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A B S T R A C T

Background: Although oxidative stress and malignancies are intimately connected, it is unknown 
how lung adenocarcinoma (LUAD) is affected by oxidative stress response-related genes (OSRGs). 
Our goal in this work was to create a genetic signature based on OSRGs that might both predict 
prognosis and hint to potential treatment options for LUAD.
Methods: Clinicopathological and transcriptome information on LUAD patients was obtained from 
the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A model for 
predicting risk was created using LASSO regression. The TCGA, GSE72094, and GSE41271 co
horts all demonstrated the risk model’s prediction ability. Immune cell infiltration was measured 
using the CIBERSORT method, and the TIDE platform was implemented to evaluate the thera
peutic efficacy of immune checkpoint inhibition (ICI). Chemotherapy sensitivity was predicted 
using drug activity data by the Genomics of Drug Sensitivity. An investigation into gene 
expression was conducted using qRT-PCR. CCK-8 and transwell assays were employed to look into 
how DKK1 affected the migration and proliferation of LUAD cells.
Results: A gene signature consisting of ANLN, FAM83A, DKK1, LOXL2, RHOV, IGFBP1, CCR2, 
GNG7, and C11orf16 was efficiently determined and used to calculate a patient-specific risk score, 
this functioned as a stand-alone biomarker for prediction. Correlations were found between risk 
scores and immune cell infiltration frequency, ICI therapy response rate, estimated chemother
apeutic drug susceptibility and autophagy-related genes.Furthermore, DKK1 knockdown reduced 
the ability of LUAD cells to multiply and migrate.
Conclusion: Our thorough transcriptome study of OSRGs generated a biological framework 
effective in forecasting outcome and responsiveness to therapy in LUAD patients.
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1. Background

Lung cancer has the most severe effects of all the many forms of cancer [1,2]. As lung cancer is generally diagnosed and treated 
when it has reached an advanced stage, it frequently spreads quickly and has a high risk of recur. About 70 % of non-small cell lung 
malignancies are caused by lung adenocarcinoma (LUAD), which has a negative outcome [3,4]. Thus, developing a novel, sensitive, 
and trustworthy forecasting method to precisely forecast the prognosis of LUAD patients and steer logical treatment plans is a potential 
path.

A major contributing element to the emergence and progression of tumors is oxidative stress.The buildup of reactive oxygen species 
(ROS) is the source of cellular oxidative stress. There have been many studies showing that many cancers [5–14], such as lung, liver, 
breast, prostate, and other cancers, are all related to oxidative stress, as well as other benign diseases [15]. Targeting oxidative stress 
can promote or inhibit tumour growth; therefore, controlling tumour cells’ redox homeostasis may improve the tumors’ therapeutic 
outcome. Oxidative stress affects the prognosis of various tumors with anti-tumour or pro-tumour regulation by its associated genes. 
Bioinformatics and other substantial data analysis techniques can be used to identify novel treatment targets and evaluate the het
erogeneity of oxidative stress in cancer.

Hence, within this research, we built a predictive model using nine oxidative stress-related genes (ORGs) that influence survival in 
LUAD and verified its predictive efficacy in TCGA and GEO cohorts, apart from evaluating oxidative stress prognostic genes about 
genomic mutations, immunological profiles, sensitivity to drugs and autophagy-related genes. Ultimately, nine genes that display an 
oxidative stress signature in the LUAD cell line were found using quantitative real-time PCR tests. Moreover, the impact of DKK1 on 
LUAD cells’ proliferation and migration ability was verified. This model will guide prognostic prediction and efficacy monitoring in 
individualised clinical treatment. Fig. 1 showed the overall framework of this research.

2. Materials and Methods

2.1. Datasets

The Cancer Genome Atlas (TCGA) and the GEO database were used to collect detailed clinical data and gene expression from 
individuals with LUAD. The LUAD information were selected based on the clinical information. The GEO database provided the gene 
expression matrix for GSE72094. Illumina probe annotation files were obtained from GPL15048. Here is how the TCGA-LUAD and 
GSE72094 data were handled: (1) Gene symbol conversion of the probe or ensemble ID; (2) Removal of probes pertaining to multiple 
genes; (3) When there are several probes or ensemble IDs that belong to a single Gene Symbol, by applying the mean value of the Gene 
Symbol, the expression value of the gene was calculated. The Gene’s median value Symbol is interpreted as the gene’s expression 
value. As TCGA and GEO are publicly accessible databases, ethical assessment was not required. Processed TCGA-LUAD data were from 
487 cancer and 81 para-cancer tissue samples, while GSE72094 data was from 442 cancer tissue samples. The Molecular Signatures 
Database (v7.5.1) identified a total of 436 OSRGs.

Fig. 1. The study design was shown basically in the flow graph.
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2.2. Network analysis of protein-protein interactions (PPIs)

An internet resource known as STRING that includes data on real and potential protein interactions was used to analyze the PPI 
network. A PPI network was utilized to assign OSRGs, and a threshold value of >0.4 for confidence scores was developed.

