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Developmental dyslexia is considered to be most effectively addressed with 

preventive phonics-based interventions, including grapheme-phoneme 

coupling and blending exercises. These intervention types require intact 

speech perception abilities, given their large focus on exercises with auditorily 

presented phonemes. Yet some children with (a risk for) dyslexia experience 

problems in this domain due to a poorer sensitivity to rise times, i.e., rhythmic 

acoustic cues present in the speech envelope. As a result, the often subtle 

speech perception problems could potentially constrain an optimal response 

to phonics-based interventions in at-risk children. The current study therefore 

aimed (1) to extend existing research by examining the presence of potential 

speech perception deficits in pre-readers at cognitive risk for dyslexia when 

compared to typically developing peers and (2) to explore the added value 

of a preventive auditory intervention for at-risk pre-readers, targeting rise 

time sensitivity, on speech perception and other reading-related skills. To 

obtain the first research objective, we  longitudinally compared speech-

in-noise perception between 28 5-year-old pre-readers with and 30 peers 

without a cognitive risk for dyslexia during the second half of the third 

year of kindergarten. The second research objective was addressed by 

exploring growth in speech perception and other reading-related skills in an 

independent sample of 62 at-risk 5-year-old pre-readers who all combined a 

12-week preventive phonics-based intervention (GraphoGame-Flemish) with 

an auditory story listening intervention. In half of the sample, story recordings 

contained artificially enhanced rise times (GG-FL_EE group, n = 31), while 

in the other half, stories remained unprocessed (GG-FL_NE group, n = 31; 

Clinical Trial Number S60962—https://www.uzleuven.be/nl/clinical-trial-

center). Results revealed a slower speech-in-noise perception growth in 

the at-risk compared to the non-at-risk group, due to an emerged deficit at 

the end of kindergarten. Concerning the auditory intervention effects, both 

intervention groups showed equal growth in speech-in-noise perception 
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and other reading-related skills, suggesting no boost of envelope-enhanced 

story listening on top of the effect of combining GraphoGame-Flemish with 

listening to unprocessed stories. These findings thus provide evidence for a 

link between speech perception problems and dyslexia, yet do not support the 

potential of the auditory intervention in its current form.
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Introduction

The slow amplitude modulations in the speech signal contain 
important rhythmic acoustic cues, e.g., onset rise times, which 
highly contribute to the development of speech perception 
abilities and phonological representations (Thomson and 
Goswami, 2010; Leong and Goswami, 2015; Goswami, 2019). Rise 
time sensitivity and speech perception abilities are therefore 
unsurprisingly linked to language and reading development 
(Goswami et al., 2016; Goswami, 2019). Accordingly, deficits in 
these skills in individuals with (a risk for) developmental dyslexia 
have been widely reported, making rise time sensitivity and 
speech-in-noise perception, next to addressing specific reading 
skills, interesting targets for reading intervention programs. 
Longitudinal study designs which shed light on developmental 
trajectories of speech perception skills in children with or without 
a risk for dyslexia are however still rare (Boets et  al., 2011; 
Kalashnikova et al., 2019), yet crucial to determine the potential 
onset of auditory problems in dyslexia and define the optimal 
timing for (auditory) interventions. The current study therefore 
alludes to (1) longitudinally compare the development of speech 
perception skills in pre-readers with or without an elevated 
cognitive risk for developmental dyslexia and (2) investigate the 
added value of an auditory intervention, specifically targeting rise 
time sensitivity in at-risk pre-readers.

Speech is a highly complex acoustic signal containing an 
enormous amount of temporal and spectral fluctuations. In the 
temporal domain, the speech envelope, encompassing the rather 
slow modulations at rates between 2 and 50 Hz in the overall 
amplitude, is shown to be  particularly relevant for successful 
speech perception (Drullman et al., 1994; Shannon et al., 1995). 
Further supporting its linguistic relevance, Greenberg et al. (2003) 
and Leong (2012) showed that certain envelope amplitude 
modulation frequencies represent different key phonological units 
of varying grain sizes: stressed (1–3 Hz), or unstressed syllables 
(4–8 Hz), onset rimes (15–30 Hz), and phonemes (30–50 Hz). 
Many studies also reported coherence between speech-relevant 
envelope amplitude modulation patterns and oscillatory activity 
in the brain, thereby supporting the envelope relevance for speech 
perception at the neural level. For instance, at rest, in the absence 
of an incoming speech signal, neural networks fire and recover 
from firing electrical pulses, resulting in a variety of different 

oscillation rates across different cell populations, ranging from 
delta (1–3 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), 
low gamma (30–50 Hz), and high gamma oscillations (> 60 Hz; 
Goswami, 2019). When encoding speech, these neural oscillations 
reset their activity and start firing along with the prosodic (delta), 
syllabic (theta), onset-rime (beta), and phonemic (low gamma) 
rates present in the speech envelope (Giraud and Poeppel, 2012; 
Poeppel, 2014; Leong and Goswami, 2015). This phenomenon, 
further referred to as neural entrainment, presumably contributes 
to optimal and efficient speech processing and as a result, language 
acquisition (Kotz and Schwartze, 2010; Peelle and Davis, 2012; 
Mai et  al., 2016; Riecke et  al., 2018). Interestingly, the 
abovementioned resetting process of the brain waves, initiating 
neural entrainment, is facilitated by temporal acoustic cues 
present in the speech envelope, namely onset rise times. Onset rise 
times, henceforth rise times, are characterized by sudden rises in 
speech energy and most prominently occur at syllable onsets 
(Gross et al., 2013). They highly contribute to the perception of 
speech rhythm (Goswami and Leong, 2013) and guide the neural 
system to accurately phase-lock to the envelope amplitude 
modulation patterns, aiding speech segmentation at different 
grain-size levels (Doelling et al., 2014; Goswami, 2019). Listening 
to highly rhythmic speech, e.g., child-directed speech or nursery 
rhymes (Goswami, 2019), generally characterized by steep rise 
times (Lallier et al., 2017), is therefore thought to benefit speech 
perception abilities and the development of solid phonological 
representations in young language learners (Thomson and 
Goswami, 2010; Leong and Goswami, 2015; Goswami, 2019). 
Consequently, rise time sensitivity and speech perception have 
both been unsurprisingly associated with language and reading 
development, and their associated impairments, i.e., a 
developmental language disorder (Ziegler et al., 2005; Corriveau 
et al., 2007; Cumming et al., 2015; Goswami et al., 2016; Goswami, 
2019) and developmental dyslexia (Goswami et  al., 2016; 
Goswami, 2019).

