E. coli, in
which MreB assembly is inhibited (Figure 3E). Thus, membrane organization likely contributes to
effective, directional cell wall synthesis in rod-shaped bacteria.

Mycobacteria lack MreB. How, then, is the IMD partitioned away from the rest of the plasma
membrane? In these organisms, the essential tropomyosin-like protein DivIVA (Wag31) concentrates
cell wall assembly at the poles (Jani et al., 2010; Kang et al., 2008; Melzer et al., 2018). DivIVA
depletion results in deformation and rounding of mycobacterial cells (Kang et al., 2008,
Meniche et al., 2014; Nguyen et al., 2007). Given the similarities in DivIVA and MreB function, we
hypothesized that DivIVA creates and/or maintains the IMD. We used M. smegmatis expressing Div-
IVA-eGFP-ID in which DivIVA is fused to both eGFP and an inducible degradation tag
(Meniche et al., 2014) to deplete DivIVA. Depletion of the protein reduced the amount of IMD-
associated cellular material (Figure 4A, Figure 3—figure supplement 1, Figure 1—figure supple-
ment 3F-G), altered the distribution of plasma membrane glycolipids (Figure 3—figure supplement
3), and delocalized the IMD marker mCherry-GIfT2 from the poles (Figure 4B).

DivIVA phosphorylation regulates MraY and/or MurG activity via an indirect, unknown mechanism
(Jani et al., 2010). Consistent with these data, we found that depletion of the protein reduced both
lipid-linked peptidoglycan precursor abundance and alkDADA incorporation (Figure 3C). Membrane
disruption by benzyl alcohol did not delocalize DivIVA from the polar tips (Figure 3—figure supple-
ment 8), and the suppressive effects of benzyl alcohol and DivIVA depletion on precursor abundance
and cell wall synthesis were not additive (Figure 3C), suggesting that the perturbations act on the
same pathway. Unlike DivIVA depletion (Figure 4B), benzyl alcohol does not change M. smegmatis
shape (Figure 2A). Therefore, while we cannot exclude the possibility that spherical morphology in
DivIVA-depleted cells indirectly impacts membrane partitioning — for example by mislocalization of
curvature-sensing proteins or by altering the spacing between the membrane and cell wall — our
results are most consistent with a model in which DivIVA organizes the mycobacterial membrane for
optimal cell wall synthesis.

As lipid Il both generates and homes to disordered regions of model membranes
(Ganchev et al., 2006; Jia et al., 2011; Valtersson et al., 1985), the effect of DivIVA on precursors
suggests that concentrated peptidoglycan synthesis is a cause or a consequence (or both) of IMD/
PM-CW partitioning. In other organisms, lipid Il production is required for MreB rotation (Domi-
nguez-Escobar et al., 2011; Garner et al., 2011; van Teeffelen et al., 2011), to recruit MreB to the
plasma membrane (Schirner et al., 2015), and for normal membrane staining by a lipophilic fluores-
cent dye (Muchova et al., 2011), so the precursor might also play an indirect role in
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Figure 4. DivIVA and an intact cell wall promote membrane domain maintenance. (A) Lysates from MurG-Dendra2-expressing M. smegmatis
spheroplasts (Melzer et al., 2018) or from the DivIVA-eGFP-ID strain depleted (off) or not (on) of DivIVA (Meniche et al., 2014) were sedimented in a
sucrose density gradient. (B) DivIVA was depleted or not from mCherry-GIfT2-expressing M. smegmatis. Depletion of DivIVA delocalizes mCherry-GIfT2.
M. smegmatis expressing MurG-Dendra2 (C) or coexpressing mCherry-GIfT2 and DivIVA-eGFP-ID (D) were spheroplasted or not (control) and imaged.
In spheroplasted cells, the IMD-associated proteins distribute along the cell periphery. Arrows mark spheroplasts outside and within insets, which have
increased size and brightness. Merged images correspond to fluorescent image with the corresponding phase contrast. (E) Model for self-organization
of plasma membrane and cell wall in M. smegmatis. Brown line indicates the cell wall. Short brown lines perpendicular to the membrane and cell wall
indicate that the cell wall is likely to be physically connected to the membrane in the PM-CW regions (Morita et al., 2005). All scale bars, 5 pm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. An intact cell wall supports MurG partitioning within the membrane.

