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Neural relational inference to learn long-range
allosteric interactions in proteins from molecular
dynamics simulations
Jingxuan Zhu 1,2,3, Juexin Wang 2,3, Weiwei Han 1✉ & Dong Xu 2✉

Protein allostery is a biological process facilitated by spatially long-range intra-protein

communication, whereby ligand binding or amino acid change at a distant site affects the

active site remotely. Molecular dynamics (MD) simulation provides a powerful computational

approach to probe the allosteric effect. However, current MD simulations cannot reach the

time scales of whole allosteric processes. The advent of deep learning made it possible to

evaluate both spatially short and long-range communications for understanding allostery. For

this purpose, we applied a neural relational inference model based on a graph neural network,

which adopts an encoder-decoder architecture to simultaneously infer latent interactions for

probing protein allosteric processes as dynamic networks of interacting residues. From the

MD trajectories, this model successfully learned the long-range interactions and pathways

that can mediate the allosteric communications between distant sites in the Pin1, SOD1, and

MEK1 systems. Furthermore, the model can discover allostery-related interactions earlier in

the MD simulation trajectories and predict relative free energy changes upon mutations more

accurately than other methods.
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Many protein functions are regulated by specific dynamic
biomolecular processes, such as allostery, protein fold-
ing/unfolding, and protein activation. The biomolecular

motions in these processes are primarily driven by atomic/residue
interactions. Molecular dynamics (MD) simulations can directly
probe biomolecular motions but may fail to capture meaningful
functional information due to the limited time scale of simula-
tion, as well as the high dimensionality and complexity of 3D
trajectory data. In addition, many challenging MD analysis pro-
blems lack suitable methods to probe long-range communica-
tions. For example, allosteric communication1,2 is well known in
proteins, but understanding how signals are transmitted over long
distances within a protein or across different protein molecules
has been a challenging problem for decades3,4.

Computational techniques used to model protein allosteric
communication rely on graph-theoretical metrics to identify long-
ranged coupling between two distal active sites. In general, a
protein can be mapped to a graph, in which each node represents a
residue, and each weighted edge represents an interaction between
two nodes. The shortest paths between the allosteric site and the
active site in a protein may be important for propagating signals in
the allosteric communication. Earlier graph models used a static
crystal structure to calculate the shortest paths between one residue
and other residues, which may not account for the full range of
potential contacts in a dynamic protein and the associated allos-
teric behavior5,6. Later, dynamic information from MD simula-
tions was used to decipher the allosteric mechanism based on
graph theory7. A well-known approach for allostery, perturbation
response scanning (PRS)8, uses the Hessian-based elastic network
model (ENM)8,9 to obtain correlated dynamics of positions. This
model studies how the perturbation on a single residue triggers a
cascade of perturbations (signals) to other nodes in an elastic
network and thereby enables allosteric communication. To model
the response more accurately upon ligand binding or mutation, the
inverse of the Hessian has been replaced with the covariance
matrix containing the dynamic properties of the system10. How-
ever, both models are based on the hypothetical setting, which
applies the external force vector at all Cα atoms of residues in the
protein. Furthermore, the assumed correlated dynamics between
the allosteric and active sites may not be well detected by these
methods due to the following reasons: (i) the simulation time scale
may be too short to achieve sufficient signal-to-noise ratios for
matrix factorizations; (ii) there may be a delay between the per-
turbation at the allosteric site and its response at the active site so
that a linear correlation may not reflect it well; (iii) it is hard for the
Hessian approach and other similar methods to differentiate
between the causal and non-causal correlations related to allosteric
communications. Hence, for gaining more insights into allosteric
communication, it is required to develop further models.

The advent of deep learning has provided new opportunities to
explore allosteric effects. The emerging graph neural network
(GNN)11 is designed to model data systems in graphs, and it
has facilitated great success in solving many graph-related
problems12,13. Recently, the GNN helped fulfill long-term
research goals in modeling complex dynamic systems in traffic
scenes, dynamic physical systems, and computer vision tasks by
using implicit interaction models with message passing14,15 or
attention mechanisms16. Even more noteworthy is an unsu-
pervised neural relational inference (NRI) model that can infer an
explicit interaction structure while simultaneously predicting the
dynamic model in physical simulations, such as the movement of
basketball players on the court17. This model trains a form of
variational autoencoders using motion capture data to model
dynamics of the input system, in which the learned embedding
(latent code) translates the underlying interaction into an inter-
pretable graph structure and predicts time-related dynamics. NRI

does not require extensive input data or prior knowledge and it
does not assume any linear correlation for detecting causal rela-
tionships. For example, it successfully distinguishes whether a
basketball player favors right-hand focus or left-hand focus by
only depending on the state of the movement without knowledge
of the underlying interactions17.