Developmental dyslexia is a learning disability characterized 
by inaccurate and dysfluent word decoding and/or spelling, 
despite adequate intelligence and sensory abilities, and sufficient 
instruction (Lyon et al., 2003; American Psychiatric Association, 
2014). Although emerging evidence postulates that the etiology of 
dyslexia could be interpreted within a multiple deficit framework, 
suggesting that it results from multiple interacting deficits at the 
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cognitive, neurobiological, genetic, and environmental level 
(Pennington, 2006; van Bergen et al., 2014), decoding problems in 
dyslexia have been mostly (but thus not always) attributed to 
underdeveloped phonological representations, resulting in 
deficient phonological processing abilities (i.e., rapid naming, 
phonological awareness, and verbal short-term memory; Wagner 
and Torgesen, 1987), which in turn impede the acquisition of 
grapheme-to-phoneme correspondences (Snowling, 2000; Ramus 
et al., 2003; Vellutino et al., 2004). More recently, Goswami (2011) 
stated in the so-called Temporal Sampling Framework that these 
underdeveloped phonological representations in dyslexia further 
stem from reduced neural entrainment at syllabic and prosodic 
rates in the speech envelope. Although auditory problems are less 
frequently associated with dyslexia compared to phonological 
deficits (Ramus et al., 2003), the Temporal Sampling Framework 
is widely supported by cross-sectional studies reporting atypical 
neural entrainment at the syllabic and prosodic level, hampered 
rise time and speech rhythm sensitivity, and speech-in-noise 
perception deficits in adults and children with and pre-readers at 
risk for dyslexia (Goswami et al., 2002; Richardson et al., 2004; 
Hämäläinen et al., 2005, 2012; Abrams et al., 2009; Ziegler et al., 
2009; Thomson and Goswami, 2010; Boets et al., 2011; Goswami, 
2011; Poelmans et al., 2011; Dole et al., 2012; Law et al., 2014, 
2015, 2017; Leong and Goswami, 2014; Calcus et al., 2016, 2018; 
Molinaro et  al., 2016). Prosodic neural entrainment and the 
abovementioned temporal auditory processing skills measured at 
the pre-reading phase were also found to predict later literacy 
development (Law et al., 2017; Vanvooren et al., 2017; Critten 
et  al., 2021; Ríos-López et  al., 2022), further supporting the 
Temporal Sampling Framework rationale. Longitudinal studies 
specifically comparing growth trajectories between children at risk 
for dyslexia and typically developing peers regarding auditory 
processing skills are however scant (Boets et  al., 2011; 
Kalashnikova et al., 2019), but might be relevant to determine the 
onset of potential auditory processing problems and to define the 
optimal timing for auditory interventions in dyslexia.

Evidence exists that dyslexia interventions should encompass 
a phonics-based approach, combining grapheme-phoneme 
correspondences and phoneme blending exercises (National 
Institute of Child Health and Human Development, 2000; Ehri 
et al., 2001; Snowling and Hulme, 2011; Galuschka et al., 2014). 
Moreover, phonics-based interventions seem to yield larger 
benefits when delivered to at-risk children in the third year of 
kindergarten or first grade (before the onset of reading problems) 
compared to remediation programs at later ages (Wanzek and 
Vaughn, 2007; Lovett et al., 2017). Yet, despite the promises of 
preventive phonics interventions, some at-risk children still fail to 
develop average reading skills (Torgesen, 2001; Zijlstra et  al., 
2021). The presence of temporal auditory processing deficits 
experienced by some (but not all) of the non-responders could 
be a potential explanation for this phenomenon. Phonics-based 
interventions indeed heavily rely on speech perception abilities, 
given their focus on exercises with auditorily presented phonemes, 
e.g., in the case of phoneme blending training. Although currently 

uninvestigated, disrupted entrainment to the speech envelope, 
leading to rise time sensitivity, speech perception, and 
phonological difficulties, could thus constrain an optimal response 
to such preventive intervention types. Hence, combining an 
auditory intervention, specifically targeting rise time sensitivity, 
with a more typically used preventive phonics intervention could 
offer a solution to this problem. In line with this hypothesis, 
several studies indeed already addressed the impact of auditory 
music or speech rhythm interventions in isolation or combined 
with direct reading training on early reading and associated skills, 
yielding mixed results (Bhide et al., 2013; Harrison et al., 2018; 
Patscheke et al., 2019; but see Cancer and Antonietti, 2022 for a 
review). More recently, Van Hirtum et al. (2021) suggested that 
auditory interventions for young pre-reading children at risk for 
dyslexia should comprise listening to so-called envelope-enhanced 
speech. Envelope enhancement (EE), enhancing the rise times 
present in the speech envelope, thereby specifically targeting rise 
time sensitivity, already showed to benefit speech perception in 
noisy environments in cochlear implant users (Geurts and 
Wouters, 1999; Koning and Wouters, 2012, 2016). More 
importantly, Van Hirtum et  al. (2021) and Van Hirtum et  al. 
(2019) applied EE to compare speech-in-noise perception in 
vocoded and natural speech among dyslectic and typically 
developing readers. Whereas they first showed speech-in-noise 
perception delays in children and adults with dyslexia compared 
to typically developing controls in non-enhanced vocoded and 
natural speech, they subsequently demonstrated an instant closure 
of the gap when EE was applied in both speech conditions. Based 
on these observed benefits, Van Herck et al. (2021) explored the 
impact of a preventive auditory intervention on rise time 
sensitivity by applying EE to age-appropriate children story 
recordings, embedded in a tablet-based gaming context (Vanden 
Bempt et  al., 2022). When they combined the auditory 
EE-intervention with a 12-week tablet-based phonics intervention, 
i.e., GraphoGame Flemish (GG-FL; Glatz et al., 2021), provided 
in the second half of the third kindergarten year, pre-readers at 
cognitive risk for dyslexia showed a head start in rise time 
sensitivity immediately after the intervention period, compared to 
(1) at-risk peers who combined GG-FL with listening to 
non-enhanced stories and (2) an at-risk active control group who 
combined listening to non-enhanced stories with tablet-based 
Lego and Playmobil applications. Although the group of children 
who combined GG-FL with listening to non-enhanced stories 
showed a larger improvement in reading and associated skills 
compared to the abovementioned active and a passive control 
group, receiving no intervention (Vanden Bempt et al., 2021), the 
presumed boosting effect of the EE-intervention on top of GG-FL 
regarding speech-in-noise perception, phonological awareness, 
and letter knowledge, driven by improved rise time sensitivity, 
currently remained uninvestigated.

The aim of the current study was two-fold. First, given the lack 
of longitudinal studies investigating growth over time, we aimed 
to compare the developmental trajectory of auditory processing 
skills, i.e., speech-in-noise perception in particular, between 
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pre-readers with and without a cognitive risk for dyslexia along a 
period that is considered most effective for providing reading 
interventions, i.e., the third year of kindergarten (Wanzek and 
Vaughn, 2007; Lovett et  al., 2017). Given the widely reported 
cross-sectional speech-in-noise perception problems in adults 
(Dole et al., 2012) and children with dyslexia (Ziegler et al., 2009; 
Poelmans et al., 2011; Calcus et al., 2016, 2018) and in at-risk 
pre-readers who just started the last kindergarten year (Boets 
et al., 2011), we hypothesized to find a deviant deficit at all time 
points, but also a slower speech-in-noise perception development 
in at-risk compared to typically developing children. Second, 
we aimed to extend the finding of Van Herck et al. (2021) by 
exploring the added value of the auditory EE intervention on top 
of phonics instruction with regard to speech-in-noise perception, 
phonological awareness, and letter knowledge in at-risk children. 
To this end, we compared the growth of these measures among the 
two at-risk groups, also included in the study of Van Herck et al. 
(2021), who received the preventive 12-week tablet-based GG-FL 
intervention combined with either the envelope-enhanced 
(GG-FL_EE group) or the non-enhanced (GG-FL_NE group) 
auditory (story listening) intervention. Given the short-term head 
start concerning rise time sensitivity in the GG-FL_EE group (Van 
Herck et  al., 2021), we  hypothesized to also find greater 
improvements from pre- to post-intervention with respect to 
speech-in-noise perception, phonological awareness, and letter 
knowledge compared to the GG-FL_NE group.