compartmentalizing the mycobacterial membrane via its influence on DivIVA. However, we previ-
ously found that the IMD is biochemically intact after 8 hr of treatment with D-cycloserine
(Hayashi et al., 2018), an antibiotic that we have shown to block M. smegmatis peptidoglycan pre-
cursor synthesis within 1 hr (Garcia-Heredia et al., 2018). IMD-resident proteins delocalize, but not
until 6 hr of treatment. The persistence of IMD-resident proteins and the time frame of delocalization
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indicate that concentrated lipid Il synthesis is more likely a consequence, rather than a cause, of
mycobacterial membrane compartmentalization.

Our data supported a model in which DivIVA is necessary to maintain membrane partitioning,
which in turn supports efficient synthesis of peptidoglycan precursors and their precise incorporation
into the cell wall. However, we noted that eukaryotic membrane architecture can also be influenced
by transient interactions with external structures like extracellular matrix and cellulose (Fujimoto and
Parmryd, 2016; Liu et al., 2015). Furthermore, biophysical modeling suggests that osmotic pinning
of the plasma membrane against the bacterial cell wall can induce microphase separation
(Mukhopadhyay et al., 2008). In mycobacteria, co-fractionation of the plasma membrane and cell
wall (i.e. PM-CW) upon mechanical cell lysis implies that they are physically connected (Morita et al.,
2005). We wondered whether the peptidoglycan polymer itself might contribute to the membrane
partitioning that organizes its synthesis. In B. subtilis, for example, enzymatic removal of the cell wall
delocalizes membrane staining by a lipophilic fluorescent dye (Muchov4 et al., 2011) and enhances
the mobility of membrane domain-associated flotillin proteins (Wagner et al., 2020). To test this
hypothesis in M. smegmatis, we spheroplasted bacteria that expressed MurG-Dendra2 or DivIVA-
eGFP-ID and mCherry-GIfT2. All fusions were functional (Figure 1—figure supplement 1,
Hayashi et al., 2016; Meniche et al., 2014). Fractionated lysates from spheroplasted mycobacteria
had more diffuse distribution of cellular material and indistinct separation of the IMD and PM-CW
fractions (Figure 4A, Figure 3—figure supplement 1). Consistent with the macroscopic appearance
of the fractionated lysate, MurG-Dendra2 was distributed throughout the gradient (Figure 4—figure
supplement 1; Figure 1—figure supplement 3H). MurG-Dendra2 and the IMD marker mCherry-
GIfT2 were also diffusely distributed around the periphery of spheroplasted cells while DivIVA, likely
a PM-CW-associated protein (Hayashi et al., 2016), remained in foci (Figure 4C,D). These experi-
ments suggest that an intact cell wall and DivIVA promote membrane compartmentalization in M.
smegmatis (Figure 4E, arrows 1 and 3).

While peptidoglycan biogenesis is well known to vertically span the inner and outer leaflets of the
plasma membrane, here we demonstrate in M. smegmatis that it is also horizontally partitioned
(Figure 4E, arrow 2). Partitioning of the mycobacterial membrane by DivIVA and the cell wall follows
similar logic to that of eukaryotic membranes, which can be compartmentalized by pinning to cyto-
plasmic structures such as the actin cytoskeleton and to external structures such as the extracellular
matrix and cellulose (Fujimoto and Parmryd, 2016; Liu et al., 2015), and of model lipid bilayers,
which can be phase separated by adhesive forces (Gordon et al., 2008; Mukhopadhyay et al.,
2008). In mycobacteria, the membrane regions that promote cell wall synthesis are likely segregated
by the end product of the pathway (Figure 4E, arrow 3). The conservation of the cell wall synthesis
machinery and elongation-promoting cytoskeletal proteins among phylogenetically distant species
predicts that our findings will generally apply to bacilli beyond our mycobacterial model. For rod-
shaped species, our model is that the membrane-cell wall axis is a self-organizing system in which
directed cell wall synthesis organizes the plasma membrane, and an organized plasma membrane in
turn makes cell wall elongation more efficient and precise.

