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Abstract. Diverse pathogens are detected in Alzheimer’s disease (AD) brains. A bioinformatics survey showed that AD
genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to
multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri,
cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Por-
phyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the
AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregu-
lated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets
reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, imply-
ing resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood
tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD
genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum,
concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pol-
lution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain
BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet.
Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain,
blood, or cerebrospinal fluid. AD serum amyloid-� autoantibodies may attenuate its antimicrobial effects favoring microbial
survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be
augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
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INTRODUCTION

Multiple and diverse pathogens, have been impli-
cated in Alzheimer’s disease (AD) in epidemiological
studies. Meta-analysis studies have reported the
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association of AD with spirochetal (Odds ratio
(OR) = 10.61) or Chlamydia pneumoniae (C. pneu-
moniae) infection (OR = 5.66) [1] and association of
herpes simplex (HSV-1) infection with AD, which
is augmented by possession of the APOE4 allele
(OR = 2.71) [2]. Periodontitis has also been asso-
ciated with AD (meta-analysis OR = 1.69 for all
periodontitis, and 2.98 for severe periodontitis) [3]
and is associated with increased amyloid-� (A�) load
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in patients in vivo [4]. Meta-analysis has also reported
a significant association between Helicobacter pylori
(H. pylori) infection and dementia (OR = 1.71) [5].
Pathological burden (cytomegalovirus, HSV-1, Bor-
relia burgdorferi (B. burgdorferi), C. pneumoniae,
and H. pylori) rather than any individual pathogen
has also been associated with AD [6].

The hepatitis C virus has also been associated with
dementia [7] and dementia is part of a spectrum of
neurological disorders related to the human immun-
odeficiency virus, HIV-1 (NeuroAIDS) [8]. Amyloid
plaques are found in the brains of HIV-1 patients
and A� deposition also predict neurocognitive dis-
orders in HIV-1 infected APOE4 carriers [9, 10]. The
Borna virus has been associated with a rare form
of hippocampal degeneration [11] rather than AD,
but does produce extensive degeneration of the corti-
cal and hippocampal cholinergic innervation in rats,
analogous to the situation in AD [12]. Borna virus
infection of cortical and limbic brain areas produces
microglial activation in the hippocampus and neo-
cortex. A� deposits decreased in the parenchyma but
increased in the walls of cerebral vessels [13].

Epidemiological studies are evidence for a link
between infection and AD, but do not necessarily
imply actual infection of the brain. Many viruses
can enter the brain via olfactory neural pathways
to the basal forebrain [14], a route also employed
by C. pneumoniae [15] and the cerebral entry of
pathogens may also be facilitated by disruption of
the blood-brain barrier (BBB) in AD, which appears
to be an early feature of the disease [16–18]. Cere-
bral microbleeds and cortical siderosis (an increase
in blood-derived iron deposition) are also a feature
related to BBB disruption in AD patients [19–21].
Many bacteria depend upon the availability of free
iron and such effects may contribute to their success-
ful colonization in AD [22].

The BBB is also damaged by systemic inflamma-
tion [23], or by systemically administered bacterial
cell wall components, lipopolysaccharide (LPS)
[24], or lipoteichoic acid [25] suggesting that
repeated peripheral bacterial infections (a feature of
the elderly population) could also weaken the BBB.
The BBB can also be damaged by viral infection
(vaccinia or HSV-1) [26] or by Porphyrymonas
gingivalis (P. gingivalis) [27], while other pathogens
such as B. burgdorferi [28], C. pneumoniae [29], or
Cryptococcus neoformans (C. neoformans) [30] have
found other ways to circumvent this barrier. Pathogen
infection in the elderly may also be favored by age-
related immunosenescence [31]. This decreases

immunity-related responses but also results
in increases in inflammatory reactions termed
“inflamm-aging” [31, 32]. The control of the BBB,
the routes of pathogen entry and immunosenescence
are covered in greater detail in a later section.

Pathogens that have been detected in the AD
brain using DNA detection or immunocytochemistry
include HSV-1, C. Pneumoniae, B. Burgdorferi, and
many other spirochetes [33–35], human herpes virus
6 (HHV-6) [36], the Epstein-Barr virus (EBV) [37],
and Propionibacterium acnes [38]. Bacterial LPS,
an immunogenic component of the outer coat of
gram-negative bacteria, and E coli K99 (a filamen-
tous fimbrial thread that attaches to other bacteria
or host cells) were detected immunocytochemically
in brain parenchyma and vessels in all AD (24/24)
and control brains (18/18). K99 levels were greater
in AD compared to control brains and K99 was local-
ized to neuron-like cells in AD but not control brains.
LPS levels were also greater in AD compared to
control brain and LPS colocalized with A� in amy-
loid plaques and around vessels in AD brains [39].
P. gingivalis LPS has also been detected in AD brains
postmortem [40].

Fungal/yeast species detected in the AD brain
include: Saccharomyces cerevisiae, Malassezia glo-
bosa, Malassezia restricta, Penicillium Phoma,
Cladosporium, Neosartorya hiratsukae, Sclerotinia
borealis, Candida albicans (C. albicans), and sev-
eral other Candida species [41, 42]. Fungal DNA and
proteins have also been detected in AD cerebrospinal
fluid (CSF) [43].

Preliminary microbiome studies using unbiased
next-generation sequencing have also identified many
fungi in AD brains (Alternaria, Botrytis, Candida,
Cladosporium, and Malassezia) species [44]. A pilot
next-generation sequencing study has also identi-
fied several bacterial species in both control and
AD brains with an overall higher bacterial load in
AD, with a relatively higher proportion of Acti-
nobacteria, and notably Propionibacterium acnes
[45]. Evidently, further microbiome studies in blood
and brain are warranted for all classes of pathogens
and independent confirmation across laboratories is
important for individual species.

AD is characterized pathologically by amyloid-
containing plaques and A� has been extensively
implicated in the pathogenesis of AD [46]. The
involvement of pathogens in AD has been strength-
ened by the observations that A� is an antimicrobial
peptide active against bacteria and fungi [47, 48] and
the influenza [49] and herpes simplex viruses [50].
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A� production in the AD brain may thus be a common
response to diverse infections [51].

Indeed, many viruses (HSV-1, HSV-2, cytome-
glovirus) [33, 52, 53] or bacteria (C. pneumoniae, H.
pylori, Salmonella Typhimurium, B. burgdorferi), and
other spirochetes or systemically administered E. coli
or Porphyromonas gingivalis-derived LPS increase
A� production in vitro or in vivo [47, 54–57], as does
the protozoan Plasmodium berghei, which causes
malaria in mice [58]. Several of these pathogens also
evoke tau phosphorylation [33–35].

The diversity of viruses, bacteria, and fungi con-
tributing to AD, A� deposition, or dementia suggests
a polymicrobial relationship with these conditions.
The broad-spectrum antimicrobial effects of A�
imply that its recruitment for pathogen defense would
similarly relate to many species.

Many AD genes relate to the immune system and to
inflammatory processes that are primarily designed to
react to infection. They are also localized in immune
cells, particularly the B cell lymphocyte [59–62]. AD
genes are also predominantly expressed in microglial
cells, the resident macrophage/immune cells of the
brain [63, 64].

Many AD genes encode proteins that physically
interact within a defined protein/protein interac-
tion network, and this network has been subject to
positive selection pressure. Selection for pathogen
resistance was proposed as one possible explana-
tion [65]. Pathogens have shaped human evolution
and the development of the immune and pathogen
defense mechanisms, endowing descendants of the
survivors of dangerous infections with resistance
genes [66–68].

There have been few studies attempting to relate
specific AD genes to pathogen resistance. The
APOE4 allele is geographically concentrated in trop-
ical regions with a high parasite burden [69] and
may also contribute to resistance against Giardia and
cryptosporidial diarrhoeal infections in young chil-
dren [70, 71]. The frequency of this allele is high
in sub-Saharan Africa and other areas where malaria
is endemic, but while plasma samples from APOE4
subjects inhibit the growth of the malaria parasite
Plasmodium falciparum [72], APOE alleles had no
major protective effects against malaria in Gambian
children [73]. APOE2 has been reported as a poten-
tial risk factor for early malaria infection in Ghanaian
infants [74]. APOE4 possession may also have a
protective effect against hepatitis C infection and
enhances viral clearance in infected patients [75]. Old
age is the principal risk factor in AD, and this too

implies survival from the many infectious diseases
that have been and in many regions still are among
the greatest causes of death in children and adults
[76, 77].

Many AD gene variants from genome-wide asso-
ciation studies (GWAS) also converge towards the
common effect of increasing A� production [78, 79].
In the circulation, amyloid-� protein precursor
(A�PP) and �-secretase are highly expressed in the
dendritic cells that scout for invading pathogens [80].
In this context, enhanced A� production can also be
considered as evolutionarily advantageous [81]. This
theme is carried through in postmortem studies show-
ing that neuroinflammatory changes are prevalent in
vulnerable regions of the AD brain [82, 83]. The
proteins found in plaques and tangles also contain
many related to the immune system, inflammation
and autophagy, all of which play a general role in
pathogen defense [84–86] as does A�.

Previous studies have shown that the host genes
involved in the life cycles of several pathogens impli-
cated in AD relate to AD susceptibility genes [80].
The proteins found in AD plaques and tangles are
also enriched in those used by HSV-1 during its
life cycle [84] and the HSV-1 or Toxoplasma gondii
(T. gondii)/host interactomes are also enriched in AD
susceptibility genes [87, 88].

Similar studies have noted significant overlaps
between the EBV/host interactome and diseases
in which the virus is implicated, including B cell
lymphoma [89] or multiple sclerosis [90]. The inter-
actomes of oncogenic viruses also relate to cancer
genes [91] suggesting important gene/environment
interactions that may condition disease susceptibility.

In this study, the host pathogen interactomes of
17 fungal, bacterial, viral, and protozoan pathogens
were analyzed in relation to 78 AD GWAS genes. The
anatomical location of the AD genes was also queried
against proteomic/genomic datasets from multiple
tissues.