Materials and methods

Participants

Following a large-scale school-based screening, fully described 
in Verwimp et al. (2020), 149 5-year-old kindergarteners (119 
children with and 30 children without an elevated cognitive risk 
for dyslexia) enrolled to participate in a preventive reading 
intervention study. Children were identified as having a cognitive 
risk when they performed above the 10th percentile on a task 
measuring non-verbal reasoning ability (Raven et al., 1984) and 
below percentile 30 on at least two out of three tasks measuring 
predictors of later reading ability, namely rapid naming (Van 
den bos et al., 2002), letter knowledge (Boets et al., 2010; Geurts 
et  al., 2015), and phonological awareness (Boets et  al., 2010; 
Geurts et al., 2015). In addition, participants were only classified 
as at-risk if they performed below percentile 40 on letter 
knowledge, in order to maximally benefit from the preventive 
phonics-based intervention. The group of 30 typically developing 
children was matched to the at-risk children based on sex, 
non-verbal reasoning, and educational environment and 
performed above percentile 40 on all three reading-related skills. 
All participants were monolingual Dutch-speaking (Flemish) and 
born in 2013. They were all in the third and last year of 
kindergarten and followed a minimal schooling period of 
20 months. Given that reading instruction in Flanders (Belgium) 

only starts in first grade, all children were considered pre-reading. 
Moreover, none of the participants experienced articulatory and/
or developmental language problems, neurological deficits, or 
hearing impairments. The study was approved by the Medical 
Ethical Committee of University Hospital of Leuven, KU Leuven 
(report B322201836276) and all parents/caregivers provided 
verbal and written ethical consent for the participation of 
their child.

Study design and procedure

Ninety-one of the 119 at-risk children that enrolled in the 
reading intervention project were randomly allocated to one of 
three experimental groups, using a block randomization 
procedure taking into account sex, educational environment, and 
birth trimester: the GG-FL_EE (n = 31), the GG-FL_NE (n = 31), 
and the active control (AC) group (n = 29). In the block 
randomization procedure, participants were categorized into 
different blocks based on their level on each of the three 
pre-defined categorical factors. Randomization to each of the 
three experimental groups was then performed within the 
different blocks, assuring balance regarding these categorical 
factors across the treatment groups. The GG-FL_EE and GG-FL_
NE groups were instructed to train with GG-FL on a tablet at 
home and to combine this with an auditory tablet-based 
intervention, which involved listening to either envelope-
enhanced or non-enhanced age-appropriate story recordings, 
respectively (Vanden Bempt et al., 2022). The GG-FL_EE and 
GG-FL_NE groups are included in the current study in order to 
disentangle the specific boosting effects of the auditory 
EE-intervention on speech-in-noise perception and other reading-
related skills. The AC group combined the non-enhanced auditory 
intervention with commercially available tablet-based Lego and 
Playmobil applications instead of GG-FL. Since this group served 
as a control group in order to disentangle the specific effects of 
GG-FL on reading-related skills described in a previous study 
(Vanden Bempt et al., 2021), the AC group will not be included in 
the analyses of the current research article. The remaining 28 
at-risk children originally enrolled in another ongoing dyslexia 
study, which recruited 76 non-overlapping at-risk children from 
the same screening sample. They served as the at-risk passive 
control group (arPC) in the current study and did not receive 
reading intervention throughout the project. Given that only three 
children in the three abovementioned experimental groups (i.e., 
GG-FL_EE, GG-FL_NE, and AC) had a biological parent with an 
official dyslexia diagnosis, children in the arPC group were 
required to only show a “pure” cognitive risk without having an 
additional family risk. As such, we could eliminate the potential 
harmful influence of family risk on intervention outcomes 
(Zijlstra et al., 2021). The 30 typically developing children did also 
not receive any type of intervention and thus served as the 
typically developing (tdPC) passive control group. Given the 
absence of intervention, the arPC and tdPC groups are included 
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in the current study to longitudinally compare speech-in-noise 
perception between at-risk and non-at-risk pre-readers. 
Productive letter knowledge and speech-in-noise perception were 
individually administered at school in a quiet test room in all 
children at two time points: at the start (pre-test: January–
February 2019) and at the end (post-test: April–June 2019) of the 
second half of the third year of kindergarten. The GG-FL_NE and 
GG-FL_EE groups received the 12-week tablet-based intervention 
between these two measurement points (before the COVID-19 
pandemic) and received a tablet immediately after the first 
measurement point at school. Furthermore, next to playing the 
intervention games for 12 weeks, 6 days per week, 15 min per day 
at home, the two intervention groups were also instructed to 
complete five tablet-based assessments of phonological awareness, 
every 3 weeks, starting from the day after they had received the 
tablet. Data from 11 children were excluded for statistical analyses, 
due to (1) a fail in hearing screening in either the first or second 
measurement phase (n = 3), (2) a very poor training integrity by 
playing less than 10% of both intervention games (n = 2), and (3) 
a loss of auditory intervention data due to technical problems 
(n = 6). As such, group comparisons between the tdPC and arPC 
group involved 57 participants (arPC: n = 28; tdPC: n = 29) and 
group comparisons between the GG-FL_NE and GG-FL_EE 
group comprised data of 52 participants (26 children in each 
intervention group). Consider Figure 1 for a complete flowchart 
of the participant recruitment, group allocation and data exclusion 
reasons for the whole intervention project. As Van Herck et al. 
(2021) did not take into account the technical intervention 
problems experienced by some children during the intervention 
period, the current intervention groups did not completely (but 
still almost fully) overlap with the groups included in their study.

Test battery and questionnaires

Speech-in-noise perception
Speech-in-noise perception was administered with the Leuven 

Intelligibility Peutertest (Lilliput), a speech-in-noise-test suitable 
for 4–6 year old children (Van Wieringen and Wouters, 2022). 
Using the software platform APEX (Francart et al., 2008) and test 
laptops connected to external sound cards (RME Fireface UC 
interface), seven lists of 11 three-phoneme Dutch consonant-
vowel-consonant-words were monaurally presented in speech-
weighted noise over a calibrated headphone (Sennheiser 
HDA-200). Lists were presented to the best functioning ear, which 
was determined based on a short standardized hearing screening 
(Guérin and Van Hoeck, 2015), administered prior to the speech-
in-noise perception task. All words were recorded by the same 
female Flemish speaker and in each list, the speech-weighted 
noise, created based on the average spectrum of the speaker was 
presented at 65 dB SPL. Yet, the signal-to-noise ratio (SNR) varied 
among different lists. For each presented list, the child was 
instructed to repeat each word as accurately as possible. The same 
first list was always presented at 0 dB SNR and served as a training 

list in all participants. Then, in accordance with the study of 
Vanvooren et al. (2017), children listened to random pairs of word 
lists at −2, −5, and − 8 dB SNR. The maximum raw score in each 
list was 30, given that the child received one point per correctly 
repeated phoneme and the first word of each list always served as 
a training word that did not count in the scoring. For each list, an 
average percentage of the correctly perceived phonemes was 
calculated based on the raw scores and ultimately, an average 
percentage per SNR was obtained. When the child did not obtain 
average SNR scores above or below 50%, an extra pair of lists was 
presented at 1 or − 11 dB SNR, respectively. Based on a nonlinear 
regression fit of a logistic function {model expression: 100/
[1 + EXP(4*EstimateSlope*(EstimateSRT-SNR))/100]; Vanvooren 
et al., 2017}, the speech-reception threshold (SRT), i.e., the level 
by which the participant understands 50% of the presented 
phonemes, and its standard error, was calculated for each child. 
The SRT served as the quantitative outcome measure of speech-
in-noise perception in this article, by which a lower value indicated 
better speech-in-noise perception abilities. Although evidence 
exists that familiarity of words can influence response accuracy in 
speech-in-noise tests (Wilson et al., 2010), passive comprehension 
of the offered words was not tested beforehand because of the 
three following reasons: (1) the words included in the test were 
selected based on the so-called target word list for 6-year-old 
children (Schaerlaekens and Lejaegere, 1999), which offers an 
overview of the passive vocabulary that kindergarteners should 
have when finishing kindergarten, (2) the test was scored at the 
phoneme-level and children were explicitly instructed to repeat 
everything they heard even when they did not know the word, 
when they thought the word did not exist, or when they only 
heard parts of it or even one single phoneme, (3) the test battery 
schedule was very tight as it also included broader language and 
domain-general tests (as described in Vanden Bempt et al., 2021), 
which made it practically unfeasible to also include an extra test-
specific word comprehension test.