Materials and methods

Key resources table

Reagent type (species) or Source or
resource Designation reference Identifiers Additional information
Strain (M. smegmatis mc®155) M. smegmatis NC_0085%6 in Wild-type M. smegmatis
GenBank
Strain (M. smegmatis) MurG-Dendra2 This study The mutant was generated as
described in Supplementary
material and methods.
Strain (M. smegmatis) mCherry-GIfT2 Hayashi et al., See reference for details.
2016

Continued on next page
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Reagent type (species) or Source or

resource Designation reference Identifiers Additional information

Strain (M. smegmatis) PonA1-mRFP Kieser et al., 2015; Obtained from Dr. Eric Rubin

Baranowski et al., (Harvard SPH) and Dr. Hesper
2018 Rego
(Yale Med).

Strain (M. smegmatis) PimE-GFP This study The strain was generated as
described in Supplementary
material and methods.

Strain (M. smegmatis) MurG-ID depletion strain Meniche et al., Obtained from Dr. Chris

2014 Sassetti
(U Mass Med)
Strain (M. smegmatis) MurJ-ID (MviN) depletion Gee et al., 2012 Obtained from Dr. Chris
strain Sassetti
(U Mass Med)

Strain (M. smegmatis) PretPONAT Hett et al., 2010 Obtained from Dr. Eric Rubin
(Harvard SPH)

Strain (M. smegmatis) DivIVA-eGFP-ID Meniche et al., Obtained from Dr. Chris

2014 Sassetti
(U Mass Med)
Strain (M. smegmatis) mCherry-GIfT2/DivIVA-eGFP- This study See reference for details.
ID
Strain (B. subtilis JH642) B. subtilis NZ_CP007800 in
GeneBank

Strain (C. crescentus) C. crescentus NA 1000 Obtained from Dr. Peter
Chien
(U Mass Amherst)

Strain (E. coli K12) E. coli K12 MG1655

Strain (S. aureus) S. aureus ATCC BA-1718 Obtained from Dr. Thai
Thayumanavan
(U Mass Amherst)

Strain (L. lactis) L. lactis lactis NRRL B633

Chemical compound Alkyne-p-alanine-p-alanine Liechti et al., 2014 Synthesized by the Chemical

(alkDADA or EDA-DA) Synthesis Core Facility at
Albert Einstein College of
Medicine (The Bronx, NY)
following the referenced
protocols.

Chemical compound O-alkyne-trehalose Foley et al., 2016 Obtained from Dr. Benjamin

monomycolate Swarts
(O-AIkTMM) (Central Michigan University).
Chemical compound N-alkyne-trehalose Foley et al., 2016 Obtained from Dr. Benjamin
monomycolate Swarts
(N-AIKTMM) (Central Michigan University).
Software, algorithm MATLAB codes Garcia- Scripts designed for MATLAB
Heredia et al., to analyze the fluorescence
2018 profiles along a cell body from
data collected in Oufti
(Paintdakhi et al., 2016).
Chemical compound Fmoc-D-Lys(biotinyl)-OH BDL Chem-Impex Cat # 16192 Deprotected as described in
precursor International (Wood Qiao et al., 2014 to yield
Dale, IL) BDL.
Chemical compound A22 (S-3,4- Sigma-Aldrich, St. SML0471 Dissolved in water and kept at
Dichlorobenzylisothiourea) Louis, MO —20°C.
Recombinant DNA reagent PBP4 plasmid Qiao et al., 2014 Obtained from Dr. Suzanne

Walker
(Harvard Med).
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Bacterial strains and growth conditions