In relation to the potential selection of AD genes
for pathogen resistance (e.g., the concentration of the
APOE4 allele in areas of high parasite burden), the
78 AD genes were also compared against a series
of GWAS datasets related to general pathogen or
protozoan diversity, viral diversity and the immune
response to parasitic worms, across multiple human
populations in different geographical locations. Such
genes are likely to have been selected for pathogen
resistance [92–95].

The host genes of the 17 pathogen interactomes
were also compared with the combined up and
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down-regulated genes from a transcriptome study of
the AD hippocampus, postmortem [83] and to the
proteins found in plaques or neurofibrillary tangles.
The upregulated genes from this AD hippocam-
pal study were also compared with upregulated
genes from numerous infection microarray datasets
(viral, bacterial, fungal, and protozoan) housed at
the Molecular signatures database [96] or the Gene
Expression Omnibus [97].

Different types of pathogens are detected by a
large family of pattern recognition receptors, for
example toll-like receptors (TLRs) or nucleotide
binding oligomerization domain (NOD)-like recep-
tors, c-type lectin receptors, RIG-I-like receptors,
and intra-cytosolic DNA or RNA sensors, inter alia.
Each relatively selectively reacts to bacterial or fun-
gal components or to viral or other pathogens’
DNA or RNA [98]. The pathogens addressed in
this study each interact with subsets of these and
other processes, for example antimicrobial peptides
and antiviral genes, specifically related to infection.
These pathogen-specific aspects were addressed by a
survey of expression changes in the AD blood, CSF
or brain, which were matched to the known effects of
bacterial, viral and fungal representatives.

Finally, the presence of pathogens in the AD brain
may be related to the BBB deficits observed in aging
and in AD and to the ability of certain pathogens to
circumvent this barrier via olfactory neural routes,
or by other means. These aspects are reviewed in
relation to the ability of pathogens and other AD
environmental risk factors to disrupt the BBB.

The results show that the hippocampal transcrip-
tome genes and the proteins found in plaques and
tangles in AD relate to the life cycles and effects
of these diverse pathogens and that many AD sus-
ceptibility genes also relate to pathogens, but more
likely to pathogen resistance than susceptibility. AD
genes are also concentrated in immune-related loca-
tions and in the BBB. This barrier is defective in AD
and it is deleteriously affected by pathogens and by
many other non-pathogen environmental risk factors
in AD.

MATERIALS AND METHODS

Seventy-eight genes associated with AD (reported
genes) were obtained from the NHGRI-EBI Cat-
alog of published GWAS [99], available at:
http://www.ebi.ac.uk/gwas, accessed January 2016,
version 1.0, using studies labelled as “Alzheimer’s

disease” or “Alzheimer’s disease late-onset”. These
genes and their relationships with pathogens or the
immune system are catalogued in Supplementary
Table 1. The genes are highlighted in bold throughout
the text.

The tissue and cellular distribution of the
78 AD genes were analyzed using the func-
tional enrichment analysis tool (FUNRICH) [100]
(http://funrich.org/index.html) which derives pro-
teomic and genomic distribution data from >1.5
million annotations. It provides the total number
of genes in datasets from each region sampled and
returns the significance of any enrichment for the
uploaded AD genes, using the hypergeometric prob-
ability test, with p values corrected using the Storey
and Tibshirani method (Q values) [100]. AD gene
enrichment was also analyzed in a BBB proteome
dataset of mouse cerebral arteries (6620 proteins)
[101]. The presence of the AD genes in exosomes, a
means of transit through cells allowing intercellular
communication [102, 103], was assessed using Exo-
Carta (http://www.exocarta.org) a manually curated
database of exosomal proteins, RNA and lipids [104].
The exosomal pathway is hijacked by several viruses,
contributing to intercellular spread and immune eva-
sion [105, 106].

Genes related to general pathogen diversity, proto-
zoan and viral diversity and to the immune response
to parasitic worms are from a series of papers con-
cerning evolutionary selection pressure relevant to
pathogen resistance [92–95].

The host/pathogen interactomes of two fungal
species (C. albicans, C. neoformans), eight viral
species (Borna virus, human cytomegalovirus
(HCMV), Ebola virus, HSV-1, human endogenous
retroviruses HERV-W, HIV-1 (the latter from the
HIV-1, human interaction database [107] http://www.
ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1
/interactions, EBV, hepatitis C and influenza A
viruses) four bacterial species (B. burgdorferi, C.
pneumoniae, Porphyromonas gingivalis (P. gingi-
valis), H. pylori) and two protozoans [T. gondii
and Trypanosoma cruzi (T. cruzi)] were obtained
by literature survey and from existing databases.
These referenced interactomes can be accessed at
http://www.polygenicpathways.co.uk/HPI.htm.

Genes misregulated in the AD hippocampus are
those reported from a postmortem microarray study
[83]. Up- and downregulated genes (n = 2,879) were
combined for comparison with the pathogen interac-
tomes. The upregulated genes (n = 1,690) from this
AD hippocampal study contain the pathways relevant

http://www.ebi.ac.uk/gwas
http://funrich.org/index.html
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http://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions
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http://www.polygenicpathways.co.uk/HPI.htm
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to pathogens and immune activation (inflammation,
complement activation and the defense response)
[83] and these were chosen for comparison with
upregulated genes from infection datasets at the
Molecular signatures database (MSigDB; http://
software.broadinstitute.org/gsea/msigdb/index.jsp).
MSigDB contains several thousand microarray
datasets which can be compared against the various
AD inputs [96]. Infection related datasets, and those
related to TLR ligands, were identified using search
terms (e.g., infection, virus, bacteria, TLR, LPS,
etc.). Microarray viral infection datasets (upregu-
lated gene sets) from the gene expression omnibus
(GEO) [108] were also downloaded from the Har-
monizome database (http://amp.pharm.mssm.edu/
Harmonizome/) from the Ma’ayan laboratory of
computational systems [109]. For the searched gene
sets, most of the data outputs were restricted at
source (by MSigDb or GEO) to the top upregulated
genes (usually ∼ 200–300).

In addition to this AD hippocampal microarray
study, a literature survey was undertaken to analyze
the gene or protein expression profiles of compo-
nents more specifically related to pathogen defense
in the AD brain, blood, or CSF. These included TLR-
and NOD-like receptors, c-type lectins, antimicrobial
peptides, defensins, interferons and viral DNA and
RNA detectors, and antiviral oxysterols, inter alia.
Many of these are endowed with relative specificity
against viruses, bacteria or fungi and where possible
their known effects were matched to the pathogens
used in this study. These properties are reviewed in
Supplementary Table 2.

The proteins found in plaques or neurofibrillary
tangles are from two proteomics studies yielding 488
proteins in plaques [85] and 90 in tangles [86].

Assuming a human genome of 26846 coding genes
and an interactome or other gene set of N genes one
would expect N/26846 to exist in the comparator
dataset. For example, when comparing 2879 misreg-
ulated AD hippocampal genes against any pathogen
interactome one would expect 2879/26846 (10.7%) to
figure in the pathogen interactome. This calculation
was used to define expected values and the enrich-
ment values (observed/expected) in relation to other
datasets. Significance of the enrichment was calcu-
lated using the hypergeometric probability test. The
resultant p values from each analysis series were cor-
rected for false discovery (FDR) [110]. Nominally
significant FDR corrected values are considered at
p < 0.05 and a corrected Bonferroni p value thresh-
old is illustrated on each set of graphs. (Bonferroni

P = 0.05/N, where N is the maximum number of
possible comparisons for each situation (e.g., 78
AD genes or 1690 upregulated genes in the AD
hippocampus).

RESULTS

Immune-related properties of the AD GWAS
genes

The properties of the 78 AD genes, specifically in
relation to pathogens, or to the immune/inflammatory
system are reviewed and referenced in Supple-
mentary Table 1. A number of these genes are
primarily concerned with immune function (HLA-
DRB1, HLA-DRB5, HMHA1, IGH) while many
others with diverse primary effects also possess
relevant properties in relation to the immune
system (ACE, ADAMTS20, AP2A2, BCL3, BIN1,
CR1, CLU, CUGBP2, EPHA1, GAB2, INPP5D,
MEF2C, MS4A3, MS4A4A, RIN3, SCIMP, SPPL2A,
STK24, TREM2, TREML2, ZNF224) or pathogen
defense, e.g., interferon signaling (CD2AP, CELF1,
MEF2C, MMP12, PTK2B, TREML2, ZNF224), TLR
signaling (DISC1, PTK2B, SASH1, SCIMP) phago-
cytosis (ABCA7, BIN1, CR1, INPP5D, TREM2), or
autophagy (SQSTM1). A number of the AD genes
also act as primary receptors for pathogens. These
include the poliovirus receptor PVR, the HSV-1
receptor PVRL2, and complement receptor CR1.
CD33 binds to the HIV-1 gp120 protein and to diverse
forms of sialic acid which coats many pathogens.
Others bind bacterial LPS (APOC1, TREM2) or
the Escherichia coli cytotoxic necrotizing factor 1
(BCAM). CEACAM16 is a member of a large fam-
ily of adhesion molecules that bind bacteria or C.
albicans, although this particular form is poorly char-
acterized. Others (AP2A2, BIN1, CD2AP, MS4A4A,
PICALM, and SORL1) are involved in endocytosis,
an obligate requirement for pathogen entry follow-
ing binding to cognate receptors (see Supplementary
Table 1 for references).

AD GWAS genes are enriched in immune
locations (Fig. 1)

The AD genes are most significantly enriched in
the exosome and bone marrow datasets. As noted
above, exosomes are hijacked by many viruses
for intercellular spread. Exosomes are prevalent in
plasma [111] (also enriched in AD genes) and are
also the means by which intracellularly generated

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://amp.pharm.mssm.edu/Harmonizome/
http://amp.pharm.mssm.edu/Harmonizome/
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Fig. 1. The distribution and enrichment of 78 AD genes in diverse proteomic and genomic datasets. The bars indicate the number of genes
(from 78) in each tissue (Y1 axis) and the dotted line the FDR corrected p value (q value). The maximum on the Y2 axis is set to q = 0.05.
Observed/expected values, followed by the total number of genes expressed per tissue, are appended after the identities of each sample on
the X axis. BBB refers to a separate blood-brain barrier proteomics dataset.

