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Abstract

Breast cancer is the most common malignant disease in women. Metastasis is the foremost

cause of death. Breast tumor cells have a proclivity to metastasize to specific organs. The

lung is one of the most common sites of breast cancer metastasis. Therefore, we aimed to

build a useful and convenient prediction tool based on several genes that may affect lung

metastasis-free survival (LMFS). We preliminarily identified 319 genes associated with lung

metastasis in the training set GSE5327 (n = 58). Enrichment analysis of GO functions and

KEGG pathways was conducted based on these genes. The best genes for modeling were

selected using a robust likelihood-based survival modeling approach: GOLGB1, TMEM158,

CXCL8, MCM5, HIF1AN, and TSPAN31. A prognostic nomogram for predicting lung metas-

tasis in breast cancer was developed based on these six genes. The effectiveness of the

nomogram was evaluated in the training set GSE5327 and the validation set GSE2603. Both

the internal validation and the external validation manifested the effectiveness of our 6-gene

prognostic nomogram in predicting the lung metastasis risk of breast cancer patients. On the

other hand, in the validation set GSE2603, we found that neither the six genes in the nomo-

gram nor the risk predicted by the nomogram were associated with bone metastasis of breast

cancer, preliminarily suggesting that these genes and nomogram were specifically associ-

ated with lung metastasis of breast cancer. What’s more, five genes in the nomogram were

significantly differentially expressed between breast cancer and normal breast tissues in the

TIMER database. In conclusion, we constructed a new and convenient prediction model

based on 6 genes that showed practical value in predicting the lung metastasis risk for clinical

breast cancer patients. In addition, some of these genes could be treated as potential metas-

tasis biomarkers for antimetastatic therapy in breast cancer. The evolution of this nomogram

will provide a good reference for the prediction of tumor metastasis to other specific organs.

1. Introduction

Breast cancer is the most common malignant disease in women. In 2018, 2.1 million new cases

of breast cancer were diagnosed among women worldwide, accounting for nearly a quarter of
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all female cancer cases [1]. However, with the progress of diagnosis and treatment technology,

primary breast cancer does not pose a serious threat to patients’ lives; instead, metastasis is the

foremost cause of death [2]. The 5-year survival rate for primary breast cancer patients is 99%,

but it drops significantly to 26% when metastasis occurs [3]. The only way to help reduce the

death rate of breast cancer patients is to effectively control and block tumor metastasis. More

importantly, it has been noted that breast cancer has a proclivity to metastasize to specific

organs, such as the lungs and bones [4]. The lung is one of the most common sites of breast

cancer metastasis which can make a patient’s prognosis worse [5].

Metastasis of breast cancer, like other malignant tumors, is a complex biological process

in which multiple genes interact and influence each other [6]. Tumor cells are regulated by a

range of genes, including genes that promote metastasis and inhibit metastasis. Differences in

the expression of these genes between patients determine the potential for and sites of tumor

cell metastasis [7–9]. Screening of genes related to tumor metastasis can provide clues for

studying tumor metastasis targets and predicting tumor metastasis sites [10, 11].

Significant developments in high-throughput techniques for genome-wide expression anal-

ysis and publicly available datasets have enabled us to analyze worldwide data [12]. Potential

biomarkers and signaling pathways related to tumor cell metastasis could be screened using

bioinformatics methods.

Previously, few studies have focused on the prediction of breast cancer metastasis to specific

sites. In our study, we aimed to generate a useful and convenient prediction tool based on sev-

eral genes that may affect lung metastasis-free survival (LMFS). Using one training dataset

from the Gene Expression Omnibus (GEO), we identified 319 genes that were associated with

lung metastasis in breast cancer. Six of these genes were further chosen using a robust likeli-

hood-based survival modeling approach to build a gene prognostic nomogram. In addition,

we tested the effectiveness of the nomogram in an independent validation set, manifesting its

practical value for predicting the lung metastasis risk for clinical breast cancer patients. On the

other hand, we found that neither the six genes in the nomogram nor the risk predicted by the

nomogram were associated with bone metastasis of breast cancer, preliminarily suggesting

that these genes and nomogram were specifically associated with lung metastasis of breast can-

cer. What’s more, five genes in the nomogram were significantly differentially expressed

between breast cancer and normal breast tissues in the TIMER database. These genes could

represent potential target genes for the treatment of metastatic breast cancer.