2.3. Consensus clustering

Using the “ConsensusClusterPlus” software program, we grouped LUAD patients into several subtypes in order to examine the 
biological roles of OSRGs in LUAD. The “ConsensusClusterPlus” program uses the Euclidean metric distance computation and the k- 
means clustering algorithm with 1000 iterations and an 80 % reprocessing rate.The Kaplan-Meier (KM) technique was employed to 
assess survival rates and compare results across various subgroups.

2.4. Developing and verifying the prognostic OSRG signature

To locate DEGs, the ’limma’ package was utilized with the following criteria applied: |log 2 fold-change (FC)| > 0.5, FDR <0.05. 
DEGs and OSRGs were investigated using one-way Cox regression analysis. Then, multicollinearity was decreased using LASSO Cox 
regression analysis. In the regression analysis, the dependent variable is the patients’ overall survival and status within the TCGA 
cohort, whereas the independent variable is the genes’ standardized expression networks. Gene expression levels and the associated 
regression coefficients were used to compute patient risk ratings. The model was built with the cv.glmnet function in the R package 
‘glmnet’ for k-fold cross-validation with default parameters, using 5-fold cross-validation, and risk ratings determined using the 
method for every patient. The “survminer” software was used to investigate the difference in OS survival between high-risk and low- 
risk groups, which were classified according on the median risk score. KM curves were plotted using the R software package “surv
miner.” Finally, validation cohort calculated risk scores using the same formula.

2.5. Analysis of functional enrichment

To evaluate the likely biological functions of DEGs among LUAD oxidative stress subtypes, pathway analysis from the Kyoto 
Encyclopedia of Genes and Genomes and gene ontology functional enrichment analysis were performed using the ’clusterProfiler’ 
program.

2.6. Assessment of immune cell infiltration

LUAD tumor immune microenvironment (TIME) penetration percentage of immune cells was determined by single sample gene set 
enrichment analysis (ssGSEA). Based on research by Charoentong (PMID: 28052254), which identified genes enriched for many 
human immune cell categories, gene sets were identified for each TIME-infiltrating immune cell type.

2.7. Chemotherapy response estimation

The “calcPhenotype” method of the R package “oncoPredict,” which is built on the GDSC (https://www.cancerrxgene.org/) cancer 
genomics drug sensitivity database, was used to determine the drug IC50 measurements for every sample in the training set. Calcu
lating the Spearman correlation values between the risk score and drug IC50 values, as well as analyzing the variations between small- 
molecule drug IC50 values in the high- and low-risk score groups, allowed us to examine the relationship between small-molecule drug 
sensitivity and risk score.

2.8. Prediction of immune checkpoint inhibition therapy

Using the R package version 0.2 (https://CRAN.R-project.org/package=oncoPredict), the tumor immune dysfunction and exclu
sion (TIDE) approach was employed for estimating immunotherapy response and TIDE values obtained from TCGA-LUAD expression 
data.

2.9. Cell culture and quantitative real-time PCR (qRT-PCR)

The Institute of Biochemistry and Cell Biology (Shanghai, PR China) supplied the B2B, A549, H1734, H1650, and H1299 human 
lung cancer cell lines. The Xuanwei LUAD XWLC-05 (Xuanwei Lung Cancer-05) cell line was donated by the Laboratory of Lung 
Cancer, Yunnan Cancer Hospital. Using the TRIzol reagent, total RNA samples were extracted from each cell line, and the SYBR Green 
Master Mix kit was implemented to do reverse transcription.

2.10. Analytical statistics

R 4.1.2 was employed to do the statistical analysis. The KM approach was performed to generate survival curves, and the log-rank 
test served to evaluate group differences. The 1-, 3-, and 5-year total OS prediction efficiency of the risk model was measured utilizing 

L. Li et al.                                                                                                                                                                                                               Heliyon 10 (2024) e38306 

3 

pmid:28052254
https://www.cancerrxgene.org/
https://CRAN.R-project.org/package=oncoPredict


ROC curves. At p < 0.05, the criterion for statistical significance was established. To determine DEGs between LUAD tissue and LUAD 
paracancer specimens, the R “limma” package was applied. Volcano and heat maps created using R packages ‘ggplot 2’ and 
‘ComplexHeatmap’.

3. Results

3.1. Differential expression of OSRGs in LUAD

Based on TCGA-LUAD data from 487 cancer and 81 paraneoplastic tissue samples, With FDR <0.05 as the cutoff, |log2 FC| > 0.5, 
136 of 436 OSRGs were considerably differentially showed between LUAD and normal tissue samples, indicating that OSRGs may 
participate a crucial role in LUAD growth. The 136 critical oxidative stress genes included 67 genes were down-regulated and 69 were 
up-regulated. Volcano and heat maps showing OSRG expression in LUAD are shown in Fig. 2A and B.