A� is conveyed to the extracellular space [112].
The bone marrow is the hematopoietic source of
red and white blood cells and platelets [113], and
bone marrow B cells rapidly respond to infection.
The parathyroid gland expresses many AD genes and
also plays a role in hematopoiesis [114, 115]. Other
immune related areas enriched in AD genes include
the appendix, spleen, tonsils, the lymph nodes, and
the bronchus and neutrophils. The appendix is an
important component of mucosal immune function,
particularly B cell-mediated immune responses and
extrathymically derived T-lymphocytes [116]. The
tonsils and nasopharynx, also enriched in AD genes,
play an important role in the initial defense against
respiratory pathogens [117] and against those capa-
ble of entering the brain via the olfactory route.
These include Herpes viruses (HSV-1 and HHV6),
the Borna disease virus, the influenza A virus [14],
and C. pneumoniae [118].

AD genes are also enriched in the lateral ventri-
cle, a site of the choroid plexus [119]. This provides
CSF and is the location of the blood-CSF barrier,
which is exploited by pathogens to gain access to
the brain. The choroid plexus plays an important
role in pathogen defense [120]. Postmortem gene
expression studies of the choroid plexus epithelium

in AD patients show changes indicative of increased
permeability of the blood-CSF barrier and a reduc-
tion of macrophage recruitment [121], factors that
would favor pathogen entry and reduce their phago-
cytosis by macrophages. The hippocampus bulges
into the temporal horn of the lateral ventricle [122]
and this area, a keystone of AD pathology, is thus in
close proximity to a major site of cerebral pathogen
entry. AD genes are also enriched in a separate
BBB dataset from mouse cerebral arteries. This is
discussed in greater detail below. Other barriers in
intestinal and pulmonary tissues, also enriched in AD
genes (Fig. 1), might also be considered as poten-
tial sites of pathogen entry. Immune systems play an
important role at barrier interfaces [123].

Although AD genes are expressed in other sites, the
main focus, in terms of enrichment, relates to immune
and barrier systems.

Host/pathogen interactomes are enriched in AD
genes (Fig. 2)

All host/pathogen interactomes, except those of
the Borna virus, Ebola virus, and the HERV-W
retrovirus were significantly enriched in AD genes
(FDR p < 0.05). Pathogen burden (cytomegalovirus,
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Fig. 2. The number of AD genes (of 78) overlapping with diverse host/pathogen interactomes, or with those implicated in pathogen,
protozoan, or viral diversity or with the immune response to parasitic worms (Helminth). The identities on the X-axis (e.g., C. albicans
(1471|5.2) are appended with the total number of genes in each interactome (1471 in this case) or genetics dataset followed by the enrichment
ratio (5.2 fold). The FDR-corrected p value for enrichment is shown on the right hand axis which is set to a maximum of 0.05. Invisible
points are above this value. The Bonferroni cut-off level (p = 0.05/78) is also shown. The Burden data (lighter shaded bar) correspond to the
combined interactomes of the human cytomegalovirus, HSV-1, B. burgdorferi, C. pneumoniae, and H. pylori.

HSV-1, B. burgdorferi, C. pneumoniae, and H. pylori)
has been associated with AD [6] and the pooled inter-
actomes of these five pathogens (3,922 host genes)
were significantly enriched in AD genes (p = 7.3E-6).
Given the variety of pathogens reported in AD brains,
other cumulative effects might be expected for vari-
ous pathogen permutations.

The highest ranked pathogens in terms of the
significance of the interactome/AD gene overlaps
related to fungi (C. albicans and C. neoformans),
the gum disease pathogen P. gingivalis and the
EBV and hepatitis C viruses. Numerous fungal
species, including C. albicans, have been detected
in the AD brain, although C. neoformans was
not one of the species studied. EBV has been
associated with AD and hepatitis C associated
with dementia (see Introduction). Several of these
pathogens, including B. burgdorferi, P. gingivalis, H.
pylori, influenza A virus, herpes virus, hepatitis C,
cytomegalovirus, and HIV-1, or infectious burden (C.
pneumoniae, H. pylori, cytomegalovirus, and HSV-1
and 2) have also been associated with atheroscle-
rosis [124–126], an important endophenotype in
AD [127].

Pathogen interactomes are enriched in the
proteins found in AD amyloid plaques and
neurofibrillary tangles (Fig. 3)

All pathogen interactomes were significantly
enriched in proteins found in plaques and all except
HERV-W and Burgdorferi interactomes significantly
enriched in tangle proteins. The Borna virus and
HIV-1 ranked highly in both cases. There is only
one publication relating to Borna virus effects on
A� and none could be found for tangles. The
microglial activation produced by the virus reduced
brain parenchymal, but increased cerebral vascular
A� deposition, in A�PP transgenic mice [13]. The top
agents relating to plaques were predominantly viral,
while those relating to tangles were mostly viral, but
included the parasites, T. cruzi and T. gondii.

A� is an antibacterial, antifungal, and antiviral
agent. It has been shown that it binds to C. albi-
cans and S. typhimurium [47] and presumably to other
microbes. Such microbes may well have sequestered
host proteins specific to their particular life cycles
during their passage to the cell, and this would partly
explain the interactome enrichment. In addition to the
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Fig. 3. Host pathogen interactome enrichment in a set of 488 proteins isolated from amyloid plaques in the AD brain or from 90 proteins
isolated from neurofibrillary tangles. Axes as for Fig. 2.

plaque proteins relating to pathogen life cycles (for
example receptor binding, endocytosis, and transport
between intracellular compartments or nuclear entry
and subsequent translation in the case of HSV-1),
the proteins found in plaques and tangles contain
many related to the immune system, inflammation
and autophagy, all of which play a general role in
pathogen defense [84–86] as does A�.

Viruses are transported via the microtubule
network [128], which is also exploited by C. pneu-
moniae, T. cruzi, and T. gondii to reorganize cellular
organelles to the pathogens’ advantage [129, 130].
Phosphorylated tau is a hallmark of neurofibrillary
tangles and is induced by many pathogens. Tau
inhibits the motility of the kinesin-1 motor protein
that transports cellular organelles (or viruses) along
the microtubules and tau phosphorylation counteracts
this inhibition [131], but it is not clear whether this
benefits or deleteriously affects the pathogens.

AD genes overlap with those implicated in
pathogen, protozoan, or viral diversity or with
the immune response to parasitic worms (Fig. 2)

The AD genes are enriched in a series of genome-
wide and global-wide datasets related to general
pathogen diversity, protozoan, or viral diversity (the
number of different pathogens in a geographic region)
or with the immune response to parasitic worms, most

significantly so for general pathogen and protozoan
diversity (FDR p < 0.05).

APOE4 is globally located in areas with a high
parasitic burden, and is protective against virulent
pathogens inducing malaria or hepatitis C (see Intro-
duction) and these data show that several other AD
genes relate to microbial diversity. In evolutionary
terms, the maintenance of genes related to pathogen
diversity in the population likely reflects a selective
pressure for pathogen resistance, rather than suscepti-
bility [92]. The AD genes common to these pathogen
diversity datasets may thus be better equipped to deal
with infections, although the mechanisms involved,
including A� production and enhanced inflamma-
tory responses may have deleterious cytotoxic effects
if pathogens are able to infiltrate the brain. This is
further discussed below.

Antimicrobial and immune/inflammatory gain of
function in AD

The selection of AD genes for pathogen resistance
implies that they must be better able to defend against
pathogens. A high percentage of AD GWAS genes
are involved in A�PP processing and the AD genetic
variants favor an increase in A� production [78, 79].
Any genetic variant resulting in the increased produc-
tion of this potent antimicrobial peptide could thus be
considered as beneficial in evolutionary terms.
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The APOE4 variant is also associated with
enhanced immune/inflammatory responses. TLR
activation (TLR3, 4) in microglia induces cyclo-
oxygenase-2 (PTGS2), microsomal prostaglandin E
synthase (PTGES), and prostaglandin E2, an effect
exaggerated in APOE4(+/+) mice [132]. APOE4
is also associated with enhanced in vivo innate
immune responses in human subjects. Whole blood
from healthy APOE3/APOE4 volunteers induced
higher cytokine levels on ex vivo stimulation with
TLRs (TLR2, 4, or 5) ligands than blood from
APOE3/APOE3 patients [133]. Gain of function
also applies to AD variant forms of comple-
ment receptor CR1, which are better able to bind
complement component C1q or C3B [134]. C1q
and C3B are opsonins that interact with comple-
ment cell-surface receptors (C1qRp, CR1, CR3,
and CR4) to promote phagocytosis (including that
of infectious agents) and a local pro-inflammatory
response [135]. TREM2 variants in AD are also
associated with enhanced inflammatory responses
(upregulation of proinflammatory cytokines) [136].
In presenilin (PSEN1) mutant knockin mice,
microglial challenge with bacterial LPS results in
enhanced nitric oxide and inflammatory cytokine
responses, relative to normal mice [137]. For these
genes at least, this gain of immune/inflammatory
function concords with selection for pathogen
resistance.

It has also been noted that unaffected off-
spring with a parental history of AD have an
enhanced inflammatory response in LPS-stimulated
whole blood samples, producing higher levels of
interleukin 1 beta, tumor necrosis factor alpha,
and interferon gamma in response to LPS. This
effect was independent of the APOE4 variant
[138] suggesting that other AD genes are also
endowed with gain of function in relation to the
immune/inflammatory system. Monocyte-derived
dendritic cells from AD patients also produce
more interleukin-6 than those from healthy controls.
AD monocytes stimulated with LPS also show a
higher induced expression of the pro-inflammatory
ICAM1 adhesion molecule than controls [139]. A�
also stimulates cytokine production in peripheral
blood mononuclear cells (PBMC) and the pro-
duction of the chemokines, RANTES, MIP-1beta,
and eotaxin as well as that of CSF2 (colony
stimulating factor 2 (granulocyte-macrophage)) and
CSF3 (colony stimulating factor 3) is greater than
controls in AD-derived PBMC stimulated with
A� [140].