The NRI model is suitable to learn the simulated motion tra-
jectory of biological macromolecules in MD simulations, where
biomolecules are formed by atoms connected by chemical bonds,
whose motion rules are described by Newtonian mechanics. In
this work, we adapted the NRI model (Fig. 1) to understand how
the allosteric pathway mediates remote regulation from the ligand
binding or mutation site to the active center in a protein. Based
on the trajectories from MD simulations, we formulated the
protein allosteric processes as the dynamic networks of interact-
ing residues. This model uses GNN to learn the embedding of the
network dynamics by minimizing the reconstruction error
between the reconstructed and simulated trajectories; then, our
NRI model infers edges between residues represented by latent
variables. The learned embedding inherently abstracts the
essential roles of the key residues in the conformational transi-
tion, which helps decipher the mechanism of protein allostery.
We performed MD simulations for three allosteric systems, i.e.,
(i) the allosteric regulation of Pin1 induced by ligand binding, (ii)
the conformational transition of SOD1 by G93A amyotrophic
lateral sclerosis-linked mutation, and (iii) the activation of MEK1
by oncogenic mutations. Then, we utilized the corresponding
trajectories for training the NRI model and evaluated the model
performance by comparing it with three conventional approaches
(constraint network analysis, derivative centrality metric of the
Hessian, and dynamics coupling index). To the best of our
knowledge, this study is the first attempt to use GNN, particularly
NRI, to analyze MD simulations in biological systems.

Results
Pathways mediate inter-domain allosteric communication in
Pin1. Pin1 as an attractive therapeutic target contains an inactive
N-terminal Trp-Trp (WW) domain (residues 1-39) and an enzy-
matically active C-terminal peptidyl-prolyl isomerase (PPIase)
domain (residues 50-163) connected by a linker (residues 40-49)18.
The PPIase domain is composed of a PPIase core (α4-helix and β4-
β7 sheets), α1-α3 helices, and a semi-disordered catalytic loop
(Fig. 2a). While both domains bind phospho-Ser/Thr-Pro con-
taining substrate motifs, only the PPIase domain can isomerize the
peptidyl-prolyl bond through the catalytic site19. Moreover, the
isolated PPIase has a binding affinity that is typically 100 times
weaker than the PPIase in the full-length Pin1, suggesting that the
noncatalytic WW domain has the potential to remotely modulate
the catalytic activity of the PPIase domain20. We performed two
MD simulations of Pin1 in the apo and FFpSPR-bound forms21 to
evaluate the long-range effect of substrate binding to the WW
domain on the flexibility of the protein backbone (Supplementary
Note 1). The root-mean-square deviation (RMSD) and root-mean-
square fluctuation (RMSF) values for the simulations (Fig. 2a and
Supplementary Fig. 1) show that the apo form exhibits high flex-
ibility in the WW domain (β1-β2), catalytic loop, α2-helix, and the
PPIase core (β5/α4). In contrast, the flexibilities of these domains
are significantly quenched when the FFpSPR binds to the WW
domain, indicating that the ligand binding not only stabilizes the
conformation of the WW domain but also significantly reduces the
dynamic flexibility of the PPIase domain.

To explore the pathways mediating the allosteric communica-
tion by the WW domain in Pin1, we trained the NRI model on the
MD trajectories with an encoder and decoder (See Supplementary
Note 2 for details). Across all Pin1 ensembles of 50 sampling steps,
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the model accurately reconstructs the trajectories (VSD= 0.187,
0.086, respectively) (Supplementary Fig. 2 and Supplementary
Movie 1). We also obtained the distribution of learned edges
between residues (Fig. 2b) as a domain interaction map (Fig. 2c)
by integrating adjacent residues as blocks. The learned edges often
occur between the WW domain and other domains, suggesting

that the WW domain is the key element in protein movement.
Also, we calculated the shortest pathways from the residues in the
WW domain to the residues in the catalytic loop based on the
learned edges (Supplementary Table 1). Notably, when the
FFpSPR binds to the WW domain, the correlation between the
WW domain and the PPIase core is reinforced to launch the first
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two types of pathways, i.e., from the WW domain to Q131 or
P133 in the PPIase core; then, the direct coupling between the
PPIase core and the catalytic loop enables the allosteric
communication from the WW domain to the catalytic loop via
the WW-PPIase core link (Fig. 3a, left and middle).