2. Material & methods

2.1 Microarray datasets from the gene expression Omnibus

We conducted a comprehensive search of breast cancer microarray datasets including lung

metastasis information in the GEO database from the National Center for Biotechnology

Information (NCBI) (http://www.ncbi.nlm.nih.gov/geo/). Only datasets with a sample size

greater than 20 were selected for subsequent analysis. Then, the raw intensity files (CEL) of the

datasets meeting our criteria for further analyses were downloaded from the GEO database.

The robust multiarray average method of the R package “affy” was used to process raw inten-

sity files and generate the gene expression matrices for each selected dataset [13]. The gene

expression data of each sample were matched with the clinical information.

2.2 Univariate survival analysis

Log-rank tests for the high and low expression groups of each gene were performed using the

R package “survival”. Lung metastasis of breast cancer was considered the outcome event.
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Genes with a P-value less than 0.01 were deemed candidate genes associated with lung metas-

tasis in breast cancer for modeling.

2.3 Enrichment analysis of GO functions and KEGG pathways

Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way enrichment analyses were conducted using the WEB-based GEne SeT AnaLysis Toolkit

(http://bioinfo.vanderbilt.edu/webgestalt/login.php) to understand the critical biological sig-

nificance of the identified genes related to lung metastasis in breast cancer.

2.4 Selection of the best genes for constructing a gene prognostic

nomogram

Among the genes related to lung metastasis in breast cancer, a robust likelihood-based survival

approach was applied to select the best genes for building a gene prognostic nomogram. The

whole selection process was implemented with the R package “rbsurv”. Details of the algorithm

are summarized as follows:

1. All samples were randomly divided into the training set with N�(1 − p) samples and the val-

idation set with N�p samples (p = 1/3). Then, the Cox proportional hazards model was used

to fit a gene to the training set of samples to obtain the parameter estimate for this gene.

Log-likelihood was evaluated with the parameter estimate and the validation set of samples.

This process was implemented for each gene.

2. The above procedure was repeated 10 times; thus, 10 log-likelihoods were obtained for each

gene. Next, the best gene g(1) with the largest mean log-likelihood was selected. All the best

lung metastasis survival-related genes were chosen by the robust likelihood-based method.

3. Let g(1) be the chosen best gene in the previous step. Adjusting for g(1), the second best

gene was identified by repeating the above two steps. In other words, g(1) + g(j) was evalu-

ated for every j, and an optimal two-gene model, g(1) + g(2), was chosen. This forward

gene selection procedure was continued until fitting was impossible because of the lack of

samples. Thusly, a series of K models were built: M1 = g(1), M2 = g(1) + g(2), . . ., MK−1 =

g(1) + g(2) + . . . + g(K−1), MK = g(1) + g(2) + . . . + g(K).

4. Akaike information criteria (AICs) for all these models were calculated to avoid overfitting,

and the optimal model with the smallest AIC was chosen. The model that is best according

to AIC is the one that minimizes prediction error [14, 15].

2.5 Construction of the gene prognostic nomogram

The R package “rms” was applied to build the prognostic nomogram based on the expression

level of the best genes that were selected by the last step. In the package, the “cph” function was

used to construct the COX model. Based on the model, the “nomogram” function was used to

generate the prognostic nomogram. The length of the line corresponding to each gene in the

prognostic nomogram reflects the contribution of each gene to one patient’s outcome.