Inflammation, the inflammasome, and other
pathogen-defense mechanisms, for example free
radical generation, are themselves neurotoxic and
their contribution to neuronal cell death in AD is
increasingly recognized [141–146].

In summary, AD susceptibility genes appear to
have been subject to positive selective pressure.
This may relate to their ability to convey general
resistance to dangerous pathogens over evolution-
ary time, and this may in turn relate to enhanced
immune/inflammatory responses to pathogens. Many
AD gene variants converge towards an enhanced
production of A�, and as this peptide has potent
broad-spectrum antimicrobial effects, this may also
confer an evolutionary advantage.

Host/pathogen interactome enrichment in
misregulated genes of the AD hippocampal
transcriptome (Fig. 4)

All pathogen interactomes, most notably relating
to influenza, C. neoformans, and Hepatitis C were
highly enriched in genes relating to this microarray
dataset (combined up and downregulated hippocam-
pal genes in AD). The significance level of the
interactome enrichment for most pathogens was sev-
eral orders of magnitude below the Bonferroni cut
off (p = 1.74E-05) (Fig. 4). Regarding the influenza
data, bronchopneumonia, often caused by influenza,
is a common final cause of death in dementia patients
[147] and such recent infections close to death may
well influence the data.

Regardless of the rank order, it is clear that many
diverse pathogen interactomes affect several hundred
genes of the 2,879 misregulated in the AD hip-
pocampus and/or that these misregulated AD genes
represent a substantial percentage of the individual
pathogens’ interactomes (Fig. 4).

Kegg pathway analysis of these misregulated genes
using the Consensus Path Database [148] showed that
many infection-related pathways were also signif-
icantly enriched in the hippocampal dataset (FDR
p < 0.05). These included (pathogen with N genes
common to the pathogen pathway and the hippocam-
pal AD microarray; followed by the FDR corrected
p value): EBV infection (74,5.5E-7); Salmonella
infection (36,0.0001); Tuberculosis (57,0.0009);
Epithelial cell signaling in H. pylori infection
(28,0.00097); Shigellosis (27,0.001); Influenza A
(54,0.003); Herpes simplex infection (56,0.0036);
Vibrio cholerae infection (21,0.0089); HTLV-I
infection (71,0.0096); Toxoplasmosis (37,0.013);
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Fig. 4. Overlaps between misregulated AD hippocampal genes (combined up and down) and host/pathogen interactomes. Axes as for
Fig. 2.

Hepatitis B (43,0.018); Pathogenic Escherichia coli
infection (20,0.02); Bacterial invasion of epithelial
cells (26,0.02); Measles (38,0.04).

Upregulated genes in the AD hippocampus are
enriched in genes upregulated by viral, bacterial
and fungal pathogens or TLR ligands

Most MSigDB or GEO microarray experiments
related to immunocompetent blood cells (B cells,
T cells, dendritic cells, monocytes, and macrophages)
or from cultured cell lines. Upregulated genes from
these datasets were compared with the upregulated
genes (n = 1,690) from the AD hippocampal study,
which contain the pathways relevant to pathogens
and immune activation (inflammation, complement
activation, and the defense response) [83].

The hippocampal genes upregulated in AD
were significantly enriched in upregulated genes
in datasets from multiple viral species and
responses to double stranded RNA or to the
double-stranded RNA viral mimic/TLR3 agonist,
Polyinosinic:polycytidylic acid (poly I:C) (Fig. 5).
The viruses ranged from the benign (e.g., the rhi-
novirus that causes the common cold) to the highly
malignant (e.g., the ebolavirus, rabies virus or HIV-
1). They include common human infectious agents

(e.g., adenovirus 5, influenza, EBV, HSV-1, measles
or the Norwalk virus). Apart from HSV-1, the human
cytomegalovirus, HIV-1, or hepatitis C, none of
these have been implicated in AD or dementia. No
infection-related datasets were found for microglia,
the brain resident immunocompetent cells, but sig-
nificant enrichment of the AD upregulated genes was
observed for genes upregulated by interferon gamma
in microglial cells (Fig. 5). Interferon gamma plays
an important role in the response to viral, bacterial,
and parasitic infections [149].

The upregulated hippocampal genes in AD were
also enriched in infection datasets for numerous
bacteria as well as to fungi (C. albicans and C. neo-
formans) and in those related to bacterial endotoxin
or sepsis and to nematode/trematode or protozoan
infection datasets (FDR p < 0.05) (Fig. 6). This also
applied to diverse LPS datasets and responses to TLR
ligands, CpG oligonucleotide (a ligand for TLR9,
which mediates cellular response to unmethylated
CpG dinucleotides in bacterial DNA or R848 (a lig-
and for TLR7/TLR8 both of which recognize RNA
released from pathogens that enter the cell by endo-
cytosis [150]) (Fig. 6). With the exception of H.
pylori, P. gingivalis and B. burgdorferi, and C. albi-
cans or C. Neoformans, none have been implicated
in AD.
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Fig. 5. Overlaps between genes upregulated in the AD hippocampal transcriptome and those upregulated by viruses, interferon gamma or
the viral mimic poly(I:C) in immunocompetent cells (MSigDB or GEO data). (X axis = virus| celltype|N upregulated genes from MSigDb
or Geo): Y1 = N overlap; Y2 = p value. Tissue/cell abbreviations: A549, adenocarcinomic human alveolar basal epithelial cells; ABL,
Akata Burkitt’s lymphoma cells; B2B/16HBE, BE(2)C or BEAS-2B, human bronchial epithelial cells; BroLav, human bronchial lavage;
Calu-3, cultured human airway epithelial cells; DC, dendritic cells; GRE, glioma cell line; HAE, human airway epithelial cells; HBEC,
human bronchial epithelial cells; HEK, human embryonic kidney cells; HeLa, cervical cancer cell line; HuH-7, hepatocarcinoma cell line;
Macro, macrophage; Mgli, microglia; Mono, monocytes; NES, human nasal epithelial scrapings; NK, natural killer cells; PBMC, peripheral
blood mononuclear cells; PLC/PRF/5 cells, human liver hepatoma cells; Trach epi, Tracheal epithelial cells. Viral abbreviations: HIV, human
immunodeficiency virus; Cox B3, Coxsackie B3 virus; RSV, respiratory syncytial virus; LCMV, lymphocytic choriomeningitis virus; HMPV,
human metapneumovirus; Ebola, Ebola virus; Influenza, Influenza A virus; Sendai, Sendai virus; HCoV, human coronavirus; IFNG, interferon
gamma; SARS, severe acute respiratory syndrome coronavirus; HCMV, human cytomegalovirus; MCMV, mouse cytomegalovirus; Dhori,
Dhori virus; EBV, Epstein-Barr virus; HepC, hepatitis C virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; HSV-1, herpes simplex;
Norwalk, Norwalk virus (Norovirus); Ad5, adenovirus 5; SIV, Simian immunodeficiency virus; poly(I:C), Polyinosinic:polycytidylic acid
(a viral mimic stimulating TLR3 receptors); NDV, Newcastle disease virus; WestEq, Western equine encephalomyelitis virus; LASV, Lassa
virus; dsRNA, double stranded RNA; HEV, hepatitis E virus.

Diverse pathogen sensors and defenders relating
to bacteria, viruses, parasites, or fungi are
upregulated in the AD brain, blood, or CSF

The data presented above shows that the hip-
pocampal transcriptome in AD matches that induced
by numerous pathogens. The misregulated genes
include many related to inflammation, complement
activation and the immune system that could relate
to many pathogens but also to other neurotoxic
promoters. Within the immune system there is
a specific branch that is more specifically dedi-
cated to pathogens. This involves pattern recognition

receptors, sensors that detect viral DNA or RNA,
and antimicrobial defensins, inter alia. These sense
cell wall components of bacteria, fungi, or proto-
zoa (TLRs, C-type lectin receptors, and NOD-like)
[151, 152]. Others are designed to sense viral
DNA or RNA. These include intracellular TLRs
(TLR3,8,9), EIF2AK2 (eukaryotic translation ini-
tiation factor 2 alpha kinase 2), often known as
pkr, RIG-I (coded by retinoic acid-inducible gene
1 = DDX58), MDA5 (Melanoma Differentiation-
Associated protein; coded by IFIH1) and LGP2
(coded by DEXH-box helicase 58 = DHX58) [150,
153, 154].
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Fig. 6. Overlaps between genes upregulated in the AD hippocampal transcriptome and those upregulated by bacteria, fungi, nema-
tode (B. malayi)/trematode (S. mansoni), protozoan, LPS and TLR ligands in immunocompetent cells (MSigDB or GEO data). (X
axis = pathogen/ligand| celltype|N upregulated genes from MSigDb or Geo): Y1 = N overlap; Y2 = p value). Pathogen or ligand abbreviations
(from left): L. monocytogenes, Listeria monocytogenes; endotoxin, gram-negative bacterial wall component; S. pneumoniae, Streptococcus
pneumoniae; E. coli, Escherichia coli; P. gingivalis, Porphyromonas gingivalis; A. phago, Anaplasma phagocytophilum; Y. enterocolitica,
Yersinia enterocolitica; M. bovis, Mycobacterium bovis; C. albicans, Candida albicans; C. neoformans, Cryptococcus neoformans; B. malayi,
Brugia malayi (filarial parasite causing elephantiasis); S. mansoni, Schistosoma mansoni; L. donovani, Leishmania donovani; C. parvum,
Cryptosporidium parvum; L. major, Leishmania major; T. gondii, Toxoplasma gondii; T. cruzi, Trypanosoma cruzi; LPS, lipopolysaccha-
ride; LPS O.Plank, Oscillatoria Planktothrix (cyanobacterial lipopolysaccharide); CpG oligo, CpG Oligodeoxynucleotide (TLR9 ligand);
Gardiquimod, TLR7 ligand. Cell type abbreviations as for Fig. 5: + CNS, central nervous system; peyers, peyers patch; Int epi, intestinal
epithelial cells.