OSRGs were also differentially expressed according to clinical features in TCGA-LUAD data. NDUFS8 and EZH2 were differentially 
expressed among patient age subgroups (<60 and ≥ 60 years), while FANCD2 and RGS14 expression differed according to clinical 
stage (stage I, stage IV). In contrast to LUAD patients who were not treated with radiation treatment, radiation treatment patients had 
higher expression levels of the EZH2, FANCD2, GSS, NDUFS8, NONO, and PRDX2 genes. Further, HGF and MSRB3 expression levels 
were higher in the subgroup of LUAD patients with an EGFR mutation than in those without. In addition, HGF and MSRB3 levels varied 
considerably by ethnicity, whereas those of EZH2, FANCD4, MSRB3, and RGSJ4 substantially differed by sex (Fig. 2C–H).

Using the STRING database, we built a PPI network via the 136 that differ in OSRGs, to examine their interactions within LUAD. It 
was clear from the findings that CASP3, IL6, CAT, JUN, HIFIA, HMOXI, TXN, TLR4, PTGS2, FOS, GSR, MMP9, LRRK2, and FOXO3 had 
a high levels of network connection, and we hypothesized that these genes could be crucial for LUAD. (Fig. 2I). Furthermore, we 
examined relationships among OSRGs and discovered that levels of GCLC were positively correlated with those of GCLM and AIFM2, 
while AIFM2 levels were in direct opposition to those of BTK and FUT8. These data indicate that there may be mutual regulation among 
OSRGs (Fig. 2J).

Fig. 2. Differential expression of OSRGs in LUAD. (A) Map of volcanoes. (B) Gene expression map at different levels. Depending on the char
acteristics of the patient, OSRGs expression varied, including: (C) age, (D) clinical stage, (E) radiotherapy, (F) EGFR mutation, (G) sex, and (H) 
ethnicity. (I) Network diagram of OSRGs with variable expression. (J) OSRGs with variably expressed correlation heat maps.
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3.2. Identification of OSRG molecular subtypes and differences in clinical features among subtypes

In accordance with the expression characteristics of the 436 OSRGs that have been established, TCGA-LUAD tumor samples were 
submitted to clustering analysis, generating almost flat CDF curves (range, 0.1–0.9) at k = 3. The “inflection point method” was 
subsequently employed to investigate the relative change in the region below the CDF curve as the number of clusters expanded in 
order to determine the optimal number of clusters, and three classes selected as the final number of clusters (Figs. 3A and 2B), enabling 
the separation of materials into three subtypes (Fig. 3C), as follows: Cluster1 (N = 180), Cluster2 (N = 188), and Cluster 3 (N = 119). 
To reduce the dimensionality of the data, the uniform manifold approximation and projection (UMAP) technique was implemented, 
and the results indicated that the samples were accurately classified into three categories according to the OSRGs (Fig. 3D).

Next, based on the three OSRG subtypes, we assessed the variations in their clinical characteristics, including age, gender, race, 
stage, receipt of radiation therapy, and EGFR mutations, and the findings demonstrated that the three subgroups exhibited a sub
stantial difference in terms of gender and clinical stage (Fig. 3E). In TCGA-LUAD cohort data, prognostic KM survival curves for the 
three subtypes varied considerably (p < 0.05). Relative to patients in Cluster2 and Cluster 3, those in Cluster1 had excellent prognosis 
and the longest overall OS, disease-free interval, and disease-specific survival (Fig. 3F–H). In order to more thoroughly examine the 
connection between the three forms of oxidative stress and immunological state, we contrasted the tumor purity, stromal, immuno
logical, and ESTIMATE scores among the three subtypes using the ‘ESTIMATE’ package and found that all these parameters differed 
among them (p < 2.21e-16). The calculated score is a combination of immune and stromal factors. The makeup of stromal and immune 

