
RESEARCH ARTICLE

Evidence for plant-derived xenomiRs based

on a large-scale analysis of public small RNA

sequencing data from human samples

Qi Zhao1,2,3, Yuanning Liu1, Ning Zhang4, Menghan Hu5, Hao Zhang1, Trupti Joshi2,4,6,

Dong Xu1,2,4*

1 Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China, 2 Department

of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of

Missouri, Columbia, Missouri, United States of America, 3 Sino-Dutch Biomedical and Information

Engineering School, Northeastern University, Shenyang, Liaoning, China, 4 MU Informatics Institute,

University of Missouri, Columbia, Missouri, United States of America, 5 Department of Biostatistics, Brown

University, Providence, Rhode Island, United States of America, 6 Department of Molecular Microbiology and

Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America

* xudong@missouri.edu

Abstract

In recent years, an increasing number of studies have reported the presence of plant miRNAs

in human samples, which resulted in a hypothesis asserting the existence of plant-derived

exogenous microRNA (xenomiR). However, this hypothesis is not widely accepted in the sci-

entific community due to possible sample contamination and the small sample size with lack

of rigorous statistical analysis. This study provides a systematic statistical test that can vali-

date (or invalidate) the plant-derived xenomiR hypothesis by analyzing 388 small RNA seq-

uencing data from human samples in 11 types of body fluids/tissues. A total of 166 types of

plant miRNAs were found in at least one human sample, of which 14 plant miRNAs repre-

sented more than 80% of the total plant miRNAs abundance in human samples. Plant miRNA

profiles were characterized to be tissue-specific in different human samples. Meanwhile, the

plant miRNAs identified from microbiome have an insignificant abundance compared to those

from humans, while plant miRNA profiles in human samples were significantly different from

those in plants, suggesting that sample contamination is an unlikely reason for all the plant

miRNAs detected in human samples. This study also provides a set of testable synthetic miR-

NAs with isotopes that can be detected in situ after being fed to animals.

Introduction

Since the first microRNA (miRNA) was discovered in C. elegant [1, 2], more and more miR-

NAs have been identified in both plants and animals. MiRNA is a type of small non-coding

RNA derived from the primary miRNA hairpin of transcripts, with a typical length of 22

nucleotides (nt) in animals and 21 nt in plants. They play important post-regulation roles in a

wide range of fundamental biological processes [3] and a variety of diseases [4]. miRNAs func-

tion by binding to complementary sequences in the 3’ untranslated region (UTR) of protein-

coding genes and inducing mRNA cleavage or translational repression [5]. Biogenesis and the
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mechanism of miRNA action have a high similarity between animals and plants at the molecu-

lar level, along with slight differences due to the evolutionary divergence [3]. miRNA is still a

hot topic of research, and many new hypotheses and tools are being proposed [6–10].

Recently, an xenomiR hypothesis was proposed wherein plant-derived miRNAs could sur-

vive the animal digestion system, be absorbed and transferred into the blood, circulate through

an animal’s body, regulate animal gene expression as endogenous miRNAs and induce different

phenotypes. This hypothesis was first suggested by Zhang [11], which showed plant-derived

miRNAs could exist in humans and mice, and these miRNAs could regulate gene expression in

mice, but the results could not be reproduced in several studies [12–15]. Subsequently, many

groups tried to detect plant miRNAs in animals after feeding them different diets. Some of them

identified plant miRNAs in human or animal body fluids/tissues [16–32], while others failed

[33–35]. Some other studies also found that plant-derived miRNAs (such as HJT-sRNA-m7,

miR59, and honeysuckle-MIR9211) might prevent or treat human diseases, such as pulmonary

fibrosis, breast cancer or influenza [17, 22, 25, 26, 30]. As discussed in [36–56], the key contro-

versy is on whether the plant-derived miRNAs detected in animal samples were contamination

during experiments or bona fide xenomiRs. Zhang et al. [12] reported that, unlike the results of

[11], they detected few miR168, but many other plant-derived miRNAs in insects. And their

results also showed that some of the plant miRNAs detected in insects could not be detected in

their diet and some plant miRNAs were also detected in non-feeding neonate insects. They

indicated that the plant miRNAs detected in their experiments were from the cross-contamina-

tion caused by other samples. Snow et al. [13] reported that plant-derived miRNAs (miR156,

miR159, and miR169) were indistinguishable from the background signal in qRT-PCR experi-

ments, which were conducted with samples from human, mouse and bees. Witwer et al. [14]

reported that the level of plant-derived miR156, miR166, miR167, and miR168 in two primate

plasma samples had no indication of response to diet-feeding time, and the low level of plant

miRNAs that they detected could be the result from a non-specific amplification. Dickinson

et al. [15] reported that the plant miRNAs in mice plasma or liver after ingesting a plant-

enriched diet were indistinguishable from the background signal, and the detected plant

miRNA might be explained by sequencing errors or cross-contamination.