Indoleamine 2,3-dioxygenase 1 (IDO1) diverts
tryptophan metabolism to N-formyl-kynurenine;
(away from serotonin production). IDO1 upregu-
lation is an important defense mechanism against
pathogenic bacteria, many of which rely on host
tryptophan. This IDO1 response is also deleteri-
ous to other pathogens and parasites, including
T. gondii, and to a number of viruses, including
HSV-1 and other herpes viruses. Quinolinic acid
produced by IDO1 activation is neurotoxin acting
via N-methyl-D-aspartate receptors [155]. Kynure-
nine and kynurenic acid, also produced by IDO1
activation, are ligands for the aryl hydrocarbon recep-
tor, which plays an important role in antimicrobial
defense and immune regulation [156]. In relation
to viruses, the oxysterols 25-hydroxycholesterol and
27-hydroxycholesterol have also recently emerged
as broad-spectrum antiviral agents inhibiting the

replication of enveloped and non-enveloped viruses
[157]. Sirtuins (SIRT1-7) also have broad spec-
trum antiviral activity against DNA and RNA
viruses [158].

To a certain extent, each of these sensors and
defenders show a degree of selectivity for viral, bac-
terial, fungal or protozoan infections, although with
some overlap. A focus on this particular pathogen-
specific area in relation to AD should thus be more
indicative of the type of infection involved.

To this end, the pathogen specificity of these sen-
sors and defenders was reviewed, generally and in
relation to the pathogens in this study. These prop-
erties were then matched to reported expression
changes in the AD brain, blood, or CSF in relation to
the pathogens in this study and to others. This analysis
is reported in Supplementary Table 2, which shows
that the expression changes seen in AD relate to
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Fig. 7. (A) The number of pathogen defense related genes or pro-
teins (of 99 mostly upregulated = N defense) in the AD brain,
blood, or CSF, plotted in relation to the known matched effects
of the pathogens studied and to general bacterial, viral or fun-
gal defense (Other). These are referenced in Supplementary
Table 2 and include antimicrobial peptides, pattern recognition
receptors, interferons, antiviral effectors, complement related, Fc
gamma receptors, and other dedicated pathogen detection/defense
processes.

sensors and defenders for the diverse pathogens, and
to many other viruses, bacteria, or fungi. They are
not restricted to viral, fungal, or bacterial defense,
supporting a polymicrobial involvement.

99 antimicrobial/pattern recognition, antiviral and
related defensive genes were identified that were
upregulated in the AD brain, blood, or CSF. No single
pathogen or group of pathogens (bacteria, viruses, or
fungi) accounted for all of these changes. In terms
of the pathogens related to this study, influenza,
C. albicans, and HSV-1 matched the highest num-
ber of AD-affected genes, but high scores were also
obtained for other bacteria (including Enterococci,
E. coli, streptococci, staphylococci, pseudomonas,
listeria), fungi (including Aspergillus and Saccha-
romyces species), or viruses (e.g., Sendai virus,
coxsackie B virus, coronaviruses, and flaviviruses
(dengue virus and West Nile virus) (Supplementary
Table 2: Fig. 7A).

The relative selectivity relating to three pathogens
that have been detected in the AD brain (the HSV-1
virus, fungal C. albicans, and the spirochete B.
burgdorferi) is shown in the Venn diagram (Fig. 7B).
From this analysis, it appears that there are a num-
ber of misregulated sensors and defenders in AD that
are both promiscuous (reacting to many species) and
specific, showing a relative preference for these viral,
fungal or bacterial pathogens.

The promiscuous defensive agents include
antimicrobial agents (A� and cathelicidin/LL-
37), leukotriene B4 and its synthesizing enzyme

5-lipoxygenase (ALOX5), complement receptors
(CR3, CR4), and the membrane attack complex,
Fc gamma receptors, interferon-gamma and TLRs
(TLR1, 2, 3, 4, 7, and 9). Indoleamine dioxygenase
(IDO1) and its derivative, the neurotoxic quinolinic
acid also belong to this group. More selective
antiviral agents (HSV-1) include the oxysterols, 25-
and 27-hydroxycholesterol and their synthesizing
enzymes (CH25H and CYP17A1), DDX58/RIG-1,
EIF2AK2, and sirtuins. Those related to C. albicans
include the C-type lectin CLEC7A, the mannose
receptor MRC1, CD36, and the antimicrobial
peptides, chromogranin A, dermcidin, histatin, and
synuclein. Relatively selective spirochete defense
is exemplified by neutrophil elastase, CD14, and
TLRs (TLR5, TLR8). This analysis suggests that the
antimicrobial alerts in AD reflect a polymicrobial
origin. It should, however, be recognized that such
specificity is not absolute for other viral, fungal,
or bacterial species. For example, in relation to B.
burgdorferi selective agents, TLR5 also recognizes
bacterial flagellin (Refseq) and TLR8 recognizes
single stranded viral RNA [159]. Alpha-synuclein
(C. albicans-selective) has antifungal effects,
and is also antibacterial (Escherichia coli and
Staphylococcus aureus) [160].

These data (Supplementary Table 2, Figs. 5–7)
show that upregulated AD hippocampal genes match
those upregulated by multiple pathogens in immuno-
competent cells and that sensors and defenders
relating to multiple pathogens are upregulated in the
AD brain, blood, or CSF. These involve reactions
to many of the pathogens of this study, represent-
ing many different classes (bacteria, viruses, fungi,
and parasites) and there appears to be no discrimi-
nation, or focus on any particular type. This would
concord with the multiple and diverse pathogen
species that have been detected in the AD brain and
with the relationship between the AD genes or the
hippocampal transcriptome with multiple pathogen
species. In this analysis, a variety of pathogens were
used based mostly on their relationship with AD
epidemiology, but also to include diverse families
(viruses, bacteria, fungi, and protozoa). Those rel-
evant to most AD cases will presumably relate to the
most common infections in the elderly. In the US,
these include influenza, bacterial pneumonia, urinary
tract infection, intra-abdominal infections, gram-
negative bacteremia, and infection of pressure ulcers
[161, 162]. These are caused by more common bac-
teria, fungi, and viruses, rather than by more exotic
species such as the Bornavirus or T. cruzi. Despite
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Fig. 7. (B) Defenders and sensors and their expression (↑ = upregulated; ↓ = downregulated) in the brain, blood, or CSF of Alzheimer’s
disease patients. These effects are matched to the effects of HSV-1, C. albicans, or B. burgdorferi as viral, bacterial and fungal representatives.
These effects and those related to other pathogens are referenced in Supplementary Table 2. Regions: CP, choroid plexus; Cortical areas (Cx,
cortex; Entorhin, entorhinal; Fr, frontal; par, parietal; Temp, temporal; occip, occipital); CSF, cerebrospinal fluid; GVS, granulovacuolar
degeneration; HPC, hippocampus; lympho, lymphocytes; macro, macrophages; mcyt, monocytes; mgli, microglia; Mvasc, microvasculature
(brain); Neur, neurons; NFT, neurofibrillary tangles; PBMC, peripheral blood mononuclear cells; Plaq, amyloid plaques; Ser, serum; tang,
tangles. Antimicrobial peptides and related: AZU1, azurocidin; �amy, amyloid-�; APCS, amyloid P component, serum; Calpro, calprotectin
( = S100A8+S100A9); CHGA, chromogranin A; DCD, dermcidin; �defs or �defs, unspecified alpha or beta defensins: CAMP, cathelicidin
antimicrobial peptide (LL-37); CHI3L1, chitinase 3 like 1 (aka YKL-40); Defensins, DEFA’s, DEFB’s: ELANE, elastase; HAMP, hepcidin;
HTN1, histatin 1; IAPP, islet amyloid polypeptide (Amylin); LCN2, lipocalin 2; LTF, lactotransferrin; S100’s, S100 calcium binding
protein; SNCA, alpha synuclein. Pattern recognition receptors: CD14; CD36; C-type lectin, CLECs; MRC1, mannose receptor C type
1; Toll-like receptors, TLR1 to 10. Viral detectors and antiviral: DEAD box proteins, DDXs; EIF2AK2, eukaryotic translation initiation
factor 2 alpha kinase 2 (pkr); SIRTs, sirtuins; 25- and 27-OH-cholesterol, 25- or 27-hydroxycholesterol synthesized by CH25H (cholesterol
25- hydroxylase) and a cytochrome p450 enzyme (CYP27A1); IFI16, interferon gamma inducible protein 16; MX1, MX dynamin like
GTPase 1; TRIM, tripartite motif protein; Complement related: CR1, complement receptor 1; CR2, complement receptor 2 (integrins:
ITGAM/ITGB2); CR4, complement receptor 4 (Integrins: ITGAX/ITGB2); MAC, membrane attack complex (complement components C5b-
C9). General: AGER, advanced glycosylation end product-specific receptor (also known as RAGE); CRP, C-reactive protein; Fc Gamma R,
Fc gamma receptors; IDO1, indoleamine 2,3-dioxygenase 1; Interferons, IFNA1, IFNA5, IFNB1, IFNG; Integrins, ITGAM/ITGAX/ITGB1;
LGALS3, lectin, galactoside binding soluble 3; LTB4, leukotriene B4, synthesized by ALOX5); NLRP1, NLR family pyrin domain containing
1; Quin, quinolinic acid; RARRES2 and 3, retinoic acid receptor responder (2 and 3).

the potential relationship of so many pathogens
to AD, their cerebral entry will still also depend
upon on the multiple and manageable environmen-
tal factors that disrupt or prevent BBB malfunction.
Until more extensive studies of the blood and brain
microbiomes in AD, the relative importance of indi-
vidual or multiple species can only be speculative. A
recent investigation of the gut bacterial microbiome
in elderly cognitive impairment, associated with

brain amyloidosis, reported an increase in the abun-
dance of pro-inflammatory Escherichia/Shigella taxa
and a reduced abundance of an anti-inflammatory
taxon; E. rectale. These changes were associated
with a pro-inflammatory blood cytokine profile in
subjects with brain amyloidosis [163], but to date
there have been few brain microbiome studies in
AD, or studies of the peripheral AD virome or
fungome.
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Together these data suggest a significant parallel
between the upregulated genes in the AD hip-
pocampus and the responses to multiple and diverse
infectious agents with little overall discrimination
between viral, bacterial, fungal, or protozoan types
of infection. This diversity is supported by the pat-
tern recognition and antimicrobial survey. Multiple
pathogens have been detected in the AD brain and the
diversity of these infection related overlaps with the
AD hippocampal transcriptome suggests that many
other pathogens could induce similar pathological
transcriptome changes. Microbiome studies in the
AD brain and periphery will help to elucidate the
role of multiple pathogens.