Fig. 3. Molecular subtype identification of OSRGs and differences in clinical features among patients in OSRG subtypes. (A) CDF curve 
distribution of consistent clustering. (B) Clustering-consistent CDF curve. (C) Clustering results at classification number k = 3. (D) UMAP clustering 
results of 436 OSRGs. (E) A heat map showing how clinical indications are distributed throughout the three kinds. Survival curves of the three OSRG 
subtypes: (F) Disease-specific survival, (G) Disease-free interval, (H) Overall survival. (I) Inter-subtype immune infiltration microenvironment. Heat 
map showing the three OSRG subtypes’ respective ADAPTIVE immune cell infiltration scores. (J) The three OSRG subtypes’ INNATE immune cell 
infiltration score is shown in heat map. (K) Box line plot of ESTIMATE scores in the three OSRG subtypes.
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cells was evaluated by calculating stromal and immunological scores, based on which tumour purity was further inferred. It was 
noteworthy that patients were more likely to have greater tumor purity when they had higher OS ratings. In Cluster 1, higher stromal 
and immune scores are associated with lower tumour purity and better prognosis (Fig. 3K). In order to enhance the comprehension of 
the differences among the three subcategories of TIME, and to find the immunological scores connected to the various molecular 
subtypes, we relied on the ssGSEA program.Our analysis showed that infiltration scores for ADAPTIVE and INNATE immune cells 
differed significantly among three subtypes. The findings demonstrated that the three subtypes differed in terms of different infiltrating 
immune cells, including activated CD4 T cell (p < 0.01), memory B cell (p < 0.0001), type 17 T helper cell (p < 0.0001), central 
memory CD4 T cell (p < 0.0001), type 1 T helper cell (p < 0.0001), effector memory CD8 T cell (p < 0.0001), T follicular helper cell (p 
< 0.0001), regulatory T cells (p < 0.0001), central memory CD8 T cell (p < 0.0001), gamma delta T cells (p < 0.001), activated B cell 
(p < 0.0001), immature B cell (p < 0.0001), activated CD8 cell (p < 0.0001), CD56bright nature killer cell (p < 0.0001), immature 
dendritic cell (p < 0.0001), MDSC (p < 0.0001), macrophage (p < 0.0001) etc. Infiltration scores of innate and adaptive immune cells 
were best in Cluster 1, portending a good prognosis (Fig. 3I and J). These findings indicate that OSRGs in LUAD could be immune- 
related.

3.3. OSRG signature construction in LUAD

Between the three OSRG subtypes, an study of univariate Cox regression was performed on 1173 DEGs. Of these DEGs, 485 were 
linked to a patient’s prognosis (P < 0.05). According to these 485 genes involved in prognosis, LASSO Cox analysis was further 
employed to remove redundant genes and screen out 9 core prognostic genes (Fig. 4A–C); ANLN (P < 0.001), FAM83A (P =0.0019), 
DKK1 (P < 0.001), LOXL2 (P < 0.001), RHOV (P =0.0022), and IGFBP1 (P =0.0044) were linked to a poor outcome, whereas CCR2 (P 
< 0.001), GNG7 (P < 0.001), and C11orf16 (P =0.001) were connected to favorable patient outcomes (Fig. 4D–L). When lambda =
0.0716, a total of 9 genes were filtered for further investigation. A risk-scoring model was created by utilizing the LASSO regression 
coefficient that forecasts patient survival by ranking the expression of these nine genes. Score = ANLN * 0.061 + DKK1 * 0.088 +
LOXL2 * 0.058 + FAM83A * 0.017 + RHOV * 0.019 + IGFBP1 * 0.019 - GNG7 * 0.091 - CCR2 * 0.059 - C11orf16 * 0.013.

Signature =
∑

Coefi*Expri (expr represents gene expression level and coef represents LASSO regression coefficient)

Fig. 4. OSRG signature construction in LUAD. (A) The variable that is independent In LASSO regressions, the horizontal coordinate represents 
lambda’s logarithm, and the vertical coordinate represents its coefficient. (B) In LASSO analysis, the confidence interval is calculated for each 
Lambda value. (C) Important prognostic gene values according to LASSO regression coefficients. (D–L) Survival curves for nine key prog
nostic genes.
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3.4. The OSRG signature can predict patient prognosis

Using our risk score model, we gave each cancer patient sample a risk score. The median score of LUAD samples was applied to 
divide them into high and low risk categories. ROC curve analysis was performed to evaluate the model’s predictive power. In training 
set TCGA-LUAD data, the prognosis was worse for high-risk cohort (P < 0.001) (Fig. 5A), and expected AUC values of data sets at 1, 3, 
and 5 years were 0.760, 0.714, and 0.660, correspondingly (Fig. 5B), indicating the outstanding predictive value of the model. In the 
validation set GSE72094, furthermore, the high-risk group’s results were poorer (P < 0.001) (Fig. 5F), and a predicted AUC values at 1, 
3, and 5 years were, in that order, 0.69, 0.68, and 0.651 (Fig. 5G), indicating positive validation of the model. We added the validation 
set GSE41271 data from 275 cancer tissue samples. In line with the findings from the prior dataset, the high-risk group in the validation 
set GSE41271 also had an adverse result (P < 0.001) (Fig. 5K), with projected AUC values of 0.689, 0.685, and 0.666 for the samples at 
1, 3, and 5 years, each (Fig. 4L), indicating positive validation of the model. The risk model was implemented to determine how high- 
and low-risk populations were distributed throughout the validation and training sets (Fig. 5C, H, 5M). In general, compared to low- 
risk groups, high-risk ones had shorter OS durations. (Fig. 5D, I, 5N). Further, distinct variations were observed in the distribution of 
genes that function in the construction of models between the populations at high risk and low risk. As expected from the previously 
discovered prognostic genes, there was greater expression of ANLN, FAM83A, DKK1, LOXL2, RHOV, and IGFBP1 in the group at high 
risk as opposed to the group at low risk (Fig. 5E, J, 5O).