Mycobacterium smegmatis mc?155 was grown in Middlebrook 7H9 growth medium (BD Difco,
Franklin Lakes, NJ) supplemented with 0.4% (vol/vol) glycerol, 0.05% (vol/vol) Tween-80 (Sigma-—
Aldrich, St. Louis, MO), and 10% albumin-dextrose-catalase, as well as apramycin (50 pg/mL), kana-
mycin (25 pg/mL; Sigma-Aldrich, St. Louis, MO), and hygromycin (50 pg/mL) where appropriate.
Staphylococcus aureus ATCC BA-1718 was grown in BHI (BD Difco, Franklyn Lakes, NJ); Escherichia
coli K12 and Bacillus subtilis ZB307 in LB (VWR, Radnor, PA); Caulobacter crescentus NA 1000 in
peptone yeast extract (BD Difco, Franklyn Lakes, NJ); and Lactococcus lactis NRRL B633 in MRS
(Oxoid, Basingstoke, Hampshire, UK). All bacteria were grown shaking at 37°C with the exception of
C. crescentus, which was incubated at 30°C. See Key Resources Table.

Mutant strain construction

To test the function of PimE-GFP-FLAG fusion, an expression vector for PimE-GFP-FLAG (pYAB186,
Hayashi et al., 2016) was electroporated into a pimE deletion mutant (Morita et al., 2006). Three
independent colonies were picked for the phenotypic complementation of AcPIMé biosynthetic
defects. Lipid purification and analysis were performed as described previously (Morita et al.,
2006).

The murG gene was amplified by PCR from M. smegmatis mc?155 genomic DNA by PCR, exclud-
ing the stop codon, and was inserted into pMSR in-frame with mycobacterial codon-optimized Den-
dra2 using In-Fusion cloning (Takara Bio, Mountain View, CA). This construct was transformed by
electroporation into M. smegmatis mc?155, where it integrates at the L5 attB site, and was selected
by apramycin treatment. Constitutive expression of the MurG-Dendra2 fusion was achieved through
the Psmyc promoter (GenBank: AF395207.1). The plasmid construct was validated by Sanger
sequencing.

To replace the endogenous glfT2 gene with a gene-encoding HA-mCherry-GIfT2 in the DivIVA-
eGFP-ID strain, we electroporated pMUMO052 (Hayashi et al., 2016) into DivIVA-eGFP-ID M. smeg-
matis, and positive clones were isolated using hygromycin resistance marker and SacB-dependent
sucrose sensitivity. Correct replacement of the glfT2 gene was confirmed by PCR.

Generation of spheroplasts

To generate spheroplasts, we followed a previous protocol (Melzer et al., 2018). Briefly, wild-type,
MurG-Dendra2-expressing, or mCherry-GIfT2/DivIVA-eGFP-ID-coexpressing M. smegmatis was
grown until log phase. Glycine (1.2% wt/vol final concentration) was added, and the culture was incu-
bated for 24 hr at 37°C with shaking. Afterwards, the cells were washed with sucrose-MgCl,-maleic
acid (SMM) buffer (pH 6.8) and harvested by centrifugation (4000 x g for 5 min). The pellet was
resuspended in 7H9 medium where the water was replaced with SMM buffer; the medium also was
supplemented with glycine (1.2% final concentration) and lysozyme (50 ug/mL final concentration).
Bacteria were incubated another 24 hr at 37°C with shaking, and then spheroplasts were either
imaged by conventional fluorescence microscopy or lysed by nitrogen cavitation immediately for
subsequent biochemical analysis.

Membrane fractionation

Log-phase M. smegmatis (that, where applicable, were untreated, treated with benzyl alcohol,
depleted for DivIVA or spheroplasted; see Supplementary file 1a) were harvested by centrifugation
and washed in phosphate-buffered saline (PBS) + 0.05% Tween-80 (PBST). One gram of wet pellet
was resuspended in 5 mL of lysis buffer containing 25 mM HEPES (pH 7.4), 20% (wt/vol) sucrose, 2
mM EGTA, and a protease inhibitor cocktail (ThermoFisher Scientific, Waltham, MA) as described
(Morita et al., 2005). Bacteria were lysed using nitrogen cavitation at 2000 psi for 30 min three
times. Cell lysates were centrifuged at 3220 x g for 10 min at 4°C twice to remove unlysed cells prior
to loading on a 20-50% sucrose gradient. Membrane-containing fractions were collected in 1 mL
after ultracentrifugation at 35,000 rpm on an SW-40 rotor (Beckman, Brea, CA) for 6 hr at 4°C and
stored at —80°C prior to analysis.
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Detection of proteins in membrane fractions