2.6 Internal and external validation of the gene prognostic nomogram

After the nomogram was constructed, the training set and the validation set were used as the

internal validation dataset and the external validation dataset respectively. For these cohorts,

we calculated the area under curve (AUC) and the C-index to test the effectiveness of the gene
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prognostic nomogram in discriminating the outcome of patients. In addition, we generated

Kaplan-Meier curves for the high-risk group and low-risk group determined by the cut-off

point of the ROC curve. Univariate and multivariate cox regression were performed with the

nomogram and molecular subtypes in validation set. The expression of the 6 genes in the

nomogram between tumor and normal tissues was compared at the mRNA level in the

TIMER database (https://cistrome.shinyapps.io/timer/). cBioportal for Cancer Genomics was

explored to investigate the genetic alterations of the prognostic genes in the model. In valida-

tion set, log-rank tests (Events were defined as bone metastases.) were performed for the genes

in nomogram to see whether these genes were associated with bone metastases in breast

cancer.

2.7 Statistical analyses

Log-rank tests were performed to preliminarily identify candidate genes for modeling with a

P-value less than 0.01 using the R package “survival”. The selection of the best genes for con-

structing a gene prognostic nomogram was implemented with the R package “rbsurv” [14].

The AUC values were calculated using the R package “timeROC” [16]. These analyses were

performed using the R Version 3.5.1(http://www.rproject.org). Univariate and multivariate

cox regression were performed using SPSS 25.0 (The alpha level was set as 0.05).

3. Results

3.1 Selection of microarray datasets for further analyses

There were 935 breast cancer datasets in the GEO database of NCBI. Among them, 2 datasets

(GSE5327 [17] and GSE2603 [18]) containing complete information about lung metastasis

were selected for further analyses. Their platforms are both GPL96. GSE5327 was considered

as the training set and GSE2603 was considered as the validation set. The characteristics of all

datasets used in this study are shown in Table 1. The 58 cases of GSE5327 are estrogen receptor

(ER) negative, no adjuvant treatment and node negative cancer, without data about progester-

one receptor (PR) and HER2 (ERBB2). The 82 cases of GSE2603 include ER, PR and HER2

status and have no data about adjuvant treatment.

3.2 Genes associated with lung metastasis in breast cancer

We preliminarily identified 319 candidate genes for modeling with a P-value less than 0.01

using the log-rank test (S1 Table). To understand the critical biological significance of the

identified genes associated with lung metastasis in breast cancer, enrichment analyses of GO

function and KEGG pathways within the identified genes were conducted. The full lists of GO

terms are shown in Fig 1A. Of the GO biological process categories, these genes were closely

associated with the “biological regulation” and “metabolic process” terms. Of the GO cellular

component categories, these genes were closely associated with the “membrane” and “nucleus”

terms. Of the GO molecular function categories, these genes were closely associated with the

“protein binding” and “ion binding” terms. In addition, the top 10 enriched KEGG pathway

terms of the identified genes are listed in Fig 1B.

Table 1. The characteristics of the datasets used in this study.

Dataset Sample Size Tissue Platform

GSE5327 58 Breast Cancer GPL96

GSE2603 82 Breast Cancer GPL96

https://doi.org/10.1371/journal.pone.0244693.t001
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3.3 Best genes for constructing prognostic nomogram

Applying the partial likelihood of the Cox proportional hazard regression model, we next

selected the best lung metastasis-associated genes in breast cancer. We used a cross-validation

technique considering the large data variability. Forward selection was implemented to build a

series of gene models, and the optimal model was then determined using the minimal AIC.

Finally, 6 genes (GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31) were

selected that could optimally predict the lung metastasis risk of breast cancer patients

(Table 2).

Fig 1. The enrichment results of the genes associated with lung metastasis. (A) Each GO Biological Process, Cellular

Component and Molecular Function category is represented by a red, blue and green bar, respectively. The height of

the bar represents the number of genes observed in the category. (B) The top 10 enriched KEGG pathway terms of the

genes associated with lung metastasis.

https://doi.org/10.1371/journal.pone.0244693.g001
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3.4 The construction of a prognostic nomogram

The R package “rms” was applied to construct the prognostic nomogram based on the expres-

sion level of the 6 genes (GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31). As

shown in Fig 2, "1" represents a high expression level of each gene, and "0" represents a low

expression level of each gene. “Points” is the score corresponding to the expression level of a

single gene. “Total points” is the sum of the “Points” of the 6 genes, which corresponds to the

accurate lung metastasis-free survival rate of each sample. A greater “Total points” value indi-

cates a higher lung metastasis risk for breast cancer patients.