Fig. 5. Model prediction performance is assessed using the GSE validation dataset and the TCGA training dataset. (A) Patients’ prognoses in 
the TCGA training dataset’s high- and low-risk categories. (B) AUC values for samples in the TCGA training dataset at1,3, and 5 years. (C) Proportion 
of high- and low-risk populations identified by the risk model in TCGA training dataset. (D) Survival time of high-risk and low-risk populations 
distinguished by the risk model in TCGA training dataset. (E) Variations in the gene distribution that the risk model in the TCGA training dataset 
used to identify the high-risk and low-risk groups. Evaluation of model prediction performance in the validation dataset (GSE72094). (F) 
Patients’ prognoses in the validation dataset’s high-risk and low-risk categories (GSE72094). (G) AUC values in the validation dataset (GSE72094) 
for samples at 1, 3, and 5 years. (H) Proportion of high-risk and low-risk populations distinguished by the risk model in validation dataset 
(GSE72094). (I) Survival time of high-risk and low-risk populations distinguished by the risk model in validation dataset (GSE72094). (J) Variations 
in the distribution of genes used to build the models across the populations classified as high- and low-riskin line with what is supposedly the 
validation dataset’s risk model (GSE72094). (K) Patients’ prognoses in the validation dataset’s high-risk and low-risk categories (GSE41271). (L) 
AUC values for samples in the validation dataset at1,3, and 5 years (GSE41271). (M) Proportion of high-risk and low-risk populations distinguished 
by the risk model in validation dataset (GSE41271). (N) The validation dataset (GSE41271) shows the survival time of populations classified as high- 
risk and low-risk given the risk model. (O) Variations in the gene distribution that were used to build the models between the populations classified 
as high- and low-risk as stated by the validation dataset’s risk model (GSE41271).
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3.5. LUAD patients’ independent prognostic factor: a signature verified by univariate and multivariate Cox regression analysis

The clinical data (tumor stage, gender, age, etc.) and prognostic model risk scores of the patients were subjected to univariate and 
multivariate Cox regression analysis. It carried out in the TCGA-LUAD training set indicated that survival in patients with LUAD was 
correlated with prognostic model risk scores and stage (p < 0.001, HR > 1) (Fig. 6A and B). Similarly, in the validation datasets 
GSE72094 and GSE41271, univariate and multivariate Cox regression analyses demonstrated that prognostic modeling risk scores and 
stage may be employed as standalone prognostic variables predicting the likelihood of survival of patients with LUAD. (Fig. 6C, D, 6E, 
6F). We then looked at correlation within model risk scores and clinical characteristic subgroups. Significant differences in model risk 
scores were found in age (P < 0.05), gender (P < 0.01), and clinical stage (P < 0.05) (Fig. 6G–L). Patients with malignancies in stages 
III and IV had higher scores than those in stages I and II, showing that individuals with advanced illness have a poorer prognosis. Male 
patients had higher scores than females, and patients younger than 60 had higher scores, with higher scores associated with a worse 
prognosis.

3.6. OSRG signature-related molecular and tumor microenvironment features

Further investigation was conducted into correlation within the mutational landscape and risk score by SNV and CNV mutation 
data of TCGA-LUAD patients. The samples were divided into two categories: high-risk and low-risk, pursuant to the median risk score. 
A waterfall plot displayed extensive mutation information of the various genes in every sample collected. The top 10 mutated genes 
were presented in figure. According to SNV alteration data, the frequencies of mutations of TP53, CSMD3, AHNAK, SMARCA4, 
COL22A1, TEX15, NCOR2, DOCK4, MAGI2, and SLX4 in the two categories were either reasonably high. Moreover, we created low- 
risk and high-risk score subgroups’ amplified or removed CNV on-plots. The top 10 genes of AGBL2, AUTS2, CAMP, CDC25A, EMB, 
FNBP4, HCN1, NINL, RBFOX1, and UCN2 in high-risk group were comparatively high, based on CNV mutation data. We discovered 
that the high-risk group experienced more mutation rates in comparison with low-risk group. Immunotherapy perhaps greater suc
cessful since the SNV and CNV in high-risk group shown a significant disparity in low-risk group.Tumor HALLMARK enrichment scores 
were computed and group differences were assessed using ssGSEA and TCGA-LUAD expression data. The following major variations 
were found in the HALLMARK pathway after analyzing the variation in groups with high and low risk scores: HALLMARK EPITHELIAL 
MESENCHYMAL TRANSACTION, HALLMARK HYPOXIA, HALLMARK APICAL SURFACE, HALLMARK MYOGENESIS, HALLMARK 
DNA REPAIR, and HALLMARK FAITY ACID METABOLISM etc. The relevance of these pathways to oxidative stress may provide di
rection for targeting oxidative stress (Fig. 7D). Additionally, the ImmuneScore, StromalScore, and EstimateScore were computed using 
the ESTIMATE algorithm, and low-risk group was found to have higher test results, suggesting better immune activation (Fig. 7E and 
F). Further, CIBERSORT analysis was employed for computing immune cell infiltration and revealed that the immune trend was in line 