Two more recent studies used public databases to investigate plant-derived xenomiRs.

Kang et al. [57] first comprehensively studied the exogenous miRNA in 824 public human

sequencing data sets, and they claimed xenomiRs were from technical artifacts. In their study,

the sequencing reads were determined to be clade-specific after adapter removal, read quality

control and length control. However, the plant miRNAs belonging to multiple clades were

found in single sequencing data, which may not be well explained by contamination. Another

recent study by Zheng et al. [58] developed an on-line exogenous miRNA analysis tool, but it

is only practical for small-scale analysis due to the large size of sequence data and the slow

computing speed. Furthermore, statistical analyses performed in both studies [57, 58] were not

rigorous enough.

Although these negative results have demonstrated that contamination of samples or errors

in sequencing indeed exist, they could not rule out the possibility of plant-derived xenomiR.

To determine whether plant-derived miRNAs truly exist in human bodies, a large-scale analy-

sis of many mammal samples with rigorous statistical analysis is necessary to validate or dis-

prove the plant-derived xenomiR hypothesis. In this study, we analyzed a large number of

public small RNA sequencing data obtained from a variety of experiments by different labora-

tories. We developed an analysis pipeline, and extracted reliable plant miRNA reads from dif-

ferent human body fluid/tissue samples. Subsequently, based on comprehensive plant-derived

miRNA profiles, some further bioinformatics and statistical analyses were performed, which

yielded reliable evidence to support the plant-derived xenomiR hypothesis. As negative

Plant-derived xenomiRs detected from human small RNA sequencing data

PLOS ONE | https://doi.org/10.1371/journal.pone.0187519 June 27, 2018 2 / 20

Research Funds for the Central Universities to Qi

Zhao (02120022118016). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187519


controls, we compared the miRNAs identified in plants and microbiome. Plant-derived miR-

NAs have a significantly different distribution from the distribution found in plants, and

plant-derived miRNAs were rarely found in microbiome. Taken together, we reached the con-

clusion that plant-derived xenomiR is the most likely explanation based on the analysis of a

large number of public small RNA sequencing data. This study provided the first statistically

solid evidence using large-scale data to validate the plant-derived xenomiR hypothesis in

human.

Materials and methods

Data collection

Unlike the study by Kang et al. [57], we collected all human small RNA sequencing data from

the National Center for Biotechnology Information Gene Expression Omnibus (NCBI GEO)

[59] satisfying three stringent criteria as follows.

1) Small RNA sequencing data are from normal human serum, plasma, plasma exosomes,

milk, RBC, platelets, kidney, liver, pancreas, bladder, and thyroid fresh samples.

2) The number of samples from each type of body fluids/tissues should be more than three.

3) Raw sequencing data is required except for red blood cell (RBC) samples.

Raw sequencing data are convenient for controlling read quality, but for RBC samples, this

was not required because no plant miRNA was detected even though any quality of reads were

accepted. We avoided samples from the skin, digestive tract, respiratory track or immune-

related tissues which could contain exogenous RNA sequences inherently. Human samples

not for disease studies were collected because diseased tissues may contain mutations, espe-

cially in tumor tissues, which may affect the results of plant-derived miRNA screening. And

some plant-derived miRNAs in human tissues were also shown to be disease specific [22].

Sample names and their references are listed in S1 Table, and the corresponding data are con-

venient to download from GEO.

Plant and human miRNA data were downloaded from the miRBase [60]; Human rRNA

data was downloaded from Silva rRNA database [61]; All the other human ncRNA data was

downloaded from Ensembl [62]; Human mRNA data was downloaded from GENCODE [63].

All the human RNA data were combined with the corresponding RNA information in the lat-

est version of human genome (GRCh38.p5, containing mitochondrial genome) [64]. The

human-related microbiome genomes were downloaded from HMPGD [65] including eukary-

otes, archaea, bacteria and viruses. MiRNA expression profile data of Arabidopsis lyrata (aly),

Arabidopsis thaliana (ath), Nicotiana tabacum (nta), Oryza sativa (osa), Triticum aestivum
(tae) and Zea mays (zma) were downloaded from the miRBase. Yeast and E. coli small RNA

sequencing data were downloaded from NCBI GEO [59] and their file names and references

are listed in S2 Table. The genome data of yeast and E. coli were downloaded from NCBI. The

RNA data of yeast and E. coli were extracted from their genomes. The ath small RNA sequenc-

ing data were also downloaded from NCBI GEO, and their file names and references are listed

in S3 Table. All the data analyzed in the paper can be found at the website http://digbio.

missouri.edu/Qi/miRNA/index.html, and a shell script was also provided at the same website

for automatically downloading all small RNA sequencing data used in this study.