AD genes are localized in the BBB

30/78 AD genes are expressed in the BBB pro-
teome dataset of mouse cerebral arteries [101]
(Fig. 1). The list below indicates the 30 BBB genes,
annotated with the number of pathogen interactomes
with which they overlap. Most BBB expressed genes
interact with none or few pathogens (5 or less of
the 17 studied), suggesting a subdivision of mainly
BBB and mainly pathogen related. This might be con-
founded by missing data, as several of these genes are
poorly characterized in terms of function. These 30
genes (N interactomes in brackets) are: PCNX (0),
ABCA7 (1), ADAMTS20 (1), ATXN7L1 (1), TREML2
(1), AP2A2 (2), BCAM (2), CNTNAP2 (2), ECHDC3
(2), FRMD4A (2), GRIN3B (2), PAX2 (2), PICALM
(2), DISC1 (3), LUZP2 (3), RELN (3), TTLL7 (3),
FERMT2 (4), HMHA1 (4), MSRA (4), PPP1R3B (4),
SASH1 (4), BIN1 (5), SORL1 (5), PVRL2 (7), MMP12
(8), CLU (9), PTK2B (10), BCL3 (13), SQSTM1 (13).
CD2AP (7 interactomes), not present in the mouse
cerebral arteries dataset, has also been shown to be
involved in the maintenance of BBB integrity [164].

The BBB location of a high proportion of AD genes
indicates an important function in relation to AD.

Routes of pathogen entry to the brain: olfactory
routes and control of the BBB

The pathogen data presented above highlight
multiple relationships between AD and diverse
pathogens. A� production can also now be viewed as
an innate immune response to pathogen attack. These
data show that many pathogens cause A� deposition
and that they play a major role in AD pathogenesis.

Nevertheless, pathogens have to enter the brain, via
the BBB or other routes, to evoke such changes and

the old age of AD patients suggests that age must be
a major determinant of such effects. The effects of
aging in relation to the BBB and the immune system
and to routes of pathogen entry are discussed below,
together with other environmental risk factors that
affect BBB integrity.

BBB breakdown in aging and its control by the
basal forebrain and locus coeruleus

Aging itself results in a loss of BBB integrity
[165] and in immune function (immunosenecence)
[31] and these two factors would be expected to favor
blood-borne pathogen survival and cerebral pathogen
entry. In normal human aging, loss of barrier integrity
appears to begin in the hippocampus, a crucial area
in AD and in learning and memory [166]. The BBB
consists of a series of capillaries, capillary arterioles,
and capillary venules serving neurons throughout
the brain. This network of fine blood vessels, which
shows early pathological changes in AD, is in turn
controlled by a perivascular neuronal plexus origi-
nating mainly from the locus coeruleus, the nucleus
basalis of Meynert, and the basal forebrain area,
each of which suffer early extensive damage in AD
[167]. A recent MRI study suggests that degenerative
changes in the basal forebrain including the nucleus
basalis of Meynert are early events in AD that pre-
cede cortical degeneration [168]. Degeneration of the
cortical cholinergic innervation originating from the
basal forebrain was one of the first neurochemically
characterized lesions in AD [169, 170]. The basal
forebrain cholinergic system receives many olfac-
tory inputs from the olfactory bulb, anterior olfactory
nucleus, and the pyriform cortex [171]. Damage
to the olfactory bulb and the olfactory tracts and
system are also early characteristic features of AD
[172, 173]. Anosmia/olfactory impairment are early
and predictive signs of mild cognitive impairment and
progression to AD [174] and A� deposition and tau
pathology can be observed in the nasal epithelium in
the majority of AD cases [175].

Use of the olfactory route to the basal forebrain
and locus coeruleus by herpes simplex and other
pathogens

Many viruses including Herpes viruses (HSV-1
and HHV6), the Borna disease virus, rabies virus, and
the influenza A virus are known to use the olfactory
route to invade the brain [14]. It has also been shown
in mice that injection of HSV-1 into the olfactory
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bulbs leads to viral migration into the amygdala and
hippocampus via the olfactory nerve and the locus
coeruleus [176]. Nasal inoculation with C. pneumo-
niae in mice also results in cerebral A� deposition
suggesting use of the olfactory route [118]. The nasal
epithelial mucosa forms an important physical and
immune barrier to invading pathogens [177, 178].
While immunosenescence occurs in many mucosal
sites during aging, nasopharyngeal tissue function is
more resistant and remains intact during aging with
notable signs of immunosenescence seen only in the
very elderly [179]. The nasal route of pathogen entry
would thus also be restricted to the aged population.

Damage to the basal forebrain including the
nucleus basalis of Meynert is also a feature of Her-
pes simplex encephalitis in Man [180] and HSV-1 (or
vaccinia) infection in mice results in increased vas-
cular permeability in the olfactory bulb, hippocampal
regions and in areas surrounding the cerebral ven-
tricles [26]. Both the noradrenergic locus coeruleus
[181, 182] and the cholinergic connections from the
basal forebrain [183–186] control the cerebral vascu-
lature, cerebral blood flow and vascular permeability.
It is thus conceivable that pathogen related damage
to the basal forebrain/locus coeruleus contributes to
subsequent cerebrovascular and BBB defects and to
the sequential pathological anatomy in AD. A� itself
can produce BBB damage [187]. This could create
a feed-forward effect whereby pathogen-induced A�
production produces further BBB damage, spreading
from the pathogen transit zones.

Some pathogens can also circumvent the BBB by
direct attack. For example, certain strains of neu-
roinvasive B. burgdorferi are known to be able to
translocate across the BBB initially via anchoring to
host proteins on brain microvascular endothelial cells
and subsequently via activation of metalloproteases
that degrade extracellular matrix and intercellular
junctions [28]. C. pneumoniae infects blood vessels
and monocytes in the AD brain, and also pro-
motes the invasion of the infected monocytes through
human brain endothelial cells indicating BBB break-
down [29]. The fungal pathogen C. neoformans
uses a Trojan horse strategy where infected phago-
cytes cross brain microendothelial barriers [30]. This
pathogen may also actively disrupt BBB function
be secreting fungal proteases [188, 189]. P. gin-
givalis also disrupts epithelial barrier function via
secreted proteases (gingipains) that degrade cad-
herins (CDH1, CDH2,CDH5) as well as occludin,
beta- and gamma–catenins, paxillin, and integrins
(ITGA3, ITGB1, ITGB4) [190–192]. Gingipains

have been detected in the hippocampal microvascu-
lature of P. gingivalis-infected APOE (–/–) mice and
likely contribute to impaired BBB integrity and to the
cerebral invasion of P. gingivalis in this model [27].
The prevalence of periodontitis increases with age
[193]; this is again a factor that would limit effects
on BBB function to the aged. Any pathogen that
so disrupts the BBB might be expected to influence
invasion by others.

In addition the BBB is disrupted by the systemic
administration of bacterial LPS [24] or by lipotei-
choic acid, a cell wall component of gram-positive
bacteria [25] suggesting that repeated peripheral bac-
terial infections (a feature of the elderly population)
could also weaken the BBB.

Immunosenescence in aging

Aging-related immunosenescence can increase
susceptibility to pathogens due to immunodefi-
ciency, but it is also accompanied by an increase
in the pro-inflammatory activity of monocytes and
macrophages which can lead to chronic low grade
inflammation, termed “inflamm-aging” [31, 32]. This
increased inflammatory function also applies to
microglia [194]. Certain AD gene variants are asso-
ciated with enhanced pro-inflammatory responses
(see above) and cerebral pathogen entry would
thus be met with a doubly vigorous inflamma-
tory response related to both immunosenescence
and genetic variation. Persistently activated mono-
cyte/macrophages have been observed in the blood
of patients with early AD [195] and increased activa-
tion of microglia/macrophages, colocalized with the
area of heavy A� concentration, is also observed in
the brains of AD patients [196].

Abrogation of the peripheral antimicrobial
effects of Aβ by autoantibodies?

The antimicrobial effects of A� are blocked by an
antibody to this peptide [48]. A number of studies
have reported the presence of autoantibodies to A�
in the serum of the elderly [197] and in AD [198, 199].
They are also observed in mild cognitive impair-
ment patients with higher plasma levels in those who
progressed to AD [200]. Serum and CSF levels of
antigen-bound A�-autoantibodies were found to be
significantly higher in AD patients compared to age
and gender-matched control subjects [201]. It has
been suggested that these autoantibodies may well
be derived from antibodies raised to pathogens via
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antigen mimicry. Among the many pathogen proteins
showing sequence homology to antigenic regions of
A� are those from B. burgdorferi, C. Neoformans,
C. pneumoniae, H. pylori, P. gingivalis, and herpes
viruses (HSV1, HHV6, and the cytomegalovirus) [80,
202]. Cross-reactivity between antibodies to HSV-1
and synuclein (another antimicrobial peptide [160])
has also been experimentally demonstrated [203].
Regardless of the origin of these autoantibodies, their
potential to attenuate the antimicrobial effects of A�
could well contribute to systemic pathogen accumu-
lation, thus rendering cerebral entry more likely. It has
already been suggested that A� might be used as a
therapeutic antibiotic agent [204]. By the same crite-
ria, the removal of blood-borne A� autoantibodies by
immunoadsorption, to restore such potential, might
be considered as a therapeutic option in AD. Autoan-
tibodies to the alpha1-adrenergic receptor may also
play a pathological role in relation to the AD vascu-
lature and their immunoadsorption has resulted in a
stabilization of cognitive and mental condition in a
small group of AD patients [205].