Besides, the FFpSPR binding strengthens another communica-
tion from the WW domain via K97 in the α1-helix and S105/C113
in the α2-3 helices to the catalytic loop (Fig. 3a, right). The
frequency of each residue on the paths may demonstrate the
relative importance of each residue in enhancing the global
connectivity and mediating capabilities that can strengthen the
allosteric communication upon the substrate binding (Supple-
mentary Fig. 3). In particular, both T29 in the interdomain
interface and C113 near the catalytic site appear on the allosteric

pathways (Fig. 3a, left and right). Interestingly, the I28/T29 in the
interdomain interface and C113 have been noted as vital mutation
sites for impacting the activity of Pin122–24. However, in the
absence of ligand binding, no pathway is found from the WW
domain to the catalytic loop. Although the WW domain can
interact with the α1-helix, the communication cannot pass from
the α1-helix to the catalytic loop (Fig. 3b and Supplementary
Table 1). Thus, the ligand binding makes the WW domain and the
PPIase domain more coordinated and compact to strengthen the
interdomain communication in Pin1.

An NMR study23 reported that the I28A mutation weakens
interdomain interactions between the WW domain and the
PPIase domain to reduce the binding affinity of the catalytic site.
We simulated the I28A Pin1 of the FFpSPR-bound form21. The
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trajectory’s RMSF value shows that the I28A mutation increases
the mobility of the whole protein structure, especially in the WW
domain, the catalytic loop, and the α1-α3 helices (Supplementary
Fig. 1). The learned interaction graph between key domains in
Fig. 2c, d (iii) shows that the I28A mutation dramatically weakens
the interactions between the WW domain and PPIase core/α2-α3
helices, which indicates that the fluctuation of the WW domain
blocks the propagation of the allosteric signals from the WW to

the PPIase core and α2-α3 helices. Although the WW domain is
still partially connected to the α1-helix, the α1-helix cannot
bridge to the catalytic loop, resulting in the breakdown of the
pathway from the WW domain to the catalytic loop via the α1-
helix (Figs. 2d, iii and 3c).

The strengthened Pin1 interdomain contact upon the FFpSPR
binding is referred to as positive regulation. In addition, an NMR
study25 of Pin1-WW suggests a negative regulation, i.e., a negative
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allosteric peptide pCdc25C (EQPLpTPVTDL) binding to the WW
domain reduces the interdomain contact, thus allowing the PPIase
domain to search for a distinct pS/T-P substrate freely. To further
investigate the effects of the pCdc25C binding on interdomain
contact, we simulated the closed pCdc25C-Pin1 complex21. We
found that the pCdc25C binding to WW domain of the closed
Pin1 reduces the interactions between the WW domain and the
PPIase core. Besides this, the edges in the networks of PPIase
domain are reduced compared to the positive FFpSPR binding to
the WW domain (Fig. 2b–d, iv). In addition, we used Pin1 with
two domains (the WW domain and the PPIase domain) well
separated (PDB 1NMV) as our starting structure to perform the
simulations of the FFpSPR- /pCdc25C- bound forms21 and
trained the corresponding trajectories using the NRI model.
Similarly, the model also accurately reconstructs the trajectories
(VSD= 0.176, 0.139 respectively) with 50 sampling steps
(Supplementary Fig. 2 and Supplementary Movie 2). From the
representative conformations clustered from the trajectories
(Supplementary Fig. 4), we observed that the positive allosteric
ligand FFpSPR promotes an open-to-closed transition within
108 ns. However, the peptide pCdc25C binding produces a range
of diverse and separate conformations. The distribution of learned
edges shows that the ligand FFpSPR enables the interaction with
the catalytic domain by enhancing the communication from the
WW domain, through the PPIase core, and ending at the catalytic
loop (Figs. 2b–d, v, and 3d, Supplementary Fig. 3). However, when
the ligand pCdc25C binds, only the PPIase core interacts with the
WW domain. Almost no edges connect to the catalytic loop,
reflecting the reduced intradomain contacts in the PPIase domain
(Figs. 2b–d, vi, and 3e).