The only difference between serum and plasma is that the serum includes fibrinogens while

plasma does not. RNA sequencing data only characterizes RNA; hence, small RNA sequencing

data of serum and plasma should be the same. Therefore, in this study, serum and plasma were

regarded as one type of body fluid unless stated otherwise.

Plant-derived xenomiRs detected from human small RNA sequencing data
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Processing pipeline

A processing pipeline used for detecting plant miRNAs in human samples is shown in Fig 1.

First, the artificial contaminations including adapters, primers and poly A were removed from

the sequencing data, and then reads with lengths shorter than 17 nt or longer than 26 nt were

removed (17 nt is the shortest plant miRNA and 26 nt is the longest plant miRNA presented in

the miRBase). The reads with a quality less than 20 were removed from the data using [66],

and the clean reads were obtained for further analyses. The clean reads were aligned to human

miRNA/rRNA/tRNA allowing two mismatches and the unaligned reads were aligned to other

types of human RNA including all the ncRNA and mRNA allowing one mismatch. The

unaligned reads were aligned to plant miRNAs using the following three criteria:

1) Less than or equal to one mismatch.

2) No ‘N’ bases in the reads.

3) The length of a read is equal to that of the aligned plant miRNA.

When processing the RBC samples, “less than two mismatches” was required. The aligned

reads were collected and then aligned to human-related microbiome genomes. Finally, the plant

miRNA profiles were calculated using the number of unaligned reads. For yeast and E. coli

Fig 1. Pipeline for identifying potential plant-derived xenomiR in human samples.

https://doi.org/10.1371/journal.pone.0187519.g001
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samples, the processing pipeline is similar to the pipeline above with slight differences which

were 1) yeast and E. coli RNAs were used instead of human RNAs. 2) reads were not aligned to

human related microbiome genomes. The abundance of plant miRNA was measured by modi-

fied transcripts per million (TPM) P / T x 106 where P is the number of potential plant miRNA

reads determined by our pipeline, and T is number of clean reads.

Abundance distribution fitting of plant miRNAs detected in human and

microbiome samples

We assume the denary logarithm of plant miRNA abundances of human, yeast and E. coli sam-

ples follow the Gaussian distribution. The plant miRNA abundance value of each sample was

taken as one log10 after adding a very small pseudo-abundance of 10−3. Then the abundance

data were fitted with Gaussian distributions using the maximum likelihood estimation

method.

Principal component analysis (PCA) and hierarchical clustering

In both PCA and hierarchical clustering, only 24 types of plant miRNA with abundance more

than 0.05 (S4 Table) were used for analysis. Abundance values of plant miRNAs both in human

and plant samples were normalized by the summation of total plant miRNA abundances to

make them comparable, and they were centered and scaled by each type of miRNA. Then, PCA

was performed based on these abundance values. We grouped the plant miRNA profiles by the

body fluids/tissues, and the average abundance was calculated for each miRNA. After that, the

miRNA abundances were scaled according to each type of miRNA. Then, these samples were

clustered with the Euclidean distance, using the complete linkage clustering algorithm.

Marginal two-sample rank sum test

Plant miRNA profiles in plant and human can be regarded as two groups. We standardized

the data within groups beforehand to make the values were on the same scale. An observation

of an miRNA profile can be regarded as a vector of quantified measurements of plant miRNA

which together describe the composition of the sample. Thus, we used multivariate data, i.e.,

vector valued observations, in the analysis. Since no parametric distribution can be assumed,

we used a nonparametric approach, two-sample rank sum test [67], to test the null hypothesis

that the distribution of plant miRNA profiles in the plant is the same as that in human.

Let X1,X2,. . .,XNbe the combined standardized samples. For each observation, there is a spa-

tial centered rank:

Ri ¼ mj½SðAxðXi � XjÞÞ�; i; j ¼ 1; 2; . . . ;N;

where m[z] denotes “the mean of z over sample I = 1,2,. . .N”, mj[z]means the same, but the

average over index j, S(z) denotes “the sign of z” (+ or -) and Ax is chosen to make the ranks

satisfy the property

lm½RiRi
T � ¼ m½Ri

TRi�Ip:

The two-sample spatial rank test statistic is

U2 ¼
l

m½jjRijj
2
�

X2

s¼1

nsjj
�Rsjj

2
;

where �Rs is the mean vector of the spatial centered ranks for s = 1, 2. The test statistic is asymp-

totically distribution-free. The p-value of the test statistic is the expected probability that
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U2
P � U2, where P = (P1,. . .PN) is uniformly distributed over the N! permutations of (1,. . .,N)

and U2
P is the value of the test statistic for the permuted samples. XP1

, XP2
,. . .,XPN

Pearson correlation coefficients

Pearson correlation coefficients were calculated between two body fluids/tissues based on

plant-derived miRNA profiles. To rule out the effects of technical repeats from the same indi-

vidual, we only calculated the Pearson correlation coefficients between a pair of samples from

different laboratories. Then the correlation coefficients were divided into two subsets based on

whether the corresponding two samples were from the same body fluids/tissues or not.