Phonological awareness
Phonological awareness was assessed in the GG-FL_EE and 

GG-FL_NE groups through a tablet-based game referred to as 
Diesel-X (Geurts et  al., 2015). During this self-administered 
game-based assessment, participants heard a target word 
accompanied by its visual animation on the tablet screen and they 
had to select, out of four alternatives, the animation of the dictated 
word which contained the same end-phoneme as the given target 
word. The first two trials provided feedback, whereas the following 
10 served as test items without feedback. Hence, the maximum 
score of this test was 10. Children were instructed to perform five 
assessments at home, every 3 weeks, starting from the day after 
they received the tablet at the pre-test phase at school. Both 
training and test items were the same across all five measurements.

Productive letter knowledge
Productive letter knowledge was assessed using a letter-card 

containing the 16 most frequently used letters in Dutch children 
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books (Boets et al., 2010). The child was asked to produce the 
correct letter names or sounds. No feedback was provided. Hence, 
the maximum score of this test was 16.

Post-intervention questionnaires
After the intervention period, parents of participants in the 

GG-FL_EE or GG-FL_NE groups were asked to fill out a 

FIGURE 1

Flowchart from the recruitment and group allocation to data exclusion phase. Yellow groups indicate the groups included for the first study aim. 
Green groups indicate the groups included for the second study aim. Light grey groups indicate the groups that were not included in the current 
study. LK, letter knowledge; RAN, rapid naming; PA, phonological awareness; Pc, percentile; ADHD, attention deficit hyperactivity disorder; GG-
FL_EE group, GraphoGame Flemish + envelope enhancement group; GG-FL_NE group, GraphoGame Flemish + non-enhanced group; AC group, 
Active control group; arPC group, at-risk passive control group; and tdPC group, typically developing passive control group.
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post-intervention questionnaire concerning factors that could 
have influenced the interventional progress and thus, the 
interpretation of the test outcomes. More specifically, they 
provided information on the child’s motivation to play both 
games, the amount of provided encouragement to play both 
intervention games, the usual playing moment, the amount of 
tablet exposure for other purposes than the intervention, and the 
amount of weekly book reading sessions. Moreover, parents also 
indicated whether they provided explicit reading instruction 
during the intervention period or whether they explicitly helped 
their child during the home-based phonological awareness 
assessments. At the post-test assessment phase at school, children 
from both groups were also asked to rate both intervention games 
based on a five-point Likert scale-based smiley-o-meter (Read, 
2008) ranging from 1 (a very unhappy smiley) meaning “I did not 
like the game at all” to 5 (a very happy smiley) meaning “I liked 
the game very much.”

Interventions

Following the pre-test session at school, both intervention 
groups received a tablet (Samsung Galaxy Tab E9.6) with the 
installed intervention games (GG-FL, Diesel-X, and the envelope-
enhanced or non-enhanced auditory intervention, depending on 
the condition), a calibrated headphone (Audiotechnica ATH 
M20x), and a parental manual. The manual specifically 
emphasized that children should perform the interventional 
games and 5-week game-based assessments of phonological 
awareness independently without receiving content-related help.

GraphoGame Flemish
GraphoGame Flemish (GG-FL), developed based on the 

existing version of the Netherlands (Glatz, 2018), contained 559 
mini-games, which gradually focused on the following reading-
related skills: grapheme introduction, auditory and visual 
discrimination, grapheme-phoneme coupling, phoneme blending 
and counting, reading, and spelling. Children were instructed to 
train with GG-FL for 15 min per day, 6 days per week over a period 
of 12 weeks, which equaled a total of 72 gaming sessions and a 
total playing time of 1,080 min spread over 84 days (see Glatz et al., 
2021 for a more detailed description of GG-FL).

Auditory intervention
Participants of both intervention groups were asked to 

combine GG-FL with a tablet-based auditory intervention, which 
required active listening to age-appropriate children stories, 
accompanied by book illustrations. The story listening game was 
entirely developed and programmed by the research group and 
offered 72 10-min story listening sessions. Sound levels of all 
stories were set at 65 dB-A, and calibration was performed in a 
sound proof booth using speech weighted noise developed based 
on the average spectra of the different speakers (n = 9, all females). 
Story listening sessions were embedded in an age-appropriate 

game-based context where players situated in an animated game 
world in which they could earn coins and buy new avatars and 
gadgets, when responding correctly to story-related questions (see 
Vanden Bempt et al., 2022 for a detailed overview of the auditory 
intervention development and design). EE, which enhances rise 
times of the speech envelopes, was applied on all story recordings 
in the GG-FL_EE condition and a technical description and 
visualization of the EE signal processing algorithm is provided by 
Van Herck et al. (2021). The research group precisely followed up 
the schedule compliance, as the tablets daily logged and sent 
intervention exposure times of both games to a university server. 
As such, parents of children who did not stick to the intervention 
scheme were contacted by telephone and encouraged to 
continue playing.

Statistical analysis

All data visualizations and analyses were performed in 
RStudio version 4.0.4 (RStudio Team, 2019; R Core Team, 2021), 
applying an alpha level of 0.05. The analyses comprised four 
steps. First, we compared groups (arPC versus tdPC and GG-FL_
EE versus GG-FL_NE groups) on their demographic 
characteristics using Mann–Whitney U, Pearson Chi-Squared, 
or independent samples t-tests. Second, we compared speech-in-
noise growth trajectories between the arPC and tdPC groups 
using linear mixed-effects models (LMMs; lme4 package) (Bates 
et al., 2015). Timepoint (pre-test vs. post-test) and group (arPC 
vs. tdPC) were set as fixed categorical within- and between-
subjects factors, respectively. The model included by-subject 
intercepts and a weighing variable, calculated by inversing the 
standard errors of each individual SRT. As such, participants 
with less precise speech-in-noise values, i.e., with larger standard 
errors of the estimated SRT, contributed less to the model 
estimates than children with more accurate estimates. The third 
analysis step involved comparing pre-intervention measurements 
of speech-in-noise perception, phonological awareness, and 
productive letter knowledge, and intervention-related aspects 
across the GG-FL_NE and GG-FL_EE groups using Mann–
Whitney U, independent samples t-tests, Pearson Chi-squared, 
or Fisher exact tests. Noteworthy, since not all children 
conducted the first phonological awareness assessment as 
instructed (i.e., the day after receiving the tablet at school), only 
measurements of children who completed less than 15% of both 
interventions (n = 46) before conducting the first phonological 
awareness assessment were included as baseline measurements 
of this variable. The intervention-related aspects included game 
exposure and training duration, number of book reading 
sessions per week, usual playing moment, motivation and 
encouragement needed to play both games. In the fourth analysis 
step, we unraveled the potential boosting effect of the auditory 
EE-intervention on speech-in-noise perception, phonological 
awareness, and productive letter knowledge by comparing 
growth differences across the two intervention groups based on 
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LMMs. For LMMs with dependent variables that were only 
administered twice (speech-in-noise perception and productive 
letter knowledge), models were constructed in the exact same 
way as when comparing growth trajectories between the arPC 
and tdPC group, with the only difference that we did not include 
a weighing variable in the model where productive letter 
knowledge was set as the dependent variable. Phonological 
awareness was modeled as a function of group and training days, 
given that not all children performed the assessments on the 
instructed dates (i.e., every 3 weeks for a total of five times 
starting from the day after they received the tablet) and that 
some children underwent less or even more than five assessments 
(maximally seven). Phonological awareness measures from three 
children were not included in the analysis, as parents reported 
content-related help to their child during the home-based 
assessments. Given that the phonological awareness model failed 
to converge when intercepts and slopes were allowed to vary 
across subjects, we continued with the random-intercept only 
model, for which convergence was obtained. For all conducted 
LMMs in the current study, Type-III analysis of variance tables 
were calculated using the Satterthwaite approximation for 
degrees of freedom and estimated marginal means were 
compared using the emmeans package (Russell, 2021) in case of 
significant group*time or group*training days interaction effects, 
indicating significant growth differences between the compared 
groups. In case of an insignificant interaction effect, two types of 
follow-up analyses were conducted in order to rule out the 
possibility that game exposure differences simply masked a 
possible intervention effect. First, LMMs were repeated with the 
exclusion of children who behaved as outliers regarding exposure 
times of either GG-FL and/or the auditory intervention. This 
resulted in an additional exclusion of one child in the GG-FL_
NE group and four children in the GG-FL_EE group. Second, 
LMMs were repeated with only those children who played at 
least 80% of the instructed exposure time of both intervention 
games. This resulted in an additional exclusion of nine children 
in the GG-FL_NE group and eight children in the GG-FL_
EE group.