Allosteric effect of the G93A amyotrophic lateral sclerosis-
linked mutation in SOD1. Copper-zinc superoxide dismutase-1
(SOD1) is an oxidoreductase responsible for decomposing toxic
superoxide radicals into molecular oxygen and hydrogen peroxide
in two rapid steps by alternately reducing and oxidizing active-
site copper26. The overall structure is composed of eight anti-
parallel β-strands, plus two loops forming an active site (Fig. 4a).
The long active loop (residues 49-83) can be divided into a
dimerization loop (DL), disulfide loop (DiL), and a zinc-binding
loop (ZL). The small active loop is an electrostatic loop (EL) with
residues 122-142 near the metal-binding site27. A study of the
SOD1-linked neurodegenerative disorder amyotrophic lateral
sclerosis (ALS) shows that the G93A mutation forces the EL to
move away from ZL, decreasing the Zn (II) affinity of the
protein28, which affects the pathogenic process of the SOD1-
linked ALS29. Since the G93A mutation occurs away from the
metal site (Fig. 4b), this process is allosteric.

We performed MD simulations for wild type (WT) and G93A
SOD1 to generate trajectories21 for learning the interactions in
SOD1 (Supplementary Note 1). The RMSF values (Supplemen-
tary Fig. 5) show that the EL of the G93A SOD1 becomes more
flexible than that of the WT SOD1. Correspondingly, the motion
mode reveals that the G93A mutation induces the EL far away
from the metal site, while the EL of the WT SOD1 can be
stabilized in the proximity of the metal site (Fig. 4b). In addition,
we found that the G93A mutation makes the A93(O)-L38(N)
distance increase, resulting in a decrease in hydrogen bond
interaction (Supplementary Fig. 6a and Table 2). And many
hydrogen-bond interactions between the β-barrel and active loops
are weakened to make the G93A SOD1 structure looser than the
WT SOD1 (Supplementary Figs. 6b–i and 7, and Table 2). Also,
the overall dimension of the protein calculated by the radius of
gyration (Rg) demonstrates a decrease in protein compactness
upon the G93A mutation (Supplementary Fig. 8). To explore

how G93A mutation at the distant site significantly alters the
cooperative dynamics near the active loops, we ran the NRI
model on the trajectories and compared the performance of
motion reconstruction. Based on the VSD values for the ground
truth and reconstructed trajectories of WT and G93A SOD1
(VSD= 0.119, 0.242, respectively; see Supplementary Fig. 9), we
selected the learned results of 45 steps for WT and 40 steps
for G93A SOD1. As shown in Supplementary Movie 3, the
reconstructed trajectory reproduces well with the simulated
trajectories.

The interacting domains mapped from the learned graph show
that the long active loop (DL, DiL, and ZL) and the small active
loop (EL) interact with each other closely in the WT SOD1, which
stabilizes the Zn (II) binding environment (Fig. 4c–e, left). A close
look at the learned edges graph in Fig. 4c, left reveals that the long
and small active loops also connect to the residues in the β-barrel,
causing a closed EL state. Moreover, the pathways in the WT
SOD1 further explain the communication pathways, starting
from G93 through DL, DiL, and ZL to the EL (Fig. 4f, left and
Supplementary Table 3). In contrast, during the EL opening
induced by the G93A mutation, the inner connections originally
in the long active loop of the WT SOD1 are almost broken,
thereby loosening the network of Zn (II) binding sites (Fig. 4c–e,
right). Then the allosteric pathways emanating from the A93 no
longer propagate through the long active loop, but directly
through the residues in the β-barrel to the EL (Fig. 4f, right, and
Supplementary Table 3). Overall, the G93A mutation weakens the
interaction networks within the active loops, which significantly
enlarges the Zn (II) binding pocket and decreases the Zn (II)
affinity with the SOD1.