Results

Identification of plant-derived miRNA in human body fluids/tissues

We selected small miRNA sequencing raw data from healthy humans. A total of 388 public small

RNA sequencing data (Tables 1, S5 and S1) of multiple human body fluids/tissues (bladder,

brain, breast milk, kidney, liver, pancreas, plasma exosomes, platelet, RBC, serum/plasma, and

thyroid) were selected according to our stringent criteria (see “Materials and Methods”). Unless

stated otherwise, serum and plasma were regarded as one type of body fluid in our study.

To carefully eliminate all the reads possibly originated from human or potential contamina-

tion, a stringent pipeline was constructed (see “Materials and Methods”). In this pipeline, after

removing the low-quality reads, the reads from artificial contamination and the reads origi-

nated from human, the remaining reads were aligned to plant miRNAs with stringent criteria

to get potential plant miRNAs. These potential plant miRNAs were aligned to human-related

microbiome genomes and reads with 0 or 1 mismatch were removed. Finally, 12,226 reads in

our 388 samples were kept, covering 166 types of plant miRNA sequences, and their abun-

dances in each sample were obtained as shown in Table 1.

Distribution of plant-derived miRNA in human samples

After analysis by our pipeline, a total of 166 types of plant miRNAs were detected in more than

half of all the small RNA sequencing data from all 10 types of the body fluids/tissues with the

exception of 16 human RBC samples (Table 1). Among the identified 166 types of plant

Table 1. Human sample list.

Body fluids/Tissues No. of samples No. of samples containing plant miRNA No. of reads mapped to plant miRNA (Average abundance)

Bladder 10 10 (100%a) 460 (3.20)

Brain 52 32 (61.5%) 169 (0.49)

Kidney 21 12 (57.1%) 3906 (15.42)

Liver 40 4 (10%) 188 (0.42)

Milk 4 4 (100%) 2759 (27.08)

Pancreas 11 6 (54.5%) 67 (0.87)

Plasma exosomes 147 63 (42.9%) 830 (3.59)

Platelet 6 5 (83.3%) 10 (0.33)

Red blood cell 16 0 (0%) 0 (0)

Serum/Plasma 70 62 (83.3%) 3828 (23.14)

Thyroid 11 4 (36.4%) 9 (0.24)

Sum 388 202 (52.1%) 12,226 (6.80)

a Values in the brackets were the percentage of samples containing plant miRNAs.

https://doi.org/10.1371/journal.pone.0187519.t001
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miRNAs (S6 Table), the top 14 most abundant types are shown in Fig 2, which represents

81.07% of all the plant miRNA reads detected in all of our samples. It is worth mentioning that

most of the plant-derived xenomiRs reported by other papers are included in these 14 plant

miRNAs, such as miR156, miR159, miR166, miR167 and miR168 [11, 16, 22, 24, 68].

Plant miRNA comparison among yeast, E. coli and human

Sample contamination cannot be avoided entirely in any small RNA sequencing experiment,

and for the same reason, it can be regarded as a background distribution in the sequencing data.

To date, no plant-derived miRNAs were reported in yeast (S. cerevisiae) or E. coli, and hence, it

is reasonable to regard the plant miRNA detected in these samples as the background distribu-

tion. To characterize this background distribution, we determined plant miRNAs in small RNA

sequencing samples of yeast and E. coli (Tables 2, S7 and S2) using our computational pipeline.

In total, 77 plant miRNAs belonging to seven types of plant miRNAs (miR166a-3p, miR166b,

miR156a-5p, miR414, miR396b-5p, miR396e, and miR166u) were detected in 10 out of 41 of

the yeast and E. coli samples (Table 2).

Comparing the plant miRNA abundances between human and yeast/E. coli samples in

Tables 1 and 2, it is evident that the average abundance of plant miRNA in both yeast or E. coli
is far less than that in human. We assume the denary logarithms of plant miRNA abundances of

human, yeast and E. coli samples follow Gaussian distributions as shown in Fig 3A (see “Materi-

als and Methods”). The abundance distributions of yeast and E. coli are very similar, but they

are very different from that in humans (Fig 3A). T-test also showed that the plant-derived

Fig 2. The average abundances and the percentages of the top 14 plant miRNA detected in human samples. The

left Y axis denotes the abundance and the right Y axis denotes the cumulative percentage. These miRNAs make up

81.07% of all the plant miRNAs in our samples. Most of plant-derived xenomiRs reported by other papers are included

in these 14 types of plant miRNAs, such as miR156, miR159, miR166, miR167 and miR168.

https://doi.org/10.1371/journal.pone.0187519.g002
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miRNA abundances were not significantly different (p = 0.6534) between yeast and E. coli, but

significantly different (p = 1.025e–05) between human and yeast/E. coli. This suggests that yeast

and E. coli samples do not contain plant-derived miRNAs except for those in plant miRNA

background distribution, while human samples do.