MurG-Dendra2 and penicillin-binding proteins (PBPs) were detected by in-gel fluorescence. For
MurG-Dendra2, membrane fractions were incubated with an equal volume of 2x loading buffer and
then separated by SDS-PAGE on a 12% polyacrylamide gel. To detect PBPs, 50 ug total protein
from wild-type M. smegmatis membrane fractions were incubated with 40 uM of Bocillin-FL (Ther-
moFisher Scientific, Waltham, MA) for 30 min in the dark at 37°C. An equal volume of 2x loading
buffer was then added, and the mixture was boiled for 3 min at 95°C and then incubated on ice for
30 min. Membrane mixtures were separated on a 12% polyacrylamide gel. Gels were washed in dis-
tilled water and imaged using an ImageQuant LAS 4000mini (GE Healthcare, Chicago, IL).

MurJ, PimB’, and MptA were detected by immunoblot. Briefly, cell lysate or membrane fraction
proteins were separated by SDS-PAGE on a 12% polyacrylamide gel and transferred to a PVDF
membrane. The membrane was blocked with 3% milk in PBS + 0.05% Tween-80 (PBST) and then
incubated overnight with primary antibodies (monoclonal mouse anti-FLAG [to detect MurJ; Sigma],
and polyclonal rabbit anti-PimB’ or anti-MptA antibodies) (Sena et al., 2010). Antibodies were
detected with appropriate secondary antibodies conjugated to horseradish peroxidase (GE Health-
care, Chicago, IL). Membranes were rinsed in PBS + 0.05% Tween-20 and visualized by ECL in an
ImageQuant LAS 4000mini (GE Healthcare, Chicago, IL) as above.

Cell envelope labeling

Chemical probes used in this work include alkDADA (EDA-DA [Liechti et al., 2014], N-AIkTMM and
O-AIkTMM [Foley et al., 2016], and FM4-64 FX [Invitrogen, Carlsbad, CA]). AIkDADA was synthe-
sized by the Einstein Chemical Biology Core, and the TMM probes were kind gifts of Dr. Ben Swarts.
Unless otherwise indicated, mid-log M. smegmatis or, where applicable, B. subtilis, S. aureus, E. coli,
L. lactis, or C. crescentus were labeled with 2 mM alkDADA, 250 uM N-AIkTMM, 50 uM O-AIkTMM,
or 5 ug/mL FM4-64FX for 15 min or 5 min in the case of B. subtilis. Unless otherwise indicated and
where applicable, the bacteria were pre-incubated in the presence or absence of freshly prepared
chemicals (antibiotics or benzyl alcohol) before being subjected to the probes (see
Supplementary files 1a,b). Cells were pelleted by centrifugation, washed in PBST containing 0.01%
BSA (PBSTB), and fixed for 10 min in 2% formaldehyde at room temperature. For alkDADA and
O-AIkTMM, cells were further washed twice with PBSTB and subjected to CUAAC as described (Gar-
cia-Heredia et al., 2018, Siegrist et al., 2013). Unless otherwise specified, picolyl azide-Cy3 was
used in Figure 2D; picolyl azide carboxyrhodamine 110 was used in Figure 3B,D and Figure 2—fig-
ure supplement 3, Figure 3—figure supplements 4-6; and 5-TAMRA picolyl azide was used in
Figure 3C. Bacteria were then washed twice in PBSTB and once in PBST, and imaged (described
below) or subjected to flow cytometry (BD DUAL LSRFortessa, UMass Amherst Flow Cytometry
Core).

Microscopy and image analysis

Bacteria were imaged on agar pads by either conventional fluorescence microscopy (Nikon Eclipse
E600, Nikon Eclipse Ti, or Zeiss Axioscope A1 with 100x objectives) or structured illumination
microscopy (Nikon SIM-E/A1R with SR Apo TIRF 100x objective, UMass Amherst Light Microscopy
Core).