Mechanism of oncogenic mutations activating MEK1. Mitogen-
activated protein kinase (MAPKK, also known as MEK) acts as an
integration point in the RAS-RAF-MEK-ERK mitogen-activated
protein kinase (MAPK) signaling cascade30. The activation of
MEK requires its phosphorylation by upstream kinases encoded
by Raf oncogene31, https://www.ncbi.nlm.nih.gov/gene/31221.
The human MEK1 protein consists of a small N-terminal lobe
(N-lobe) and a large C-terminal lobe (C-lobe)32. As shown in
Fig. 5a, b, the small N-lobe is dominated by five antiparallel β-
strands (core kinases domain-1) and two conserved αA/αC
helices. In these two helices, the αC-helix is critical in regulating
the MEK1 activity33. The active site of MEK1 is located at the
interface of the N-lobe and C-lobe, binding to the substrate (such
as ATP) or the competitive inhibitor known as A-type natriuretic
peptide (ANP). The large C-lobe contains three core kinase
domains, an activation segment, and a proline-rich loop. The
activation segment and proline-rich loop are crucial in regulating
the activation of MEK1 and downstream extracellular signal-
regulated kinases (ERKs) in cells33,34. Recent studies reported that
the E203K mutation remotely affects the active site of MEK1 to
increase the phosphorylation of ERK1/235. Similarly, the phos-
phorylation of Ser218 and Ser222 is also required for MEK1
activation to promote cell proliferation and transformation,
which eventually leads to various human cancers31.

To explore the allosteric effect of the mutation on MEK1, we
performed MD simulations21 and analyses for two nonactive
MEK1s (WT and A52V)35, two active forms (mutation E203K35,
and a phosphorylated MEK1, where both Ser218 and Ser222 are
phosphorylated31) (Supplementary Note 1). The secondary structure
changes (Supplementary Fig. 10) show that the activation segment
experiences a helix-to-loop transition in the active MEK1 (E203K
and phosphorylated Ser218/222). In contrast, this segment’s helix
content in the WT and the A52V MEK1 increased significantly
compared to the active MEK1. The principal component analysis
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(Supplementary Fig. 11) reflects the activation segment’s open trend
in the active MEK1.

The above analysis only shows the changes in the dynamic
motions of MEK1, which may fail to identify the common
interaction features in the two active MEK1s. Thus, the NRI model
was applied to learn the trajectories. The motion reconstruction

results show that the reconstructions are almost consistent with
the ground-truth trajectories in 60 sampling steps of WT, 90 steps
of A52V, 50 steps of S218Sp/S222Sp, and 45 steps of E203K MEK1
(VSD= 0.133, 0.150, 0.183, and 0.158, respectively) (Supplemen-
tary Fig. 12 and Supplementary Movie 4). Furthermore, as shown
in the learned interaction graph of nonactive MEK1 (WT and
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A52V) (Fig. 5c, d), few interactions occur between the domains. In
contrast, the αA-helix, core kinase domain-1, activation segment,
and the proline-rich loop of phosphorylated MEK1 strongly
interact with other domains, which indicates that they drive
the slow motion in the activation of phosphorylated MEK1
(Fig. 5c, d).

We mapped the graph of the phosphorylated MEK1 as the
interacting domains (Fig. 5e, left) and calculated the allosteric
pathways (Fig. 5f, left and Supplementary Table 4). Interestingly,
three domains (the αA-helix, the activation segment, and the
proline-rich loop) form an interaction pattern. The activation
segment connects all the way to the αA-helix, which may affect
the binding affinity of ANP in the active pocket. Meanwhile, the
activation segment also connects to the proline-rich loop, which
may activate downstream ERKs in cells. Then, we applied the NRI
model to learn the inner-domain correlation from the dynamic
motion of E203K MEK1. A closer look at the learned graph
reveals that like the phosphorylated MEK1, the active mutation
(E203K) strengthens the interactions between the activation
segment/proline-rich loop and the rest of MEK1 (Fig. 5c–e).
From the allosteric pathways starting with R201 (Fig. 5f, right,
Supplementary Fig. 13 and Table 4), we found that the activation
segment significantly affects passing messages from R201 (near
E203K) to the proline-rich loop. The communication propagates
through the αA-helix to the αC-helix due to the effect of the
E203K mutation on the αC-helix. Hence, phosphorylated Ser218/
222 and E203K mutations have a similar effect on the proline-rich
loop, i.e., the activation segment as a “messenger” can interact
with the proline-rich loop in their dynamics, thereby enhancing
communication to the proline-rich loop.