We also compared the abundance of each type of plant miRNA detected in yeast/E. coli
between human and yeast/E. coli, which is shown in Fig 3B. When the abundance of a plant

miRNA is relative high, especially when the abundance is higher than 0.05, the difference

between human and yeast/E. coli is significant based on the T-test and usually the abundance

of plant miRNA in the human is several times higher than that in the yeast/E. coli. Therefore,

in the following analysis, we only used those plant miRNAs in human samples with average

abundances of more than 0.05 unless stated otherwise, which resulted in 24 types of plant miR-

NAs in total (S3 Table). The abundance difference of each type of plant miRNA between yeast

and E. coli was insignificant (T-test, p> 0.1, S1 Fig).

For further confirming that plant miRNAs in human samples are different from the back-

ground distribution, we also used human miRNAs detected in the ath small RNA sequencing

data for more comparison. Human miRNAs were screened from 62 ath samples (S3 and S8

Tables) using a similar pipeline described in Materials and Methods, and their abundances

Table 2. Microbiome sample list.

Species No. of samples No. of samples containing plant

miRNA(% a)

No. of reads mapped to plant miRNA

(Average abundance)

Yeast 28 8 (28.57%) 74 (0.0623)

E. coli 15 3 (20%) 3 (0.0492)

Sum 43 11 (25.58%) 77 (0.0558)

a Values in the parentheses were the percentage of samples containing plant miRNAs.

https://doi.org/10.1371/journal.pone.0187519.t002

Fig 3. Plant miRNA abundance comparison between human and yeast/E. coli shows significant differences. (a) The logarithm of plant miRNA total abundance in

human, yeast and E. coli were fitted into Gaussian distributions. The abundance distributions of yeast and E. coli are very similar, but the abundance distribution in

humans is obviously different. (b) Abundance comparison of each plant miRNA between human and microbiome (including yeast and E. coli). The left Y axis denotes

abundance and the right Y axis denotes the log2(human average abundance/microbiome average abundance). The abundance differences of miR166a–3p, miR166b,

miR156a−5p and miR396b–5p between human and microbiome were significant. The � denotes 0.05< p<0.1 and �� denotes p< 0.05.

https://doi.org/10.1371/journal.pone.0187519.g003
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along with plant miRNA abundances in human samples and microbiome (yeast/E. coli) samples

were shown in S2 Fig. The human miRNA abundances in the ath samples are significantly lower

than the plant miRNA abundances in human samples (T-test, p = 0.00132), but not significantly

different from the plant miRNA abundances in microbiome samples (T-test, p = 0.1939). This

suggests that plant miRNAs in human samples are significantly above the background noises.

Plant miRNA profile comparison between human and plant

We compared the miRNA profiles identified from human samples and miRNA expression

profiles from plant samples. Forty-three small RNA sequencing samples were selected from 6

plants (aly, ath, nta, osa, tae and zma) as the representation of plants, and from 37 human sam-

ples as the representation of humans (see “Materials and Methods”). PCA was conducted

based on these human and plant samples, and the first two components of PCA show that the

samples from plants could be roughly clustered into three subgroups while most human sam-

ples were separated from the plant samples, especially separated from the ath and aly samples

(Fig 4). However, some human samples were clustered tightly with plant samples. Marginal

two-sample rank sum test also shows the differences between human samples and plant sam-

ples to be significant (p = 6.52e–13). This suggests that the plant miRNAs we obtained from

human samples may not result from plant-originated cross-contamination.

Fig 4. PCA based on common plant miRNAs from humans and six types of plant show that samples from plants

could be clustered into three subgroups while most human samples were separated from plant samples, especially

ath and aly samples.

https://doi.org/10.1371/journal.pone.0187519.g004
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Plant miRNA profile comparison among body fluids/tissues

Many endogenous miRNAs are tissue-specific in both human and plant [69]. We also found

that the average abundances of plant miRNAs, especially the five most abundant plant miRNAs,

in different body fluids/tissues were also very different (Tables 1 and S9). Hence, plant miRNAs

detected in human samples are tissue-specific. The major types of plant miRNAs detected in

our body fluids/tissues samples are shown in Fig 5A and 5C. It can be found that serum/plasma

samples contained 22 out of 24 of the most abundant plant miRNAs, while in thyroid and plate-

let samples, only 2 types of plant miRNA were detected. Some of plant miRNAs appeared in

almost all the body fluids/tissues, such as aly-miR166a–3p, while some miRNAs only appeared

in a few body fluids/tissues, for example, pab–miR951, which only appeared in milk samples.