Fig. 6. Cox regression examination of the relationships between clinical features and model risk scores in the GSE validation and TCGA 
training datasets. (A) Cox regression analysis using a single component in the training dataset for TCGA. (B) Cox regression analysis with multi- 
factor in the training dataset of TCGA. Cox regression analysis of clinical characteristics associations with model risk score in GSE72094 validation 
dataset. (C, E) Single-factor Cox regression analysis in GSE72094 and GSE41271 validation dataset. (D, F) Multi-factor Cox regression analysis in 
GSE72094 and GSE41271 validation dataset. Differences in model risk scores according to clinical characteristic subgroups, including (G) age, (H) 
sex, (I) tumor stage, (J) ethnicity, (K) EGFR mutation, and (L) radiotherapy.
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with the ESTIMATE analysis’s findings. Additionally, low-risk group outperformed the high-risk group in terms of immune cell 
infiltration according to CIBERSORT analysis. These included resting memory CD4 T cells (p < 0.0001), resting dendritic cells (p <
0.001), resting memory B cells (p < 0.0001), monocytes (p < 0.001), plasma cells (p < 0.01), and resting mast cells (p < 0.001). 
Activated memory CD4+ T cells (p < 0.001), activated mast cells (p < 0.01), M0 macrophages (p < 0.0001), M1 macrophages (p <
0.05), and resting NC cells (p < 0.001) were significantly more elevated for individuals with high-risk scores. Then, in two groups of 
activated dendritic cells, eosinophils, naïve B cells, etc., there was definitely no significance (Fig. 7G). The low-risk group had the 
strongest innate and adaptive immune cell infiltration ratings, indicating a favorable prognosis.

3.7. Comparison of drug response and autophagy-related genes among different OSRG signature subgroups

Drug response data from the OncoPredict and GDSC databases were predicted using drug responses in TCGA-LUAD dataset. 
Correlations between IC50 values and risk scores were determined, and discrepancies in IC50 values involving groups with a high- and 
low-risk score were evaluated. This investigation aimed to evaluate any possible relationships between reaction to treatment and risk 
score. Patients with LAUD in the high-risk score group in this research exhibited greater sensitivity to docetaxel, ATR kinase inhibitors, 
WEE1, ERK1, and ERK2 inhibitors, as well as PLK inhibitors, than did the low-risk group. In contrast, Resistance to ROCK inhibitors, 
Akt1/2/3 inhibitors, BRD4 inhibitors, CDK4/6 inhibitors, insulin receptor inhibitors, and MAPK inhibitors was more probable to 
develop in the group with a high risk score.The findings showed a substantial positive association involving risk score and IC50 values 
of the medications: GSK269962A_1192, MK2206_1053, JQ1_2172, Ribociclib_1632, BMS754807_2171, and Doramapimod_042, where 
IC50 values were substantially higher in the group at high-risk. The IC50 values of the drugs AZD6738_1917, MK1775_1179, 
SCH772984_1564, ERK_6604_1714, Docetaxel _1007 and BI 2536_1086 exhibited a significant inverse correlation with risk score, and 
in low-risk group, their IC50 values were markedly greater. These drugs exhibited poor efficacy in low-risk group (Fig. 8A and B).

To find out if tumor risk score can accurately predict the outcome of immunotherapy in LUAD patients, we also performed TIDE 
correlation analysis utilizing TCGA-LUAD gene expression data. The results revealed that patients who responded well to immuno
therapy had lower risk scores, suggesting that this group of patients was far more probable tto react positively to treatment. A model 

Fig. 7. OSRG signature-related molecular features and tumor microenvironment. (A) The waterfall graphic displayed the top 10 genes in the 
high risk score group’s LUAD that had the greatest frequency of mutations. (B) The waterfall graphic displayed the top 10 genes in low risk score 
group’s LUAD that had the greatest frequency of mutations. (C) The top 10 genes of amplificated or deleted CNV distribution diagram of groups with 
high and low risk score groups. (D) Variations in the HALLMARK routes in the groups with high and low risk scores. (E, F) Comparison of ESTIMATE 
immune infiltration rates of various subgroups. (G) The distribution of 22 immune cells across the two risk categories is displayed in CIBERSORT 
immune cell infiltration scores box plot.
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using risk score to predict the effect of immunotherapy was proven to be valid, AUC value for the ROC curve was 0.68, and the AUC 
value for the PR curve was 0.76. Both AUC values were greater than 0.5 (Fig. 8C–H). We next retrieved autophagy-related genes by 
accessing the PathCards database, to investigate the association between autophagy-related genes and the OSRGs that were utilized to 
create the tumor risk score. Differences in expression of the nine key oxidative stress genes we screened and autophagy-related genes 
suggest that the same target genes may exist between our model and autophagy (Fig. 8I). Additionally, we examined the variations in 
autophagy-associated gene expression levels across risk-score categories. (Fig. 8J). Autophagy-related genes such as AMBRA1, ATG9A, 
BCL2, MAP1LC3A, and MAP1LC3B differed significantly in high and low-risk score subgroups.