Table 2. The best genes predicting LMFS of breast cancer patients.

Gene Symbol nloglik AIC Selected

GOLGB1 79.62 161.23 �

TMEM158 75.41 154.83 �

CXCL8 70.83 147.66 �

MCM5 69.06 146.12 �

HIF1AN 67.28 144.56 �

TSPAN31 65.32 142.65 �

IFT46 64.89 143.78

SLC9A3R1 64.89 145.77

MAPT 64.73 147.46

https://doi.org/10.1371/journal.pone.0244693.t002

Fig 2. The 6-gene prognostic nomogram based on the expression level of GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31. The

high and low expression level of each gene were represented by “1” and “0” respectively. “Points” is the score corresponding to the expression level of a

single gene. “Total points” is the sum of the “Points” that 6 genes get. The greater “Total points” value means the higher lung metastasis risk of breast

cancer patients.

https://doi.org/10.1371/journal.pone.0244693.g002
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3.5 Internal and external validation of the prognostic nomogram

The training set GSE5327 and the validation set GSE2603 were used to evaluate the robustness

and effectiveness of the gene prognostic nomogram. The estimated median of LMFS is 3542

days (95% CI: 2821–4264) for GSE5327, not reached for GSE2603. We next generated the

time-dependent ROC curve (Fig 3) and calculated the AUC and the C-index for these two

Fig 3. Performance of the 6-gene prognostic nomogram in discriminating lung metastasis risk of breast cancer

patients from the GSE5327 and GSE2603 cohorts. (A) For the training set GSE5327, the AUC for 3-, 5- and 7-year

were 0.94, 0.87 and 0.90 respectively. (B) For the validation set GSE2603, the AUC for 3-, 5- and 7-year were 0.87, 0.83

and 0.84 respectively.

https://doi.org/10.1371/journal.pone.0244693.g003
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datasets. The following values were obtained: for the training set GSE5327, the AUC for 3-, 5-

and 7-year were 0.94, 0.87 and 0.90 respectively, and the C-index was 0.862 (P<0.0001); for

the validation set GSE2603, the AUC for 3-, 5- and 7-year were 0.87, 0.83 and 0.84 respectively,

and the C-index was 0.772 (P<0.0001). These results validated the capability of our gene prog-

nostic nomogram to discriminate the outcome of patients according to the prediction risk. On

the other hand, each cohort was divided into a high-risk group and a low-risk group deter-

mined by the cut-off point of the ROC curve. It should be noted that the Kaplan-Meier curves

showed that lung metastasis was more likely to happen in the high-risk group than in the low-

risk group, both in the internal validation set (P<0.0001, Fig 4A) and the external validation

set (P<0.0001, Fig 4B). Then, we performed univariate and multivariate cox regression with

our nomogram and the molecular subtypes (ER, PR and HER2) in GSE2603. The results

showed that both our nomogram and ER status were independent factors for breast cancer

lung metastasis (Table 3). Hence, our prognostic nomogram based on 6 genes could effectively

predict the lung metastasis risk of patients with breast cancer. What’s more, except for CXCL8

which was not found in the TIMER database, the other five genes were significantly differen-

tially expressed between breast cancer and normal breast tissues (Fig 5). In addition, GOLGB1

possessed the most frequent genetic alterations (9%) in cBioPortal for Cancer Genomics (Fig

6). On the other hand, in the validation set GSE2603, we found by log-rank tests that neither

the six genes in the nomogram nor the risk predicted by the nomogram were associated with

bone metastasis of breast cancer, preliminarily suggesting that these genes and nomogram

were specifically associated with lung metastasis of breast cancer (Fig 7). The whole research

process is shown in Fig 8.