Furthermore, hierarchical clustering showed that the abundance of plant miRNAs had distin-

guished patterns in different body fluids/tissues (Fig 5B and 5D). Hierarchical clustering based

on all 166 types of plant miRNAs detected in all human samples is shown in S3 Fig. To over-

come the loss of information, hypothesis tests were performed, and the results show that the dif-

ferences between plant miRNA profiles identified in human and those in native plants are

significant (MANOVA, p = 2.874e–10). However, as we expected, the difference between serum

samples and plasma samples was insignificant (MANOVA, p = 0.180). The total abundances of

all 166 types of plant miRNAs from different human body fluids/tissues were also significantly

different (S4 Fig, ANOVA, p = 0.0156), in which the medium abundance of serum/plasma was

the highest and that of brain was the lowest. We also calculated the Pearson correlations (See

Materials and Methods) between samples from the same or different body fluids/tissues (S5

Fig). The results showed a stronger correlation between the samples from the same body fluid/

tissue than between samples from different body fluids/tissues. T-test also confirmed that the

differences were significant (p< 2.2e–16).

We also checked if the presence of plant miRNAs could be explained by the study. We per-

formed hypothesis test on the samples of the same tissue from different studies to test if plant

miRNA profiles from different studies were from the same distribution. The results showed

that the differences in brain, kidney and pancreas samples from different studies were all insig-

nificant (MANOVA, p>0.05), which suggests that the specificity could not be explained by the

study. However, the differences of serum/plasma and exosomes in plasma samples from differ-

ent studies are significant (MANOVA, p<0.05), which may be due to the different regions of

the samples collected by different laboratories.

Discussion

We carried out our study based on a large number of human small RNA sequencing samples

collected from public databases. A computational practical pipeline was built to determine

potential plant miRNAs in our data. We analyzed comprehensive plant miRNA profiles using

bioinformatics and statistical tools, and yielded reliable evidence to support the plant-derived

xenomiR hypothesis.

It is worth noting that, in our pipeline, we removed all the reads possibly belonging to

human RNAs with a relaxed criterion before deciding whether they were from plants. It is

obvious that most reads in human small RNA sequencing data should come from human cells.

And these reads belonging to human are likely to map to many RNAs of other animals or

plants by chance due to the small size of reads and the huge amount of small RNA sequencing

data sets, which might cause false-positive mapping to RNAs in other species. However, in

recent studies [57, 58], these reads were not filtered out before further analysis.

The modified TPM was used for measuring the abundances of miRNAs in sequencing sam-

ples collected in our study. In fact, both the common TPM (TPM = #miRNA reads / #raw
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Fig 5. Plant miRNA types and abundances show plant miRNAs in human body are tissue-specific. (a) The plant

miRNA types in human body fluids/tissues are different. Serum/plasma samples contained 22 out of 24 most abundant

plant miRNAs, while in thyroid and platelet samples, only two types of plant miRNA were detected. Some plant
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reads � 1,000,000) and the modified TPM (TPM = #miRNA reads / #clean reads � 1,000,000)

were widely used when analyzing miRNA sequencing data. In our study, we analyzed small

RNA sequencing data from human, plant and microbiome, which were sequenced using dif-

ferent protocols and by different instruments. This may introduce additional noises into raw

sequencing data, which may make analyses difficult. Hence, we selected modified TPM as the

uniform measure of the miRNA abundances of all samples in our study. In addition, many

sequencing data (sra format files) were uploaded to GEO after removing adapters, such as

SRR4295721; so it is difficult to obtain common TPM values of these samples. S6 Fig repre-

sents Fig 3A using common TPM, and these two figures are highly similar with little differ-

ence, which would not make any difference on the conclusion of this study.

Many studies reported that the plant miRNA detected in human samples were caused by

the plant-originated contamination or sequencing errors [12–15]. The distribution of contam-

ination and sequencing errors should show a stable background distribution across all the

sequencing data. However, Fig 3A shows that the abundance of plant miRNA distribution in

human samples was much higher than the background distribution (yeast or E. coli). The

abundances of most types of plant miRNAs in humans were also much higher than those in

the background distribution, but for miR369e and miR166u, the abundance differences were

not significant (Fig 3B). For miR166u, its average abundance in microorganism samples was

more than that in human samples, which suggests that the low abundance of plant-derived

miRNA in microorganism samples cannot be explained by the controlled environment they

cultured. Hence, contamination or sequencing errors (probably in the cases of miR369e and

miR166u) indeed exist, but it could not explain all plant miRNAs in detected human samples.

When the average abundances of plant miRNAs in human samples were low, especially lower

than 0.05, the difference between plant miRNA distribution in human and background became

insignificant (Fig 3B). Hence, we used 0.05 as the abundance cutoff and only 24 types of plant

miRNAs were used (S4 Table) with an average abundance above this cutoff for further analysis.