Results

Demographic characteristics

Tables 1, 2 provide an overview of the demographic 
characteristics of the participants and confirm that the arPC vs. 
the tdPC groups and the GG-FL_NE vs. the GG-FL_EE groups 
were matched with respect to age, SES, sex, non-verbal IQ, home 
literacy environment, and parental reading level. Although 
research suggests a link between parental reading level and 
cognitive risk status (Pennington and Lefly, 2001), the insignificant 
parental reading level differences between the arPC and tdPC 
group can potentially be explained based on the inclusion criteria 
of the arPC group.

Speech-in-noise perception growth 
trajectories in the arPC vs. tdPC groups

Figure 2 shows the distribution of the raw SRT values and the 
model estimates of the weighed LMM across the arPC and tdPC 
groups and timepoints. Model outputs revealed no significant 
main effect of time [F(1,80.421) = 2.19, p = 0.143] and no significant 
main effect of group [F(1,59.09) = 1.64, p = 0.205]. Yet, the group*time 
interaction was significant [F(1,80.421) = 4.07, p = 0.047]. Post-hoc 
independent samples t-tests showed that at pre-test, groups did 
not differ significantly (Estimated difference = − 0.04, SEestimated 

difference = 0.35, t(225) = − 0.115, p = 0.908), whereas at post-test, a 
significant difference in favor of the tdPC group was found 
(Estimated difference = − 0.73, SEestimated difference = 0.35, t(221) = − 2.08, 
p = 0.039), indicating a subtle speech-in-noise perception 
problem in the at-risk children which emerged during the second 
half of the third year of kindergarten. Post-hoc dependent samples 
t-tests also showed a significant speech-in-noise improvement 
over time in the tdPC group (Estimated difference = 0.60, SEestimated 

difference = 0.22, t(632) = 2.799, p = 0.005), which was absent in the arPC 
group (Estimated difference = −0.09, SEestimated difference = 0.27, 
t(264) = −0.340, p = 0.734).

Pre-intervention measurements and 
intervention-related aspects

Mann Whitney U tests revealed no significant differences at 
baseline between the two intervention groups for speech-in-noise 
perception (U = 332.00, p = 0.913), phonological awareness 
(U = 231.00, p = 0.462), and productive letter knowledge 
(U = 309.00, p = 0.589). Concerning intervention-related aspects, 
Figure 3 confirms that the majority of the children (nearly) reached 
the required exposure time, although it often took longer than 
84 days. A Mann–Whitney U test revealed that both groups played 
an equal amount of GG-FL (U = 333.00, p = 0.927). Yet, concerning 
the auditory intervention exposure, the GG-FL_EE group listened 
to significantly fewer stories than the GG-FL_NE group did 
(U = 232.50, p = 0.034). Training duration did not differ significantly 
across groups for both games (GG-FL: U = 273.50, p = 0.237—
auditory intervention: U = 278.00, p = 0.272). Table 3 shows the 
outcomes of the remaining intervention-related factors, obtained 
by the parental post-intervention questionnaires, across the two 
groups. Apart from the encouragement needed to play GG-FL, by 
which the GG_FL_EE group needed significantly more parental 
stimulation to start playing, groups were comparable concerning 
factors that could have influenced the intervention process.

Boosting effect of the auditory 
EE-intervention

Figure 4 shows the distribution of the raw SRT values and the 
model estimates of the weighed LMM across the GG-FL_NE and 
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TABLE 1 Demographic characteristics of the typically developing and at-risk passive control group.

tdPC arPC Statistic(df)
p

n M SD Med n M SD Med

Age in months at pre-test 29 67.59 3.53 67.00 28 67.43 3.51 68.00 U = 396.50 0.879b

Age in moths at post-test 29 70.83 3.62 71.00 28 70.50 3.39 71.00 t(55) = −0.35 0.726c

Non-verbal IQa 29 103.42 15.95 101.75 28 94.92 14.26 93.44 U = 283.50 0.050b

HLE (frequency of joint literate activities)a 26 0.31 0.85 0.38 28 0.30 0.83 0.29 t(52) = −0.05 0.959c

HLE (number of books at home)e 26 −0.34 1.31 −0.36 28 0.05 0.83 0.19 U = 314.00 0.387b

HLE (duration and frequency of reading)e 26 −0.06 0.85 −0.39 28 0.09 0.97 −0.40 U = 344.00 0.729b

HLE (duration of joint literate activities)e 26 −0.28 0.88 −0.73 28 0.25 1.03 0.26 U = 327.00 0.522b

Maternal ARHQ scoree 26 −0.11 0.76 −0.18 28 −0.14 0.61 −0.10 t(52) = −0.18 0.858c

Paternal ARHQ scoree 22 −0.46 0.73 −0.54 28 −0.24 0.49 −0.08 U = 244.00 0.211b

Sex (female/male) 29 16/13 28 17/11 χ2
(1) = 0.18 0.672d

SES (low/middle/high) 29 4/10/15 28 7/14/7 χ2
(2) = 4.38 0.112d

tdPC, Typically developing passive control group; arPC, at-risk passive control group; df, degrees of freedom; IQ, intelligence quotient; HLE, home literacy environment; ARHQ, adult reading history questionnaire; SES, socio-economic status; n, number of 
participants; M, mean; SD, standard deviation; and Med, median. For categorical variables (sex and SES), the number of children in each subcategory is reported. Given that not all parents completed the demographic questionnaire during the screening phase, 
HLE and ARHQ scores contain missing values. 
aStandardized scores (M = 100, SD = 15).
bIndependent-Samples Mann Whitney U test.
cIndependent-Samples t-test.
dPearson Chi-Square test.
eStandardized factor scores based on parental screening questionnaires.
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TABLE 2 Demographic characteristics of the GG-FL_NE and GG-FL_EE group.