Effects of sampling frequency on the learned edges and their
weights. Dynamic biomolecules often undergo large-scale struc-
tural changes and visit many conformational states to perform
their biological functions. This poses a problem for the NRI
model training, as it is challenging to output entirely consistent
learning results with different sampling frequencies. To investi-
gate the impact of sampling frequency on the learned edges and
their weights, we ran the NRI model for three case studies with
10, 15, 20, 25, 30, 40, 50, 60, 75, 90, and 100 steps for the same
trajectories. Results for the MSE and VSD values are shown in
Supplementary Fig. 14. The modeling with a low sampling fre-
quency (≤ 50 steps) generally produces relatively small deviations
between the ground truth and reconstructed trajectories. And the
accuracy of reconstruction drops significantly with the increased
sampling frequency (Supplementary Fig. 14d–f). Then, we clus-
tered the MD trajectories using the K-means clustering algorithm.
For the pCdc25C-bound Pin1 (Supplementary Fig. 15), the most
populated cluster includes only 309 frames, representing 6.2% of
the total processed frames. The following 20 representative
clusters contain less than 200 conformations each and evenly
distribute throughout the trajectory. Since the conformational

samples obtained from MD simulations are diverse and abun-
dant, using small frames to represent the complete conforma-
tional states may be too coarse-grained and ignore too many
details. For example, choosing 20 steps will result in a 250-frames
interval between two consecutive steps (Fig. 1d), which indeed
misses many crucial conformations vital to biological function.
Hence, such a trade-off between sampling frequency and com-
putational efficiency needs to be considered.

In addition, we showcased the distribution of learned edges for
three case studies (Supplementary Figs. 16–19). Across all results
with different sampling steps, the low-frequency sampling results
in fewer edges and lower weights because of feeding in less
structural information. Due to the discrepancy of choosing
conformations in the small sampling, the edges learned are
significantly different, especially for ensembles with significant
conformational changes (i.e., pCdc25C-bound Pin1, Supplemen-
tary Fig. 17b). However, when the sampling is sufficient to
describe a transition, the learned edges tend to be similar. Hence,
we selected the learning results based on both the small
reconstruction error and sufficient sampling. The results are
shown in Supplementary Fig. 2 for the Pin1 study, Supplementary
Fig. 9 for the SOD1 study, and Supplementary Fig. 12 for the
MEK1 study. The VSD values, on average, are less than 0.2 for all
three systems, which shows that the conformation distribution of
the generated trajectories is almost the same as that of the actual
trajectories. Although this does not suggest the exact match of
atomic positions at each time point, which is not biologically
meaningful in MD simulations anyway, it indicates that the
statistical properties are probably the same between the ground
truth and reconstructed trajectories, which is sufficient for
essentially all MD simulation purposes.

To study the effects of step intervals in the NRI model learning,
we learned the trajectories with different time intervals of sampling.
Furthermore, we compared the RMSF values between the actual and
the reconstructed trajectories, where a lower VSD value means a
better model (Supplementary Figs. 20, 22, 24, and 26). It is observed
that the reconstruction error slightly increases as the sampling step
interval decreases when the total duration of the training trajectory
keeps the same, possibly because it is harder to reconstruct trajectory
details as the step interval decreases. Nevertheless, the reconstructed
trajectory matches the actual trajectory relatively well even when the
step interval is reduced to 5 ns or 4 ns (sampling frequency increase
to 100 and 50 steps) for 500 ns’ SOD1 simulation and 200 ns’
Pin1 simulations (Supplementary Figs. 20 and 26). It is worth noting
what step interval to use may depend on biological systems. For
example, a sampling step much longer than 20 ns may be too long to
recover enough information in the allosteric process (Supplementary
Figs. 21, 23, 25, and 27). Our results show that a step interval of
~20 ns can yield a more reasonable outcome.

In our study, the simulations for three case studies were repeated
two additional times to validate the power and accuracy of our
approach. The edges learned for the three repeated trajectories