3.8. Validation of nine prognostic genes for model construction in LUAD cell lines

As verified by qRT-PCR, ANLN, FAM83A, RHOV, and IGFBP1 were substantially expressed in the majority of LUAD cell lines 
(Fig. 9A, B, E, F), while CCR2 and C11orf16 (Fig. 9G–I) were exhibited by the majority of LUAD cell lines at modest levels. LOXL2 and 
DKK1 showed a trend toward insufficient expression in LUAD cell lines (Fig. 9D–C), while GNG7 was extremely expressed, which may 
be related to differences among cell lines (Fig. 9H).

3.9. Verification of DKK1 functions in LUAD cell lines

We selected DKK1 from nine key prognostic genes for functional test validation. We discovered that A549 and H1299 cell growth 
was decreased by lowering DKK1 expression (Fig. 10A, B, C). In addition, migration assays showed that low DKK1 expression pre
vented A549 and H1299 cells from migrating (Fig. 10D and E).

4. Discussion

Recent years have seen improvements in the identification and management of LUAD, however, the effectiveness of treatments for 

Fig. 8. Analysis of drug response and autophagy-related genes among different signature subgroups. (A) Correlation of IC50 values for 
anticipated medications with risk scores in the training set cohort. (B) Differences in IC50 values for anticipated medications between samples in 
different high and low-risk groups. (C) TIDE values in treatment response vs. non-response groups. (D) Risk score in the non-response groups vs. 
treatment response. (E, F) The relationship between treatment response in high and low risk categories. (G, H) Risk score predicts effect, G is the 
ROC curve and H is the PR curve. (I) Heat map showing the correlation between signature genes and autophagy-related genes. (J) Heat map showing 
autophagy-related gene manifestation in subgroups with low and high risk scores.
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advanced lung cancer remains limited. Five-year survival for LUAD patients is still dismal despite significant advances in combo 
therapy [16]. Therefore, it is necessary to search for biomarkers that can enhance patient prognosis and provide effective treatment 
options. For our work, we developed a predictive model founded on OSRGs that may aid physicians in estimating the prognosis of 
LUAD and potentially selecting appropriate treatment regimens for individual patients. Furthermore, we examined the connection 
with autophagy-related genes and OSRGs, autophagy or oxidative stress may have cross-links in the relevant pathways, providing new 
avenues for investigating the treatment of both.

The TCGA database included 436 genes associated with oxidative stress that were differentially expressed. The DEGs were found 
using a univariate Cox regression analysis, and the optimal range was narrowed using a LASSO regression analysis. Ultimately, it was 
shown that nine OSRGs—ANLN, FAM83A, DKK1, LOXL2, RHOV, IGFBP1, CCR2, GNG7, and C11orf16—were connected to the 
outcome of LUAD patients. ANLN, FAM83A, DKK1, LOXL2, RHOV, IGFBP1, CCR2, GNG7, and C11orf16 influence cancer progression 
in different ways in cancer, and these genes are associated with oxidative stress. Research shows that upregulation of the ANLN gene 
reduced the efficacy of chemotherapy and immunotherapy in LUAD patients and upregulated the expression of proteins linked to 
epithelial-mesenchymal transition (EMT)-related proteins [17]. Upregulated FAM83A increases EMT, migratory ability, and cell 
proliferation in LUAD cell lines [18]. In gastric cancer and head and neck squamous cell carcinoma influence the transformation of 
epithelium to mesenchyme, and promote resistance to radiotherapy and immunotherapy [19,20]. Through its effects on proliferation, 
EMT, apoptosis, invasion, and migration, LOXL2 promotes the development and spread of lung cancer [21]. In LUAD, RhoV 

Fig. 9. Validation of nine prognostic genes used for model construction in LUAD cell lines. (A) qPCR verified the expression of key gene ANLN 
in LUAD cell lines. (B) qPCR verified the expression of key gene FAM83A in LUAD cell lines. (C) qPCR verified the expression of key gene DKK1 in 
LUAD cell lines. (D) qPCR verified the expression of key gene LOXL2 in LUAD cell lines. (E) qPCR verified the expression of key gene RHOV in LUAD 
cell lines. (F) qPCR verified the expression of key gene IGFBP1 in LUAD cell lines. (G) qPCR verified the expression of key gene CCR2 in LUAD cell 
lines. (H) qPCR verified the expression of key gene GNG7 in LUAD cell lines. (I) qPCR verified the expression of key gene C11orf16 in LUAD cell 
lines. ****p < 0.0001.
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overexpression accelerates the disease’s development and EGFR-TKI resistance [22]. Overexpression of IGFBP1 promotes endocrine 
therapy resistance in breast cancer [23]. IGFBP1 promotes lung cancer metastasis by enhancing mitochondrial ROS decline [24]. CCL2 
stimulates breast cancer cells’ growth, survival, and glycolysis [25]. GNG7 is weakly expressed in LUAD and enhances LUAD pro
gression via Hedgehog signaling [26]. The results of the study show that C11orf16 (AAMDC) overexpression may impact outcomes in 
BC. The nuclear envelope seen in C11orf16 is linked to increased mortality as well as better resistance to statins and responsiveness to 
FU-based chemotherapies [27]. In conclusion, these nine ros-related genes are involved in pathological oxidative stress during LUAD 
development and contribute significantly to the onset of cancer. They may therefore be applied to LUAD prognostic prediction.