GG-FL_NE GG-FL_EE
Statistic(df) p

n M SD Med n M SD Med

Age in months at pre-test 26 65.62 3.32 65.00 26 66.19 3.27 66.50 U = 302.50 0.514b

Age in moths at post-test 26 69.12 3.44 68.50 26 69.77 3.29 70.00 U = 291.00 0.387b

Non-verbal IQa 26 102.36 17.68 102.94 26 101.74 14.18 101.25 t(50) = −0.140 0.890c

HLE (frequency of joint literate activities)a 25 −0.20 0.94 −0.17 24 −0.02 0.80 0.26 U = 270.00 0.548b

HLE (number of books at home)e 25 0.23 1.14 0.74 24 0.14 1.11 0.49 U = 253.50 0.352b

HLE (duration and frequency of reading)e 25 −0.15 0.88 −0.49 24 −0.29 0.65 −0.47 U = 286.50 0.787b

HLE (duration of joint literate activities)e 25 −0.14 0.97 −0.77 24 0.15 1.03 −0.71 U = 220.00 0.110b

Maternal ARHQ scoree 26 0.11 0.90 −0.13 24 0.17 1.03 −0.06 t(48) = 0.226 0.822c

Paternal ARHQ scoree 18 0.34 1.37 0.21 18 0.30 0.88 0.52 U = 161.50 0.987b

Sex (female/male) 26 14/12 26 10/16 χ2
(1) = 1.24 0.266d

SES (low/middle/high) 26 7/10/9 26 8/8/10 χ2
(2) = 0.342 0.843d

GG-FL_NE, GraphoGame Flemish + non-enhanced group; GG-FL_EE, GraphoGame Flemish + envelope enhancement group; df, degrees of freedom; IQ, intelligence quotient; HLE, home literacy environment; ARHQ, adult reading history questionnaire; SES, 
socio-economic status; n, number of participants; M, mean; SD, standard deviation; and Med, median. For categorical variables (sex and SES), the number of children in each subcategory is reported. Given that not all parents completed the demographic 
questionnaire during the screening phase, HLE and ARHQ scores contain missing values. 
aStandardized scores (M = 100, SD = 15).
bIndependent-Samples Mann Whitney U test.
cIndependent-samples t-test.
dPearson Chi-Square test.
eStandardized factor scores based on parental screening questionnaires.
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GG-FL_EE groups and timepoints. The weighed LMM revealed a 
significant main effect of timepoint [F(1,54.94) = 44.00, p < 0.001], but 
no significant main effect of group [F(1,37.68) = 0.14, p = 0.706]. The 
interaction effect between group and timepoints also remained 
insignificant [F(1,54.94) = 3.02, p = 0.088]. Follow-up analyses with the 
exclusion of children who behaved as outliers concerning the 
exposure times of GG-FL and/or the auditory intervention yielded 
the same pattern of results: a significant main effect of timepoint 
[F(1,42.13) = 44.22, p < 0.001] and insignificant group [F(1,25.55) = 1.39, 
p = 0.249] and group*timepoint [F(1,42.13) = 2.61, p = 0.113] effects. 
The same held true for the LMMs with the exclusion of children 
who obtained less than 80% of the instructed exposure time of one 
of the two games: a significant main effect of timepoint 
[F(1,33.42) = 44.09, p < 0.001], but insignificant group [F(1,22.62) = 1.54, 
p = 0.228] and group*timepoint [F(1,33.42) = 1.47, p = 0.233] effects. 
Overall these findings indicate a general speech-in-noise 
improvement over time, without a significant contribution of 
listening to envelope-enhanced stories.

Concerning phonological awareness, for which the raw scores 
and model estimates across groups and assessments are 
represented in Figure  5, the LMM revealed a main effect of 
training days [F(1,173.19) = 76.95, p < 0.001]. Yet, the main effect of 
group [F(1,63.53) = 0.67, p = 0.417] and the interaction effect between 
training days and group [F(1,173.19) = 1.76, p = 0.186] did not reach 
significance. The same pattern of results was found for the 
follow-up analysis where outliers in either one of the two or both 
game exposure times were excluded. The main effect of training 
days was significant [F(1,166.95) = 79.16, p < 0.001], while the main 
effect of group [F(1,56.92) = 0.54, p = 0.464] and the interaction effect 
of group and training days [F(1,166.95) = 2.24, p = 0.136] remained 
insignificant. The follow-up analyses where only children who 
played at least 80% of the instructed exposure of both intervention 
games were included yielded the same trend of outcomes: a 
significant main effect of training days [F(1,135.39) = 57.22, p < 0.001], 

and insignificant group [F(1,46.35) = 0.00, p = 0.995] and 
group*training days effects [F(1,135.39) = 1.31, p = 0.256].

For productive letter knowledge (see Figure  6 for the raw 
scores and model estimates across groups and timepoints), the 
LMM also revealed a significant main effect of timepoint 
[F(1,50) = 169.78, p < 0.001], but an insignificant main effect of group 
[F(1,50) = 1.51, p = 0.224] and an insignificant interaction effect 
between group and timepoint [F(1,50) = 0.74, p = 0.393]. Follow-up 
analyses with the exclusion of outliers in the exposure times of 
GG-FL and/or the auditory intervention yielded the same pattern 
of results: a significant main effect of timepoint [F(1,45) = 171.09, 
p < 0.001] and insignificant group [F(1,45) = 0.53, p = 0.472] and 
group*timepoint [F(1,45) = 0.01, p = 0.927] effects. Moreover, 
follow-up analyses with the exclusion of children who played less 
than 80% of the instructed game exposure of one of the two 
interventions yielded the same pattern: a significant main effect of 
timepoint [F(1.33) = 133.08, p < 0.001], but insignificant group 
[F(1,33) = 0.08, p = 0.774] and group*timepoint [F(1,33) = 0.003, 
p = 0.987] effects. Hence, as for speech-in-noise perception, the 
results show overall growth over time, but no indication of a 
boosting effect of listening to envelope-enhanced speech on 
phonological awareness and productive letter knowledge.

Discussion

The current study aimed at (1) comparing the development 
of speech-in-noise perception between pre-readers with or 
without a cognitive risk for dyslexia during one of the most 
effective periods for (phonics-based) reading interventions and 
(2) exploring the presence of a boosting effect on speech-in-noise 
perception, phonological awareness, and productive letter 
knowledge of listening to envelope-enhanced speech on top of 
receiving phonics instruction in at-risk children. To achieve the 
first aim, we compared the growth in speech-in-noise perception 
among at-risk and typically developing pre-readers who did not 
receive any type of preventive reading intervention during the 
second half of the third year of kindergarten. The results revealed 
a slower speech-in-noise perception development in the arPC 
compared to the tdPC group, due to poorer speech-in-noise-
perception performance of the arPC group at the second, but not 
at the first measurement point. Regarding the second research 
aim of the current study, we included largely overlapping groups 
from the study of Van Herck et al. (2021), which revealed an 
EE-driven intervention effect on rise time sensitivity, and 
compared the growth in speech-in-noise perception, 
phonological awareness, and letter knowledge of children who 
received a preventive phonics-based intervention, GG-FL, 
combined with listening to either envelope-enhanced (GG-FL_
EE group) or non-enhanced stories (GG-FL_NE group). The 
equal growth concerning all three abovementioned reading-
related variables across both intervention groups indicates that 
listening to envelope-enhanced speech did not promote literacy 
development more than the phonics-based intervention 

FIGURE 2

Distribution of the raw SRT values across groups and timepoints. 
SRT, speech reception threshold; tdPC, typically developing 
passive control group; and arPC, at-risk passive control group. 
Black dots and error bars represent the model estimates and their 
standard errors, respectively. Lower SRTs mean better speech-in-
noise perception skills.
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combined with listening to unprocessed stories did. Yet, despite 
not directly compared with the active control group in the current 
study, our findings, together with the results reported in Vanden 
Bempt et al. (2021), do provide good support for the added value 
of offering GG-FL to at-risk kindergarteners in the 
pre-reading stage.