4. Discussion

In this study, we constructed a 6-gene prognostic nomogram that showed its capability to

predict the lung metastasis risk for patients with breast cancer. Applying this tool, we could

predict which breast cancer patients had a higher risk of lung metastasis and need more

attention on their lungs. Within the univariate survival analysis of the breast cancer sam-

ples from GSE5327, a total of 319 genes were identified to be associated with the lung

metastasis of breast cancer patients. By KEGG analysis, we found that these identified

genes were enriched in the signaling pathways such as “PPAR signaling pathway” and “IL-

17 signaling pathway”. A previous study showed that the PPAR signaling pathway may be

an essential predictor of genes involved in the chemotherapy response for breast cancer

patients [19]. In addition, notably, IL-17 family plays an important role in the specific

organ metastasis of breast cancer: one reported mouse model manifests that IL-17A leads

metastases to the lungs and bones [20, 21]; IL-17E is proposed to be related to lung metasta-

sis formation [22, 23].

After identifying the critical GO function and KEGG pathways, we further selected the best

6 genes to construct the gene prognostic nomogram: GOLGB1, TMEM158, CXCL8, MCM5,

HIF1AN, and TSPAN31. GOLGB1 (golgin B1) is reported to be involved in the process of the

Golgi affecting tumor progression and metastasis [24]. TMEM158 (transmembrane protein

158) has been proposed to participate in anti-tumor responses [25] and is differentially

expressed in triple negative breast cancer [26]. CXCL8 (C-X-C motif chemokine ligand 8) is

correlated with clinical breast cancer stage and lymph node metastasis [27]. It has also been

indicated that a higher level of CXCL8 promotes the invasive capacity of breast cancer cells

[28]. MCM5 (minichromosome maintenance complex component 5) is considered to be a

specific target for the gene therapy [29] and a biomarker associated with the relapse-free sur-

vival of breast cancer patients [30]. HIF1AN (hypoxia inducible factor 1 subunit alpha
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Fig 4. The survival curves of the high-risk and low-risk groups of the GSE5327 and GSE2603 cohorts. (A) In the

GSE5327 cohort, the high-risk group exhibited a higher lung metastasis risk than the low-risk group (P<0.0001,

cutoff = 18.7). (B) In the GSE2603 cohort, the high-risk group exhibited a poorer prognosis than the low-risk group

(P<0.0001, cutoff = 12.0).

https://doi.org/10.1371/journal.pone.0244693.g004
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Table 3. Univariate and multivariate cox regression with molecular subtypes.

Variables Univariate cox regression Multivariate cox regression

HR 95% CI P value HR 95% CI P value

ER 0.110 0.025–0.491 0.004 0.193 0.038–0.972 0.046

PR 0.017 0.000–1.236 0.062

HER2 0.508 0.114–2.269 0.375

Nomogram 1.094 1.042–1.149 <0.001 1.061 1.003–1.122 0.039

https://doi.org/10.1371/journal.pone.0244693.t003

Fig 5. Comparison of expression levels of the 5 prognostic genes between breast cancer and normal breast tissues

using data from the TIMER database. ��� < 0.001, �� < 0.01, � < 0.05.

https://doi.org/10.1371/journal.pone.0244693.g005
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inhibitor) was found to be correlated with the absence of lymph node metastasis [31]. In addi-

tion, there is one report concerning TSPAN31 (tetraspanin 31) and lung metastasis happened

in osteosarcoma [32]. None of these six genes had previously been reported to be associated

with lung metastasis in breast cancer. Meanwhile, we found in the TIMER database that the

aberrant expression of five genes (GOLGB1, TMEM158, MCM5, HIF1AN, and TSPAN31)

occurred in a variety of tumors. Their biological roles in the lung metastasis of breast tumor

cells would be of great interest in further studies.

The 6-gene prognostic nomogram was validated in both the training set and validation set.