Fig. 4 Change of interactions between residues/domains upon G93A mutation in SOD1. a Domain partitions of the SOD1 protein, which includes the
position of the G93A mutation. b Initial structure of the WT SOD1 and G93A SOD1 structure at 300 ns, including a β-barrel (gray), a dimerization loop (DL
colored pink), a disulfide loop (DiL colored green), a zinc-binding loop (ZL in orange), and an electrostatic loop (EL in blue). The directions shown in the
graphic denote the motion mode of the protein. c Distribution of learned edges between residues in the MD simulations of the WT (left) and the G93A
(right) for SOD1. d Block distribution chart of learned edges between domains in the MD simulations of the WT (left) and G93A (right) for SOD1. In e, the
interaction graph is mapped from the learned edges for the WT (left) and G93A (right) in SOD1. The size of a node represents the number of learned edges
that directly connect to the node. The thickness of an edge represents the strength of the interaction. The arrows point toward the directionality of the
learned edge. In f, the pathways from the G93 run through the residues in the β-barrel, and the residues in the long active loop connect to the EL loop in the
WT SOD1 (left); moreover, the pathways from the A93 go through the residues in the β-barrel to the EL loop in the G93A SOD1 (right). The size of a node
represents the number of learned edges that directly connect to the node. The thickness of an edge represents the strength of the interaction. We used
G93/A93 as the starting point and the residues in the EL as the ending points to present the pathways.
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remain similar but have some differences, especially in the Pin1 and
MEK1 case studies (Supplementary Fig. 28). Thus, we calculated the
network node centralities (representing the importance of a residue)
in allosteric pathways for the three case studies (Supplementary
Figs. 29–31) and observed that the residues in the PPIase core play a
crucial allosteric signal transmitting role in all three dynamic

regulations of FFpSPR-Pin1 (PDB ID: 1NMV). Upon the FFpSPR
binding to the WW domain of the extended Pin1 structure, the
interactions between the WW domain and the catalytic loop are
supported by the edges directly connected from the WW domain to
the PPIase core. Thus, the topology between the WW domain and
PPIase core is stable in these repeated learning sets. Moreover, the
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topologies from the WW domain to helices and from the WW
domain to the PPIase core are also stable in the underlying
pathways obtained from the repeats of the closed FFpSPR-Pin1
complex (Supplementary Fig. 29).

For the SOD1 system (Supplementary Fig. 30), the NRI model
is also able to capture highly consistent topologies of the
underlying pathways; in particular, the small active loops (DL,
DiL, and ZL) stabilize the closure of the electrostatic loop. As for
the A52V MEK1 study, the repeats demonstrated that the
networks in the WT and A52V MEK1s are sparse compared with
the MEK1 upon the active mutated (Supplementary Fig. 28). For
both SOD1 and Pin1 systems, the allosteric pathways are almost
learned reproducibly with fewer differences than MEK1. The
difference in the edges in the MEK1 system is slightly larger.
Nevertheless, the important topological elements (activation
segment and proline-rich loop) are learned to illustrate the signal
transmitting (Supplementary Fig. 31). Due to the chaotic and
stochastic nature of molecular dynamics simulations, identical
trajectories cannot be obtained even with the same set of
parameters. However, the NRI model is still able to extract the
key allosteric pathways related to protein dynamics regulation
consistently, suggesting the model is robust.

From the methods perspective, modeling the edges explicitly
is vital in the NRI architecture. To test the role of graph neural
network in NRI, we performed an ablation test. We compared
the proposed model and a variational autoencoder (VAE)
baseline without latent variables over edges. After splitting the
trajectories into training/validating/testing, the MSE results
of both models on Pin1, MEK1, and SOD1 are shown in
Supplementary Fig. 32 and Supplementary Table 5. We can see
the latent variables over the edges can improve the model’s
performance, and the proposed architecture provides a better
framework for modeling edges (residue interactions) of the MD
trajectories than other methods. It is interesting to note that the
gap between our method and the baseline is much more
prominent on WT-SOD1 than on the Apo-Pin1 and WT-MEK1
systems. Supplementary Fig. 28 shows more intensive node-
node interactions in the WT-SOD1 than the other two systems.
Hence, the effects of graph neural network in NRI using node-
node interactions over the VAE baseline (which does not
consider node-node interactions) are stronger in WT-SOD1
than in the Apo-Pin1 and WT-MEK1 systems. As a result,
compared to the Pin1 and MEK1 systems, the edges learned
from three repeated trajectories of the SOD1 system exhibit
higher consistency, indicating that the NRI model is more
accurate for capturing edges in the WT-SOD1 case (Supple-
mentary Fig. 28). This may cause a more remarkable improve-
ment over the baseline in terms of mean squared error for WT-
SOD1 than for the other two systems (Supplementary Fig. 32). It
also suggests that the NRI model with latent variables over edges
exhibits more significant advantages in more densely interacting
systems.