The slower development of speech-in-noise perception and 
the worse performance at the second measurement point in the 
group of at-risk pre-readers compared to their typically developing 
peers fits within the Temporal Sampling Framework proposed by 
Goswami (2011). These findings could therefore explain why 
preventive phonics-based interventions are not optimally effective 

A

B

FIGURE 3

Individual intervention trajectories and the distribution of the final intervention exposure (minutes) and final training duration (days). (A) Trajectories 
of GG-FL. (B) Trajectories of the auditory intervention. Bold dots represent individuals’ final game exposures and final training durations. GG-FL, 
GraphoGame Flemish; GG-FL_EE, GraphoGame Flemish + envelope enhancement group; and GG-FL_NE, GraphoGame Flemish + non-
enhanced group.
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for all at-risk children (Torgesen, 2001), given that auditory 
processing deficits could possibly hinder the development of 
phonological awareness and reading when exercises are provided 
solely in the auditory modality (e.g., phoneme blending). Contrary 
to our hypothesis and not in line with other studies that 
demonstrated speech perception deficits in at-risk children 
already at the start of the last kindergarten year (Boets et al., 2011), 
our results show that the speech-in-noise perception deficit only 
emerged during the second half of the school year. This suggests 
that the onset of speech perception deficits in dyslexia is dynamic 
and individual in nature rather than fixed and emphasizes the 
need for acquiring longitudinal data in order to define 
individually-based deficit onsets and optimal timing for T
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FIGURE 4

Distribution of the raw SRT values across groups and timepoints. 
SRT, speech reception threshold; GG-FL_EE, GraphoGame 
Flemish + envelope enhancement group; and GG-FL_NE, 
GraphoGame Flemish + non-enhanced group. Black dots and 
error bars represent the model estimates and their standard 
errors, respectively.

FIGURE 5

Raw phonological awareness scores across the intermediate 
assessments and groups. GG-FL_EE, GraphoGame Flemish + 
envelope enhancement group; GG-FL_NE, GraphoGame Flemish 
+ non-enhanced group; and T1-T7, trial 1–7. The solid lines and 
their yellow shades represent the estimated linear model slopes 
and their standard errors.
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intervention. Concerning optimal intervention timing, based on 
our group results, we hypothesize that auditory interventions in 
dyslexia, unlike phonics-based programs (Wanzek and Vaughn, 
2007; Lovett et al., 2017), are best provided even before the third 
year of kindergarten, before the possible onset of speech 
perception deficits. Although this remains to be fully investigated 
based on randomized controlled trials (RCT) and future meta-
analyses, this hypothesis would have even gained more support if 
the same developmental pattern would have been observed with 
respect to rise time sensitivity. Yet, as Van Herck et al. (2021) did 
not administer rise time sensitivity in the group of typically 
developing children, this hypothesis could not be  explored 
any further.

Regarding the absence of a boosting effect of the auditory 
EE-intervention, five putatively important explanations are 
discussed below. The first and most plausible one relates to the 
training-specificity of the auditory EE-intervention. More 
specifically, it is noteworthy that Van Herck et al. (2021) did find 
a short-term EE-driven boosting effect on rise time sensitivity in 
our sample. Possibly, given the focus on enhanced rise times, the 
specific auditory EE-intervention was able to directly train rise 
time sensitivity, without yielding transfer effects on skills that were 
not directly targeted (speech-in-noise perception, phonological 
awareness, and productive letter knowledge). These findings 
correspond to other preventive though phonics-based reading 
interventions, which failed to obtain transfer effects on indirectly 
trained phonological or broader language skills (Schneider et al., 
2000; Elbro and Petersen, 2004; Regtvoort and Van Der Leij, 2007; 
Bowyer-Crane et al., 2008; Van Otterloo and Van Der Leij, 2009). 
As hypothesized by Vanden Bempt et  al. (2021), reading 
interventions in young pre-reading age groups, such as the ones 
described in the current study, seem rather training-specific. A 
second explanation for the null-effects could relate to the 
intervention exposure. It is possible that the EE-intervention was 

actually able to boost auditory and reading-related skills, but that 
its effects were masked because the GG-FL_EE group simply 
listened to fewer stories than the GG-FL_NE group did. The 
question is now why this phenomenon occurred. Possibly, 
listening to envelope-enhanced stories might have been 
experienced as less pleasant given the sudden rises in speech 
energy at syllable onsets, decreasing exposure times. However, 
previous experiments showed no differences in loudness 
perception when comparing listening to envelope-enhanced 
speech with listening to unprocessed natural speech (Koning and 
Wouters, 2016; Van Hirtum et al., 2019), raising the idea that other 
factors contributed to the observed game exposure difference. 
Alternatively, the reported higher encouragement needed to play 
GG-FL in the GG-FL_EE compared to the GG-FL_NE group 
could simply point to a generally lower tablet play motivation in 
the former group, which could have affected exposure times 
(Sweetser and Wyeth, 2005). However, as we were also unable to 
find auditory intervention-driven effects nor in the subsample of 
children which did not behave as outliers regarding intervention 
exposure times nor in the subsample that obtained at least 80% of 
the instructed exposure time of both games, the hypothesis that 
game exposure differences masked possible intervention effects is 
rather unplausible. A third explanation for the absence of the 
specific EE-effect could relate to the timing of the auditory 
EE-intervention. More specifically, evidence exists that the 
development of phonological representations already emerges 
during the first year of life. Infants then gradually develop a 
language-specific listening pattern, characterized by a decline of 
discriminating non-native and an improvement in distinguishing 
native-language phonetic contrasts (Werker and Tees, 1984; Kuhl 
et  al., 2006). Behavioral and neural indications of altered 
phonemic representations have also already been observed in 
infants at family risk for dyslexia (Guttorm et al., 2001; Richardson 
et al., 2003; Van Leeuwen et al., 2007; Leppänen et al., 2010; Van 
Zuijen et  al., 2012, 2013; Mittag et  al., 2022). These findings 
suggest that hampered phonological representations, possibly 
caused by disrupted neural entrainment, already exhibit in the 
very early stages of development and that the current auditory 
EE-intervention was simply delivered too late. A fourth 
explanatory factor for the absence of a boosting EE-effect might 
relate to the postulated intervention eligibility criteria following 
the screening procedure. More specifically, as mentioned in the 
introduction section, developmental dyslexia is nowadays 
considered as a heterogeneous disorder which results from 
interacting deficits at the genetic, neurobiological, cognitive, and 
environmental level (Pennington, 2006). This means that poor 
readers can develop similar reading profiles caused by different 
underlying cognitive deficits (Lallier et al., 2017; McArthur and 
Castles, 2017). Although contradicted (Leppänen et al., 2010), not 
all at-risk children who will eventually develop reading problems 
thus experience temporal auditory processing deficits in the 
pre-reading stage. The screening protocol for the current 
intervention study only included assessments of the three most 
robust predictors of later reading ability, namely rapid naming, 