If cross-contamination arises during sequencing, the plant miRNA profiles of cross-contami-

nated human samples should be similar to that of plant-originated contamination. We com-

pared the plant miRNA profiles of human samples to those in six types of plants that are often

used in experiments. The result showed that most human sample profiles were far removed

from plant miRNA profiles (Fig 4) and the hypothesis test (marginal two-sample rank sum test,

p = 6.52e–13) also confirmed that the plant miRNA profiles were significantly different between

humans and plants. Hence, plant miRNAs detected in human samples may not result from

cross-contamination. It is interesting that the plant miRNA profiles of human were closer to

food crops, such as osa, zma, and tae, instead of Arabidopsis (aly or ath), which are used more

widely in experiments as model plants (Fig 4). This supports the plant-derived xenomiR

hypothesis. However, some human samples were clustered tightly with plant samples, which

suggests that the plant-source contamination in these samples may co-exist with xenomiRs.

Using our pipeline, we found that plant miRNAs could be detected in 10 out of 11 types of

body fluids/tissues samples; however, no plant miRNA could be detected in 16 RBC samples

from three laboratories (Table 1) even though the criteria for screening were relaxed. This

miRNAs covered almost all the body fluids/tissues, such as aly-miR166a–3p, but some miRNAs only appeared in

specific body fluids/tissues, for example, pab-miR951 only appeared in milk samples. (b) Hierarchical clustering

showed plant miRNA abundances in different human body fluids/tissues had different patterns. The plant miRNA

abundance values were scaled by row and Euclidean distance was used as distance measurement between samples. (c)

Plant miRNA types in each human sample. The orders of body fluids/tissue and miRNA are identical to those in Fig

5A. (d) Abundance of plant miRNAs in each human sample. The plant miRNA abundance values were scaled by row,

and the orders of body fluids/tissues and miRNA are identical to those in Fig 5B.

https://doi.org/10.1371/journal.pone.0187519.g005
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indicates that not all the human tissues contain plant miRNAs. Furthermore, some plant miR-

NAs only appeared in specific body fluids/tissues, and the types and abundances of plant miR-

NAs contained in different body fluids/tissue were also significantly different (Fig 5). However,

only part of plant miRNAs (aly-miR156a-5p, aly-miR166a-3p, aly-miR172a-3p, osa-miR414,

pab-miR951, p< 10e-6, MANOVA) in Fig 5 showed strong fluid/tissue specificity, and some of

plant miRNAs did not, such as aly-miR168a-3p and ata-miR168-3p, which only presented in 2

and 3 samples, respectively. These results suggest that some plant miRNAs in human body may

be fluids/tissues specific; however, it still needs further confirmation by enough number of sam-

ples and more rigorous statistics tests to be conclusive. Although we did not detect any plant

miRNAs in our RBC samples, this did not mean that the background distribution of plant miR-

NAs is not present in RBC samples. The absence of plant miRNAs in RBC samples may be

caused by an insufficient number of samples (16 RBC small RNA sequencing samples from

three studies). Brain cells are separated from the blood by the brain-blood barrier [70], which

rigorously controls molecules to enter the center nervous system. A recent study by Lydia et al.

[71] reported that exosomes could deliver siRNA to the brain in mice; however, the mechanism

remains to be elucidated [72]. In addition, Jing et al. [24] found plant-derived xenomiRs in

human umbilical cord blood and amniotic fluid. They proposed xenomiR (including miRNA

and siRNA) could transfer through the placenta by microvesicles, which indicates that plant-

derived miRNAs can pass through human barriers. Taken together, the encapsulated plant-

derived miRNAs in the blood are likely to transfer through human barriers, as detected in the

human brain samples of our study (S4 Fig). Nevertheless, the plant-derived miRNA abundance

in the brains is the lowest among all human body fluids or tissues.

Naked miRNAs are easy to be degraded in human systemic circulation [73]. According to

many studies [74–76], exosomes are one of the possible approaches by which miRNAs are

transported between cells. Microarray and deep-sequencing approaches have revealed that

small RNAs in exosomes do not mirror cellular populations, which indicates the involvement

of selective sorting mechanisms [74, 77–80]. In addition, exosomes possess surface receptors/

ligands and have the potential to selectively interact with specific target cells [81]. Jia et al. [29]

also recently reported that the copy number of miR166b variated according to tissue types of

silkworms fed with synthetic miR166b. Our finding that plant-derived xenomiRs are tissue

specific is in accordance with these studies.

It is worth noting that most related studies detected plant miRNAs in various body fluids/tis-

sues of different animal samples, and they reported both positive and negative results. However,

the characteristics of non-human animals and the characteristics of human body fluids/tissues

were not considered in these studies. In other words, the results obtained from human samples

(body fluids/tissues) may not be reproduced using non-human animals (e.g., insect samples

[12]). The background distribution is another important factor, which should be considered.