Since the inception of immunotherapy, clinical standards of care for many tumors have been progressively revised. For individuals 
with advanced LUAD, immunotherapy is essential for advancing their clinical prognosis [28]. Immune cells linked with tumors are 
crucial for the growth, metastasis, and recurrence of tumors as well as for the efficacy of immunotherapy [29]. They may be employed 
as biological markers to forecast a patient’s prognosis or the effectiveness of immunotherapeutic treatments. In line with the findings of 
similar investigations [30], our research model investigated the link throughout the tumor microenvironment and oxidative stress, 
high-risk group have greater levels of immunosuppression than those in the low-risk group. Furthermore, we discussed the sensitivity 
to therapeutic agents in both groups of patients. The high-risk score group of LAUD patients exhibited more reactivity to docetaxel, 
ATR kinase inhibitors, WEE1, ERK1, ERK2, and PLK inhibitors. Conversely, the group with high-risk score had a greater likelihood of 
developing resistance to ROCK inhibitors, Akt1/2/3 inhibitors, BRD4 inhibitors, CDK4/6 inhibitors, insulin receptor inhibitors, and 
MAPK inhibitors. Our results demonstrated a correlation between autophagy and oxidative stress genes. Autophagy may be induced 
and regulated by changes in the redox condition of cells, which cells can exploit to manage redox metabolism under diverse stress 
conditions [31,32]. For the purpose of laying the groundwork for future studies on the disruption of autophagy and OSRGs, more study 
on these topics is required. Our study reveals patient sensitivity to anti-tumour drugs, validated by at-risk populations, and a link to 
autophagy, These findings may help researchers create highly effective therapeutic regimens.

Fig. 10. Verification of DKK1 functions in LUAD cell lines. (A) qPCR verified expression after knockdown of DKK1 in A549 and H1299 cell. (B, 
C) Knockdown DKK1 reduced the ability of A549 and H1299 cells to proliferate. (D, E) Knockdown DKK1 inhibited the migration function in A549 
and H1299 cell.
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Similar to this study, previous research has been based on expression data for specific genes and involved using LASSO-Cox 
regression analysis to create an optimal predictive model. Predictive models of oxidative stress genes in lung adenocarcinoma are 
also discussed in related studies, and similarly, oxidative stress and LUAD development have a strong association [33,34]. In contrast, 
the efficacy of our prediction model was superior to that of the other studies, with higher AUC values in 1, 3, and 5-year survival ROC 
curves estimated by the OS features than in the other two studies. Based on our and their research, these genes that are utilized for 
prognostic model prediction may be used to forecast the prognosis of LUAD, deliver a foundation for LUAD oxidative stress-related 
research, and provide a new direction for anti-tumour therapy. There are also relevant prognostic models forecast the outlook of 
LUAD individuals [35–39], and some of the genes are consistent with this study, further demonstrating the role of the key genes we 
identified in lung adenocarcinoma. In addition, we analysed the correlation between immunotherapy, targeted therapy, and 
chemotherapy across several risk categories, and we contributed to the prediction of relevant treatments. Similarly, the addition of our 
study discusses an association between oxidative stress and autophagy. Certain restrictions apply to this investigation. Specifically, the 
data utilized in our study is derived from pertinent studies involving patients who have had surgical procedures or biopsy examina
tions, and is sourced from public sources. We need to consider the applicability of this data to patients without surgical specimens. 
Additionally, some physiologically important genes may be missed while identifying prognostic genes using Cox regression analysis. 
Furthermore, the limited clinical information and experimental samples in the database may impact the accuracy of our predictive 
models. More real-world studies may be necessary to confirm the clinical value of our gene signature. It is essential to further research 
the functioning workings of OSRGs in LUAD further to validate predictive genes through more vitro experiments. Lastly, further 
validating predictive models in multicenter and large-scale clinical trials is necessary to address these limitations.

5. Conclusion

Our data demonstrate that LUAD is associated with OSRGs and We created a LUAD risk score model via OSRG levels. Considering 
the links between the model and clinical characteristics, immune infiltration, drug sensitivity, immunotherapy, and autophagy. Pa
tients with LUAD may benefit from therapy that targets OSRGs.
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