FIGURE 6

Distribution of the raw productive letter knowledge scores across 
groups and timepoints. LK, letter knowledge; GG-FL_EE, 
GraphoGame Flemish + envelope enhancement group; and 
GG-FL_NE, GraphoGame Flemish + non-enhanced group. Black 
dots and error bars represent the model estimates and their 
standard errors, respectively.
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letter knowledge, and phonological awareness (Catts et al., 2001; 
Van Der Leij, 2013), without including measures of rise time 
sensitivity or speech rhythm discrimination. As a result, 
we  probably also included at-risk children without auditory 
processing deficits, for whom an extra auditory intervention 
focusing on rise time sensitivity on top of phonics instruction did 
not provide added value, neutralizing the potential EE-effects at 
the group-level. Our screening inclusion criteria could also easily 
explain why we did find behavioral evidence for the effectiveness 
of GG-FL as reported in Vanden Bempt et al. (2021), since all of 
the included children performed weak on at least one measure of 
phonological processing (i.e., phonological awareness or rapid 
naming). Future studies should include existing age-appropriate 
rise time sensitivity tasks (e.g., Van Herck et al., 2021) or speech 
rhythm sensitivity tasks (e.g., Critten et  al., 2021) in their 
screening protocol in order to provide appropriate targeted 
interventions which fit the cognitive profiles of the population, an 
approach which is also recommended by Munro (2017). A last 
explanation for the absence of the boosting effect possibly relates 
to the acoustic nature of the story recordings. More specifically, in 
the story recording phase of the envelope-enhanced/
non-enhanced auditory intervention development, speakers were 
explained to read the book texts using a standard Dutch accent 
and intonation, whereas they were not explicitly instructed to 
make use of child-directed speech. Compared to adult-directed 
speech, child-directed speech contains simplified syntactic and 
semantic features (Soderstrom et al., 2008), occurs at a slower 
tempo (Fernald and Simon, 1984), with a higher pitch (Kuhl et al., 
1997), and with more clear-cut intonation patterns (Fernald and 
Simon, 1984), all of which are causally related to the development 
of an infant’s phonological system (Liu et al., 2003; Leong and 
Goswami, 2015). Although not analyzed and compared with adult 
speech samples, the acoustic features of our envelope-enhanced 
speech offered to the GG-FL_EE group probably resembled those 
present in adult-directed speech with the only difference that it 
contained artificially enhanced onset rise times. “Simply” adding 
EE on adult-directed speech was possibly not strong enough to 
robustly improve speech-in-noise perception and sharpen 
phonological representations on top of phonics intervention in 
our population and the presence of other child-directed-speech-
related features could have possibly impacted reading development 
more than the current version of the auditory EE-intervention did. 
The only solution to confirm or reject the abovementioned 
hypothesis is to conduct a randomized controlled trial comparing 
the boosting effect of EE applied on story recordings based on 
adult-directed or child-directed speech.

A last noteworthy discussion point relates to the speech-in-
noise development in all at-risk groups included in the current 
study. Although not statistically compared in the same model, 
we found speech-in-noise perception improvements from pre- to 
post-test in the GG-FL_EE and GG-FL_NE groups, but not in 
the matched arPC group. The growth in speech-in-noise 
perception in the two intervention groups, together with their 
equal growth in phonological awareness and productive letter 

knowledge, might therefore reflect either (1) a specific GG-FL-
driven effect consistent with the findings of Vanden Bempt et al. 
(2021), (2) an effect of general story listening irrespective of 
envelope enhancement, or (3) a combined effect of both 
interventions. The possible specific GG-FL-driven effect is based 
on the hypothesis that learning to read, which was attempted in 
the GG-FL training, indirectly influences speech-in-noise 
perception and its neurophysiological correlates, e.g., prosodic 
neural entrainment (Vanthornhout et al., 2018), via its direct 
positive effect on lexical knowledge (Destoky et al., 2020, 2022). 
More specifically, reading experience is thought to enlarge 
vocabulary size (Cain and Oakhill, 2011), which in turn facilitates 
the development of categorical phoneme perception in a 
top-down matter, and as a result speech-in-noise perception 
(McClelland et  al., 2006). Nevertheless, the hypothesis that 
GG-FL drove speech-in-noise perception on its own is relatively 
unplausible. As it happens, a previous study by Vanden Bempt 
et  al. (2021) reported positive GG-FL-driven word decoding 
effects in our GG-FL_NE group, yet at a very rudimental level, 
by which only three children were able to read more than five 
words. This finding almost leaves out the possibility that reading 
acquisition per se could have had the chance to alter vocabulary 
size in the two GG-FL groups. Alternatively, regarding the 
possible effect of envelope-enhanced-independent story 
listening, research showed that listening to stories in noise as part 
of a 12-week auditory computer-based intervention aided 
speech-in-noise perception in school-aged children with 
auditory processing disorders (Loo et al., 2016), supporting the 
possibility that our auditory intervention might also have been 
able to boost speech-in-noise perception in the two intervention 
samples. Unfortunately, the research design applied in the 
current study does not allow us to disentangle the specific effects 
of GG-FL and general story listening, as these aspects were 
present in both intervention groups. The specific effects of 
GG-FL were already unraveled in a previous study by comparing 
growth in reading-related skills in the GG-FL_NE group with an 
active control group that combined (unprocessed) story listening 
with Lego-and Playmobil games (Vanden Bempt et al., 2021). 
Future research should however also include a group that is 
training with GG-FL and another game that does not involve 
story listening in order to disentangle general story listening 
effects on speech perception and reading-related skills.

As in any other study, this study contains several limitations. 
The first important one relates to the assessment procedure of 
phonological awareness, which was repeatedly conducted at 
home five times based on the same training and test items and 
without supervisory control. Repeatedly offering test items along 
a short time span, i.e., 3 weeks, could have resulted in practice 
(and even ceiling) effects and hence an overestimation of the 
participants’ phonological awareness abilities. Figure 5 indeed 
suggests ceiling effects of end phoneme identification at the fifth 
assessment session (T5), the last session for the majority of our 
participants, in a subsample of the GG-FL_NE, but not in the 
GG-FL_EE group. Moreover, as stated in Vanden Bempt et al. 
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(2021), the lack of supervision might have resulted in less reliable 
measurements due to (1) distraction, (2) forbidden provided 
content-related help by parents or siblings, or (3) 
misunderstanding of the computerized test instructions (Moser 
et  al., 2011; Vaughan et  al., 2014). Indeed, contrary to the 
screening measurements, specifically in the GG-FL_NE group, 
Figure  5 showed unexpectedly high phonological awareness 
scores at the first measurement point in a subset of the children, 
indicating some form of content-related support. Future studies 
which plan to implement computerized remote test sessions are 
recommended to make use of (1) parallel test versions to prevent 
practice effects and (2) remote supervisors using 
videoconferencing technology, an approach which has been 
investigated more often since the onset of the Covid-19 pandemic 
(Werfel et al., 2021) and which has already been proven feasible 
for assessing reading-related skills in young children (Eikerling 
et al., 2022). Nevertheless, we acknowledge that not conducting 
extra supervised phonological awareness tests at school forms a 
major flaw of the current study. Related to this limitation, given 
that we conducted a home-based intervention study, we could 
also not always exercise control over the intervention 
environment and more specifically, check whether children wore 
the headphones as instructed when playing the auditory 
intervention. Given that the story sound levels were calibrated 
through the internal tablet sound card over ATH M20x 
headphones, not (properly) wearing the headphone during the 
home-based story listening sessions could have possibly 
influenced the current intervention effects. The last limitation 
relates to the fact that we were unable to administer standardized 
reading and spelling assessments in kindergarten. Therefore, true 
effects of the auditory intervention on top of GG-FL on reading 
and spelling could not (yet) be  measured. However, as 
we followed up our participants until the third grade, we will 
be able to investigate the long-term effects of both intervention 
programs on reading and writing in a future study. Moreover, the 
data log mechanisms implemented in GG-FL will also allow us to 
explore the predictive value of in-game measures on reading and 
writing ability in elementary grades, a possibility that has been 
widely considered as a major advantage of digital serious gaming 
interventions (Van Dijk et al., 2022).

Our findings support the Temporal Sampling Framework 
(Goswami, 2011) by showing a developmental speech-in-noise 
delay in pre-readers at cognitive risk for developmental 
dyslexia, which emerged during kindergarten, an important 
period for providing phonics-based preventive reading 
intervention. However, adding an extra auditory 
EE-intervention, which was shown to improve rise time 
sensitivity (Van Herck et  al., 2021), on top of phonics-
instruction in kindergarten did not boost speech-in-noise 
perception, phonological awareness, and letter knowledge in 
at-risk pre-readers. Future research however should investigate 
the potential of (1) including children with predefined deficits 
in auditory processing skills, (2) applying EE on child-directed 
speech, and (3) accelerating the timing of the story 

intervention in order to enhance auditory processing skills 
and prevent reading difficulties in children at cognitive risk.
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