The AUC and the C-index revealed the nomogram’s effectiveness in discriminating the out-

come of breast cancer patients; The Kaplan–Meier curve showed that the high-risk group had

a higher likelihood of lung metastasis. The multivariate analysis showed that both our nomo-

gram and ER status were independent factors for breast cancer lung metastasis. All of these

results demonstrate that this prognostic nomogram based on 6 genes has the capability of pre-

dicting the lung metastasis risk of breast cancer patients. Meanwhile, the bone metastasis sur-

vival curves of the 6 genes and nomogram in validation set preliminarily suggested that these

genes and nomogram were specifically associated with lung metastasis of breast cancer, but

further research is needed to confirm this conclusion.

Compared with overall survival, metastasis-free survival can better reflect the clinical bene-

fits and prognosis of non-metastatic patients because metastasis is the most important factor

that threatens the life of breast cancer patients and hinders the treatment of breast cancer.

However, there are differences in the tendency of breast cancer to metastasize to different

organs. In this study, we focused on one of the host organs, lung, and built a prognostic nomo-

gram with 6 genes that could effectively predict the lung metastasis risk for breast cancer

patients. In addition, the method used to construct the model is flexible and easy. The result is

presented as the relative risk combined with the absolute lung metastasis-free survival rate,

which is more illustrative and intuitive. Based on the relative risk ratio, the specific lung metas-

tasis-free survival rate of an individual can be queried according to the expression level of the 6

genes, and patients predicted to be at high risk will very likely need more attention and care to

their lungs. The prognostic nomogram can be conveniently constructed in the R environment

and can serve as a robust tool in model prediction. It is essential to make real-time quantitative

PCR (QPCR) assays more popular in the clinic. The expression level of genes could be obtained

using QPCR, so our gene nomogram can be conveniently implemented in routine clinical set-

tings. The process of constructing this model would provide a good reference for the predic-

tion of tumor metastasis to other specific organs, such as the bone and brain.

However, there were several limitations in this study. First, due to the limited number of

datasets on breast cancer lung metastasis, the training set did not contain complete

Fig 6. Genetic alterations of the 6 prognostic genes in the nomogram using data from the cBioportal for Cancer Genomics.

https://doi.org/10.1371/journal.pone.0244693.g006
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information about molecular subtypes, and the validation set did not contain information

about adjuvant treatment. We were unable to construct a model that adjusted for these prog-

nostic factors. Second, other important outcomes, such as overall survival, were not recorded

in these two datasets. It would be meaningful to investigate the relationship between our

Fig 7. The bone metastasis survival curves of the 6 genes and nomogram in GSE2603 cohorts. (A) GOLGB1. (B)

TMEM158. (C) CXCL8. (D) MCM5. (E) HIF1AN. (F) TSPAN31. (G) nomogram. All P-values were greater than 0.05.

The cutoff of each gene is its median expression level in the training set. The cutoff of nomogram is consistent with

that in Fig 4B.

https://doi.org/10.1371/journal.pone.0244693.g007
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nomogram and other outcomes. In our future studies, we will collect more clinical breast can-

cer tissues with concrete metastasis information from our own hospitals to establish predictive

tools for other metastasis sites. Meanwhile, other well-known clinical prognostic factors (such

as molecular subtypes and adjuvant treatment) and important outcomes (such as overall

Fig 8. The process of developing the 6-gene prognostic nomogram. First, 319 DEGs associated with lung metastasis in breast cancer patients

were identified by univariate survival analysis. Enrichment analysis of GO functions and KEGG pathways was conducted based on these genes.

Next, a robust likelihood-based survival modeling approach was applied to identify the best genes for prognosis prediction. Then, the gene

prognostic nomogram was constructed based on 6 genes (GOLGB1, TMEM158, CXCL8, MCM5, HIF1AN, and TSPAN31). Finally, the 6-gene

prognostic nomogram was validated in the training and validation datasets.

https://doi.org/10.1371/journal.pone.0244693.g008
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survival) that could not be obtained from the database, should be the focus of our next study.

With a more comprehensive collection of patient clinical information, we will try to build

more accurate and efficient models for predicting specific organ metastasis.
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