To obtain the fluorescence intensity plots, the subcellular distribution of fluorescence was quanti-
tated from images obtained by conventional fluorescence microscopy. The images were processed
using Fiji and Oufti (Paintdakhi et al., 2016; Schindelin et al., 2012) as described (Garcia-
Heredia et al., 2018). The signal was normalized to length and total fluorescence intensity of the
cell. Cells were oriented such that the brighter pole is on the right hand of the graph. The intensity
plots from Figure 2A were made from 42<n<56 cells; for Figure 3B, from 14<n<70 cells.

To quantify the amount of fractionated cellular material in Figures 3 and 4, images were proc-
essed in ImageJ, such that the cellular material corresponding to either the IMD or PM-CW fractions
was measured. We then subtracted the signal from a constant-sized area of the gradient tubes that
did not contain visible cellular material.
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Flow cytometry

Where appropriate, fixed bacterial samples were resuspended in PBS and subjected to flow cytome-
try analysis using FITC and Texas Red channels on a BD DUAL LSRFortessa instrument (UMass
Amherst Flow Cytometry Core). Fifty thousand events per sample were gated on forward scatter vs.
side scatter using our previously established values for intact bacterial cells.

Membrane-bound peptidoglycan precursor analysis

Wild-type or MurJ-depleted M. smegmatis (Gee et al., 2012) were grown to mid-log phase and
membrane fractions were isolated as above. Precursors were extracted from each membrane frac-
tion similar to previous publications (Garcia-Heredia et al., 2018; Qiao et al., 2014; Qiao et al.,
2017). Briefly, glacial acetic acid was added to 500 pL of fractionated lysate to a final volume of 1%.
The sample was then transferred into a vial containing 500 uL of chloroform and 1 mL of methanol
and left at room temperature for 1-2 hr with occasional vortexing. The mixture was centrifuged at
21,000 x g for 10 min, and the supernatant was transferred into a vial containing 500 L of 1% glacial
acetic acid (in water) and 500 pL chloroform, and vortexed for 1 min. The mixture was separated by
centrifugation (900 x g for 1 min at room temperature), and the organic phase was collected. Where
applicable, the white interface was reextracted to recover additional organic material. The organic
phase was dried under a nitrogen stream, and the dried lipids were resuspended in 12 uL of DMSO.
pD-Amino acid-containing lipid-linked peptidoglycan precursors were biotinylated by subjecting
organic extracts to an in vitro PBP4-mediated exchange reaction with biotin-p-lysine (Chem-Impex
International, Wood Dale, IL; reagent was deprotected first) as described (Qiao et al., 2014). The
products were separated by SDS-PAGE on an 18%, polyacrylamide gels then transferred to a PVDF
membrane, blotted with streptavidin-HRP (diluted 1:10,000; ThermoFisher Scientific, Waltham, MA),
and visualized by ECL as above.

Membrane glycolipid analysis

Sucrose density gradient fractions from wild-type M. smegmatis +/- 1 hr of 100 mM benzyl alcohol
treatment or DivIVA-eGFP-ID with DivIVA depleted or not (Meniche et al., 2014) were subjected to
lipid purification and analysis as previously described (Morita et al., 2005).

Phylogenetic analysis

The phylogenetic tree was made in Adobe lllustrator (version 23.0.3) based on a phylogenetic tree
generated with Mega (version 7.0.26; Kumar et al., 2018). Briefly, 16S rDNA sequences were
obtained from NCBI (see Supplementary file 1c) and aligned using ClustalW. The phylogenetic tree
was generated using the Timura—Ney model with Gamma distribution and Bootstrap method (C000
replications). The taxonomic information was verified with the Interagency Taxonomic Information
System (available online https://www.itis.gov/).
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provides the NCBI accession numbers of the rDNA sequences used to create the phylogenetic tree
in Figure 3D.

Data availability
All of the source data used in this study is deposited in Open Science Framework (https://osf.io.10.
17605/0OSF.I0/FM794) and available for all public.

The following dataset was generated:

Database and

Author(s) Year Dataset title Dataset URL Identifier

Siegrist MS, Garcia- 2020 The mycobacterial cell wall * https://doi.org/10.17605/ Open Science

Heredia A partitions the plasma membrane to OSF.IO/FM7%94 Framework, 10.17605/
organize its own synthesis OSF.I0/FM794
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