The fact that some plant miRNAs detected in animals could not be detected in their diets [12]

may be caused by the inherent plant miRNA background distribution which lies in any sample.

According to our results, the average abundance of plant miRNA in human body fluids/tissue

was only 6.8 (Table 1), so that when the sequencing depth is not enough, such low abundance

transcripts may not be detectable by sequencing machines. In addition, the sequencing proce-

dure is biased against plant miRNAs compared with non-modified animal miRNAs because the

2´-O-methyl modification of the 3´-ends of plant miRNAs results in decreased adaptor ligation

efficiency [82]. It is, therefore, not surprising that the sequencing reads of plant miRNAs are low

in the mixed plant and animal libraries, including human body fluids/tissue samples. However,

Dickinson et al. [15] reported that no significant bias was observed in qPCR-based quantifica-

tion of RNA oligonucleotide with 2’-O-methyl 3’-end spiked into plasma RNA. In addition, a

recent research [26] reported that strawberry fruit FvmiR168 could affect properties of dendritic
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cells at a concentration three orders of a magnitude lower than that required to induce a similar

effect by human miRNAs. Diets are another factor for consideration. Although plant miRNA

profiles of same body fluids/tissues are more alike than those of different body fluids/tissues (S5

Fig), many correlation coefficients between same body fluids/tissues are rather low, which may

be caused by different diets.

Although our results strongly support the plant-derived xenomiR hypothesis, it is important

to note that our results do not imply whether the plant miRNAs have any biological functions

or if they could affect phenotype in human. It is still far-fetched to assume that genetically modi-

fied crops could have any effects on the human body through plant-derived xenomiR. As a sta-

tistical analysis, this study cannot serve as the ultimate proof of the plant-derived xenomiR

hypothesis. More well-designed experiments and more rigorous analyses are needed to further

investigate this hypothesis. For example, this study can be validated or refuted by radioisotope

labeling experiments, where the intact radioactive miRNA molecules that are identified in this

study may be detected at the molecular level in the predicted tissue types or observed through

medical imaging of an animal body.

Conclusions

Taken together, plant-derived xenomiR is the most likely explanation of the analyses for a

large number of public small RNA sequencing data. This study provides the first statistically

solid evidence on plant-derived xenomiR profiles using large-scale data to validate the plant-

derived xenomiR hypothesis in humans. It gives a first atlas of xenomiR distributions in differ-

ent tissue types. It also suggests specific miRNAs that can be synthesized with isotopes for in
situ detection after feeding them to animals, as a more rigorous validation of this hypothesis.

Supporting information

S1 Fig. Plant miRNA abundance comparison between yeast and E. coli. The abundance dif-

ferences of all seven types of plant miRNA in our samples were not significant (T-test, p> 0.1)

between yeast and E. coli.
(JPEG)

S2 Fig. Abundance comparison among the human miRNA abundance in the ath sample,

the plant miRNA abundance in human sample (hsa), and the plant miRNA abundance

microbiome sample. The human miRNA abundance in the ath samples is significantly lower

than the plant miRNA abundance in human samples (T-test, p< 0.05), but not significantly

different from the plant miRNA abundance in microbiome samples (T-test, p> 0.05).

(TIF)

S3 Fig. Hierarchical clustering based on all 166 types of plant miRNAs in human body flu-

ids/tissues showed plant miRNA abundance of different body fluids/tissues had different

patterns. The plant miRNA abundance values were scaled by row and Euclidean distance was

used as distance measurement between samples.

(JPEG)

S4 Fig. Total abundance of plant miRNA from different body fluids/tissues showed signifi-

cant difference (ANOVA, p = 0.0156). The medium abundance of serum/plasma was the

highest and that of brain was the lowest.

(JPEG)

S5 Fig. Pearson correlation distributions of sample pairs from a) the same body fluid/tis-

sue and b) different body fluids/tissues. The histograms were drawn with 12 bins (from −0.2
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to 1) with an interval of 0.1.

(TIF)

S6 Fig. Plant miRNA abundance comparison between human and yeast/E. coli using com-

mon TPM. The logarithm of plant miRNA total abundances in human, yeast and E. coli were

fitted into Gaussian distributions. The distributions are highly similar with those in Fig 3A, in

which the modified TPM was used as abundance measurement.

(TIF)

S1 Table. Human sample list.

(XLSX)

S2 Table. Microorganism sample list.

(XLSX)

S3 Table. ath sample list.

(XLSX)

S4 Table. 24 plant miRNAs with abundance more 0.05.

(XLSX)

S5 Table. Abundance of each human sample.

(XLSX)

S6 Table. 166 plant miRNAs detected in human samples.

(XLSX)

S7 Table. Abundance of each yeast/E. coli sample.

(XLSX)

S8 Table. Abundance of each ath sample.

(XLSX)

S9 Table. Top 5 plant miRNAs in human body fluids/tissues.

(XLSX)
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