In summary, BBB disruption is promoted by aging
and can also be influenced by viral infection via
the nasal route, which attains the brain regions first
affected in AD. Other bacterial and fungal pathogens
also have different ways of circumventing or damag-
ing the BBB. Aging related immunosenescence and
autoimmune blockade of the antimicrobial effects
of A� would contribute to pathogen survival in the
periphery. Nasal immunosenescence occurs at a later
stage [179], thus limiting the naso-cerebral route
to the elderly. The pro-inflammatory gain of func-
tion provided by immunosenescence and by certain
AD gene variants suggests that cerebral pathogen
entry in the aged would be met by a vigorous pro-
inflammatory response that likely plays a major role
in the degenerative process.

Other environmental risk factors in AD disrupt
the BBB and BBB integrity is maintained by
beneficial factors

Apart from pathogens, many other environmental
risk factors have been reported in AD. These include
diabetes, midlife hypertension or obesity, smoking,
and physical inactivity [206]. Other contributory fac-
tors include previous head injury [207], exposure
to toxic metals (aluminum [208, 209] or copper
[210]), pesticides (organochlorine and organophos-
phate insecticides) [211, 212], industrial chemicals
(flame retardants) and air pollutants (particulate

matter and ozone [213–215]). High levels of choles-
terol or homocysteine [216–219] and low levels
of folic acid [220, 221] have also been associated
with AD. In relation to cholesterol, atherosclerosis
of the carotid arteries or of leptomeningeal vessels
and in the circle of Willis has also been observed
in AD. Such atherosclerotic effects can lead to the
chronic cerebral hypoperfusion that is also a fea-
ture of AD [127, 222, 223]. Orthostatic hypotension
has also been associated with AD, dementia and
vascular dementia and this too can lead to cerebral
hypoperfusion [224]. Sleep disruption or obstruc-
tive sleep apnea are also associated with AD risk
[225, 226].

Factors reported to be of benefit, or that reduce the
incidence of AD include the use of non-steroidal anti-
inflammatories (NSAIDs) or histamine H2 receptor
blockers [227–229], and the early use of statins
[230–232].

Beneficial dietary factors in AD include caffeine
[219], chocolate (versus cognitive decline in the
non-demented aged) [233]) and the Mediterranean
diet [234–236]. Melatonin [237, 238], estrogen
[239–241], and memantine [242] also have reported
benefits in AD.

The environmental risk factors associated with
AD disrupt the BBB, and BBB integrity is main-
tained by the beneficial factors (Table 1). While
infections are random uncontrollable events, many
of the other environmental risk factors are modifi-
able by lifestyle changes, for example diet, obesity,
smoking, and exercise, and it has been estimated
that addressing such modifiable risk factors could
result in a significant reduction in the incidence of
AD [206]. Interestingly, some of these beneficial
factors also possess antimicrobial effects, suggest-
ing a multifactorial action. For example, statins have
broad spectrum antimicrobial effects (certain oral
bacteria as well as viruses and fungi) [243], while
NSAIDs have antibacterial effects related to an ability
to inhibit bacterial DNA replication [244]. Mela-
tonin also has antimicrobial effects against bacteria
and viruses [245] and memantine also has antiviral
effects against a neurotropic strain (HCoV-OC43) of
a human respiratory coronavirus [246] as well as the
influenza or HIV-1 viruses [247, 248].

Amelioration of BBB disruption has already been
proposed as a potential therapy in AD, and sev-
eral drugs including angiotensin receptor blockers,
etodolac (NSAID), granisetron (5HT3 serotonin
receptor antagonist), or beclomethasone (corticos-
teroid) [249, 250] as well as other NSAIDS, statins,
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Table 1
The effects of Alzheimer’s disease (AD) environmental risk factors and beneficial agents on blood-brain barrier (BBB) function

AD risk factor Effects on BBB

Aging Aging leads to barrier dysfunction and vascular hyperpermeability in peripheral and
BBB [165]

Air pollution Long-term air pollution disrupts the BBB in children and young adults and causes
neuroinflammation, an altered brain innate immune response, and accumulation of A�
and alpha-synuclein starting in childhood [213]

Alcohol abuse Alcohol(ism) has deleterious effects on the BBB [284, 285]
Aluminum Aluminum increases BBB permeability in rats [286]
A� A� disrupts BBB integrity in mice [187]
Brain trauma (concussion) Mild traumatic brain injury produces early disruption of the BBB in animal models and

in human [287, 288].
Cerebral hypoperfusion/ischemia (Caused

by carotid/leptomeningeal/circle of Willis
atherosclerosis or by hypotension)

Cerebral hypoperfusion reduces oxygen, glucose, and other nutrient supply to the brain,
damaging parenchymal cells and the BBB [289].

Copper/aluminum Nanoparticles from aluminum, silver, or copper increase spinal cord pathology after
trauma, an effect correlated with breakdown of the blood-spinal cord barrier [290]

Diabetes mellitus BBB dysfunction plays a role in diabetes-associated neurological complications (stroke,
vascular dementia, and cognitive deficits) [291]

High intake of sugary drinks associated with
preclinical markers of AD (memory and
MRI measures) [292]

Hyperglycemia impairs the integrity of the BBB [293].

Homocysteine Hyperhomocysteinemia increases permeability of the BBB via N-methyl-D-aspartate
(NMDA) receptor activation [294]

Hypercholesterolemia High cholesterol disrupts the BBB, an effect blocked by simvastatin [295]
Hypertension Hypertension causes BBB breakdown via mechanisms involving inflammation,

oxidative stress, and vasoactive circulating molecules [296]
Obesity Obesity induces systemic inflammation and BBB disruption in mice, an effect

augmented by age [297]
Pesticides Several pesticides are able to disrupt the BBB in animal models [298–300]
Physical inactivity Exercise in animal models of cerebral ischemia/stroke, diabetes, and brain metastasis

has been shown to improve BBB function [301]. Physical activity counters the
negative influence of PICALM, BIN1, and CLU risk alleles on episodic memory
functioning in a dementia-free population [302] (all of these are expressed in the BBB
proteome dataset) [303–305]

Poor sleep Sleep disruption or sleep apnea are both associated with impaired BBB function
[306, 307]

Smoking Nicotine and smoking disrupt brain microvasculature and the BBB [308]
Viruses capable of disrupting the BBB Viruses infecting humans known to cause disruption of the BBB or endothelial junctions

include HIV-1, human T-cell leukemia virus, lymphocytic choriomeningitis virus, and
the West Nile virus [309]. Bacterial LPS is disruptive in BBB models [310]

Beneficial effects
Anti-inflammatories (NSAIDS) and H2

histamine receptor antagonism
Aspirin and celecoxib prevent disruption of the BBB in vesicular stomatitis

virus-infected mice [311]. Dexamethasone and methylprednisolone as well as
NSAIDs (ibuprofen and indomethacin) reduce vascular permeability in a rat glioma
model [312]. Nimesulide (a selective cyclooxygenase-2 inhibitor) attenuates BBB
disruption in animal models of cerebral ischemia [313]: Histamine causes BBB
opening via H2 receptors and H2 receptor antagonism attenuates increased BBB
permeability caused by hyperthermia in rats [314, 315]

Caffeine Caffeine is effective against BBB disruption in animal models of AD or Parkinson’s
disease [316]

Chocolate (caffeine, theobromine, and
resveratrol)

Theobromine is a phosphodiesterase inhibitor and downregulates PDE4 in a glioma cell
line [317]. PDE4 inhibition (rolipram) reduces BBB damage in ischemic stroke in
mice [318]. Caffeine and theobromine are adenosine receptor antagonists [319].
Extracellular adenosine increases BBB permeability and adenosine receptor
antagonism blocks the entry of inflammatory cells and soluble factors into the brain
[320]

Folic acid Vitamin B12-B6-folate treatment improves BBB function in patients with
hyperhomocysteinemia and mild cognitive impairment [321]. Folic acid decreases
BBB leakage and reactive astrogliosis following seizures in pregnant and prepubertal
rats [322]

(Continued)
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Table 1
(Continued)

AD risk factor Effects on BBB

Melatonin Melatonin protects BBB integrity by downregulating matrix metalloprotease activity (MMP9) [323]
Memantine Memantine (approved for use in dementia patients) [242] blocks the deleterious effects of

homocysteine on the BBB [294]
Estrogen Estrogen protects against BBB breakdown in animal models of stroke or following LPS challenge

and maintains barrier integrity [324–327]
Components of the Mediterranean

diet
Omega-3 fatty acids reduce BBB disruption in hypoxic/ischemic brain injury [328]. Fish oil

reduces BBB disruption in a rat model of juvenile traumatic brain injury [329]. Virgin olive oil
reduces BBB permeability following middle cerebral artery occlusion in rats [330]. Aged garlic
extract protects against BBB disruption caused by a high saturated fatty acid diet in mice [331].
Resveratrol, a component of grape and red fruit skins, and red wine [332], maintains the integrity
of the BBB after cerebral ischemia reperfusion in rats [333]

Statins Statins have been reported to ameliorate BBB dysfunction produced by high cholesterol [295],
oxidized low-density lipoprotein [334], sepsis, intracerebral hemorrhage [335, 336], or cerebral
malaria [337]

and other drugs referenced in Table 1 might be
considered as suitable candidates.

Caveats

This analysis is based on overlapping gene symbols
rather than on specific polymorphisms. There is thus
no indication of the physiological weight or impor-
tance of any gene/pathogen interaction, some of
which will be more important than others. Pathogen
effects may also be strain-dependent, and the size of
the interactomes also varies widely. Within any large
interactome there will be deleterious, neutral and
beneficial effects. While HSV-1 infection causes A�
deposition and neurodegeneration [251], in its latent
form, the virus can have neuroprotective effects. For
example the viral latency transcript inhibits apoptosis
and promotes neurite sprouting in neuroblastoma
cells [252], protects neuronal C1300 and Neuro2A
cells from granzyme B-induced apoptosis and CD8
T-Cell killing [253] and also protects trigeminal neu-
rons from apoptosis [254]. The Bornavirus is capable
of promoting hippocampal degeneration in Man
[11]. In rats Borna virus infection decreases choline
acetyltransferase activity in the cerebral cortex,
horizontal diagonal band of Broca, hippocampus and
amygdala [255] a situation similar to that observed
in AD [256] but the inflammation and microglial
activation it produces can also reduce A� immunore-
activity in the brain parenchyma of Tg2576 mutant
A� mice [13]. In adult mice, 12 months after infec-
tion, T. Gondii causes neurologic and behavioral
abnormalities that are secondary to inflammation and
neuronal loss. Activated microglia were also seen in
perivascular areas and the brain parenchyma [257].
T. gondii infection in BALB/C mice also induces

neuroinflammation and learning and memory
deficits. It also potentiates the toxic effects of low
doses of intracerebrally administered A� [258], but
chronic infection can also increase A� phagocytosis
and clearance by recruited monocytes [259].

Dementia or neurodegeneration, in the absence
of amyloid plaques is, by current clinical defini-
tion, not considered as AD, but as already noted,
there is no inherent biological reason for this
[260, 261]. Such divergent effects might also be rel-
evant to findings relating to the presence of amyloid
plaques in the absence of dementia, as observed in
the Nun study [262, 263] or to diagnosed AD in the
absence of A�. A recent report showed that ∼15% of
patients clinically diagnosed with AD do not have
amyloid deposits as indexed by positron emission
tomography [264]. While some amyloid-negative
patients could be re-diagnosed (∼50%), the clinical
follow-up using other criteria in other amyloid-
negative patients continued to support the definition
of AD.

There are also many inter-pathogen interactions
relevant to this relatively small sample of the potential
microbiome. For example HSV-1 infection activates
replication of the EBV [265]. Gingipains or other
proteases secreted by P. gingivalis degrade multiple
complement components [266] as well as alpha- and
beta defensins [267], immunoglobulins, IgG1 and
IgG3 [268], and interleukin-12, preventing its ability
to stimulate interferon production [269]. Such effects
enable the pathogen to counteract immune defense
and would also impinge on the viability of many other
pathogens.

HIV-1 is immunosuppressant and has been asso-
ciated with many opportunistic pathogens including
tuberculosis, toxoplasmosis, cytomegalovirus
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encephalitis and Cryptococcal brain invasion
[270, 271]. The human cytomegalovirus is also
immunosuppressant via an ability to target MHC
class I molecules for degradation [272] and to inhibit
MHC class II antigen presentation [273]. Parasites,
which maintain a long-term, if unwelcome presence
in the host have also developed immunosuppressant
and anti-defensive strategies [274, 275]. In addition,
the success of most pathogens depends upon their
ability to subvert the defensive armory of the host in
some way.

The AD genes affect human processes relevant to
the disease itself, but given that they are also part
of pathogen interactomes, polymorphisms therein are
also likely to affect pathogen life cycles or the ability
of pathogens to promote diverse effects within the
host. Apart from the APOE4 allele there are no studies
relating to the effects of the AD gene variants on
pathogens or their effects.

For these and many other reasons, it is perhaps
unwise to rank the pathogens by order of importance
in relation to their enrichment or p value in any of
the data described above. Suffice it to say that diverse
pathogens have been detected in the AD brain and all
of the bioinformatics data presented above, whether
related to genes, transcriptomes, plaques or tangles
implicate multiple species of pathogens across viral,
bacterial, fungal, and protozoan classes.

While there are statistical limitations to this type
of analysis, correction for false discovery followed
by the Bonferroni correction has been conservatively
applied. The relationship of AD to pathogens is
supported by experimental observation and by the
antimicrobial effects of A�. This study also relies
on multiple and diverse in silico bioinformatic anal-
yses linking AD GWAS genes, plaques and tangles
as well as the hippocampal transcriptome to multiple
pathogen interactomes, and the upregulated AD hip-
pocampal genes to multiple infection datasets from
diverse pathogen species. Polymicrobial involvement
is also supported by the diversity of bacterial, viral
and fungal sensors and defenders that are upregulated
in the AD brain, blood, or CSF. Each comparison
relates to single pathogens but given the diversity of
pathogens detected in AD such effects are likely to
be cumulative.

CONCLUSIONS

Multiple and diverse pathogens (bacteria, viruses,
fungi, and spirochetes) have been detected in the AD

brain and many cause neurodegeneration, increase
A� deposition and tau phosphorylation or are
killed/incapacitated by A�, an antimicrobial peptide
that is part of the innate immune defense system. Rep-
resentatives of these pathogens target multiple AD
GWAS genes, and their interactomes are enriched in
genes related to the AD hippocampal transcriptome
and to the proteins found in AD plaques and tangles.
The upregulated genes of the AD hippocampal tran-
scriptome also correspond to those upregulated by
multiple species of viral, bacterial, fungal, and pro-
tozoan pathogens or by interferon gamma and TLR
ligands.

The AD genes are preferentially localized in the
bone marrow and other immunocompetent tissues,
and in exosomes that are hijacked by pathogens for
intercellular spread. They are also localized in the
lateral ventricle and the hippocampus which abuts
this area, a prime site of pathogen invasion via the
choroid plexus and the blood-CSF barrier.

The AD genes are enriched in global GWAS
datasets relating to pathogen diversity, suggesting
that some have been selected for pathogen resistance
rather that susceptibility. This is supported by the old
age of AD patients, indicating survival from the many
infections that contribute to mortality in the younger
population. APOE4 variants protect against malaria
and hepatitis C, and immune/inflammatory gain of
function applies to APOE4, CR1, TREM2, and prese-
nilin variants, supporting this contention. Logically,
any gene variant increasing the production of the
anti-microbial peptide A� in response to pathogens
might also be considered as beneficial in evolutionary
terms. Gene networks involved in innate immunity,
inflammation and pathogen defense have been sub-
ject to positive selection pressure, although many
arms of these networks are cytotoxic (for example,
cytokines or free radicals), and evolution has involved
a considerable trade-off between diseases/infections
prevented by and tissue damage caused by exces-
sive immune activation or inflammatory processes
[276, 277]. The same might therefore apply to the
toxic effects of A� in the brain, particularly if, as in
old age, pathogens normally barred from access can
infiltrate a defective BBB.

Apart from the APOE4 allele, there is, however,
little data examining the effects of other AD gene
variants on pathogen life cycles or that relate specif-
ically to individual pathogen responses or resistance
to pathogens.

Many AD genes are also localized in the BBB.
This should provide an effective shield against many



C.J. Carter / Alzheimer’s Disease Relationship with Multiple Pathogens 145

infections but it is disrupted by multiple environ-
mental risk factors implicated in AD and protected
by several factors reported to be beneficial in
relation to AD, including NSAIDs, statins, estro-
gen, memantine, melatonin, and components of the
Mediterranean diet. In addition, viruses such as
HSV-1 which can enter the brain via nasal/olfactory
pathways are known to attain and damage basal fore-
brain areas which control the cerebral vasculature and
the BBB. This olfactory route relates to the known
progression of AD.

The relationship between pathogens and AD has
a long history coupled with a degree of skepticism,
perhaps related to an inability to fulfil Koch’s postu-
late. For example, the same pathogen is not always
found in all AD brains, or in different laborato-
ries, and independent confirmation is required for
several species of pathogen. Laboratory confirma-
tion in animal models may be impossible for certain
pathogens, for example the EBV or hepatitis C virus,
that do not infect rodents. Nevertheless, the diversity
of pathogens able to promote neurodegeneration, A�
deposition or to mimic the effects observed in the
hippocampal AD transcriptome suggests that many
candidates, alone or severally, could be involved in
the pathogenesis of AD. A polymicrobial involve-
ment seems likely given the multiple species detected
in the AD brain. Evidently, this could be assessed by
microbiome studies in the periphery or in postmortem
brains.

Recent work suggests that the production of the
antimicrobial/antiviral peptide A� is an expected
consequence of infection in general [47, 48]. In the
context of the amyloid hypothesis which posits a
causal role for A� in AD [46], this places pathogens
upstream of A�, and logically as causal, both in terms
of A� production and in relation to AD.

Two separate case reports have shown remission
from an initial diagnosis of dementia or AD in
patients subsequently diagnosed with and treated for
C. neoformans infection [278, 279].

In a Greek study, H. pylori-infected AD patients
receiving the triple eradication regime (omeprazole,
clarithromycin and amoxicillin) showed improved
cognitive and functional status parameters where bac-
terial eradication was successful [280]. H. pylori
eradication in AD patients with peptic ulcer was also
associatedwithadecreasedriskofADprogressionina
Taiwanese study [281]. A Canadian study has shown
that antibiotic treatment (doxycycline and rifampin)
reduced the rate of cognitive decline (Standardized
AD Assessment Scale cognitive subscale) in mild to

moderate AD [282]. Although few in number, these
are perhaps the only studies with any demonstrated
effectiveness in slowing the progression of AD.

Taking all of the above into consideration the com-
bined data suggest that polymicrobial brain invasion,
favored by environmentally-induced BBB defects
and also by autoantibody blockade of the antimicro-
bial effects of A� in the periphery, may be responsible
for AD. This could essentially be mediated via acti-
vation of an inflammatory network, and cytotoxic
defense mechanisms including the call-up of cere-
bral A� that, as a consequence, causes massive
neuronal destruction in a tissue incapable of regener-
ation. The role of the innate immune system and the
inflammatory response in neurotoxicity has recently
been reviewed, and innate surveillance mediated cell
death has been suggested as a plausible common
pathogenic pathway responsible for many neurode-
generative diseases, including AD [283].

It is therefore not unreasonable to suggest that
antibiotic, antifungal, and antiviral agents, possibly
in combination, tailored to the individual, might be
able to halt, delay, or perhaps even provide remission
in patients with AD.
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