Performance comparison between the NRI model and three
covariance-based models. The long-ranged coupling between
residues that gives rise to allostery in a protein is built from short-
ranged physical interactions. Many computational models have
been developed to predict this coupling and its allosteric rele-
vance relies on residue-level correlations measured from MD
simulations. In this section, we used the simulations of human
Pin1 as a benchmark to showcase the comparisons of our NRI-
based approach with three positional covariance-based methods
(constraint network analysis, derivative centrality metric, and
dynamics coupling index).

Based on the ensemble-based perturbation approach, con-
straint network analysis (CNA)36,37 is applied to the ensembles of
network topologies generated from MD trajectories for calculat-
ing the neighbor stability maps. The stability maps reflect the
local stabilities of the residue-residue contacts. Hence, the
contribution to free energy due to noncovalent bonding can be
estimated by accumulating over the contacts in the stability map
(see Supplementary Note 3 for details). This estimation cannot
provide absolute free energy values, but it can show its statistical
trend. Hence, we call it “free energy score”. To quantitatively
evaluate the performance of our model, we performed MD
simulations and NRI model training for the wild type (WT) and
23 Ala-mutants of human Pin1. Given the graph learned from the
NRI model, we calculated the difference of the learned edges
(pairwise free energy score, GZij

) between the WT and 23 Ala-

mutants to reflect the change in structural stability caused by Ala-
mutation, ΔGZ ¼ EAla�mutant

z � EWT
z (Supplementary Note 6). We

compared the difference of unfolding energies (ΔΔG) between the
wild type and mutants from the chemical denaturation experi-
ments (Fig. 6a, b), with ΔGZ . The correlation between the
computed free energy score (ΔGZ) based on our model and the
experimental free energy (ΔΔG) is significant (R2 ¼ 0:939, 95%
confidence interval: 0:859 < R2 < 0:974, p ¼ 3:361 ´ 10�11 for the
interaction threshold of 12 Å; R2 ¼ 0:931, 95% confidence
interval: 0:842 < R2 < 0:971; p ¼ 1:166 ´ 10�10 for the interac-
tion threshold of 15 Å) (Fig. 6c, d). In contrast, the comparison
between free energy (ΔGCNA) computed from the constraint
network analysis and experimental free energy shows a relatively
poor correlation (R2 ¼ 0:188; p ¼ 0:390) (Fig. 6e). Almost no
correlation (R2 ¼ �0:093; p ¼ 0:671) is observed between the
potential energy (ΔGTotal) from MD simulations and the
experimental data (Fig. 6f).

To understand the differences of predicted interactions
between methods, we identified suboptimal pathways and
compared the corresponding node centralities in the pathways
calculated based on the covariance matrices obtained from the
CNA method and the NRI model (Supplementary Figs. 33 and
34). The node centrality heatmap in the folding stability study
shows that the interactions obtained by the CNA method miss the
interactions between the WW domain and the α1-3 helices, and

Fig. 5 Changes in domain communications upon active mutations in MEK1. a Domain partition of MEK1 protein, including the positions of mutations
(A52V, S218Sp/S222Sp, and E203K). b Different views of the MEK1 structure. The N-terminal lobe (N-lobe) contains one core kinase (gray) and two
conserved α-helices (blue). The C-terminal lobe (C-lobe) contains three core kinase domains (gray and black), an activation segment (orange), and a
proline-rich loop (green). c Distribution of learned edges between residues in the MD simulations of WT, A52V, S218Sp/S222Sp, and E203K MEK1.
d Distribution of learned edges between domains in the MD simulations of WT, A52V, S218Sp/S222Sp, and E203K MEK1. In e, the interaction graph is
mapped from the learned edges of active mutant MEK1. The size of a node represents the number of learned edges that directly connect to the node. The
thickness of an edge represents the strength of the interaction. The arrows denote the directionality of a learned edge. In f, the allosteric pathways start
from N221 in the activation segment and lead to the αA-helix and the proline-rich loop in the S218Sp/S222Sp MEK1 (left). On the right, the allosteric
pathways start from R201 (near E203K) and lead to the αC-helix and the proline-rich loop in the E203K MEK1. The size of a node represents the number of
learned edges that directly connect to the node. The thickness of an edge represents the strength of the interaction. We used N221 and R201 (near E203K)
as the starting points, and the residues in the αA/αC helices and the proline-rich loop as the ending points to present the pathways.
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almost all interactions concentrate between the WW domain and
the PPIase core. The NRI model learning yields significantly
different results. In particular, the edges between the WW
domain and the α1 helix are the main interactions in the alanine
mutation of positions 7, 14, 23, 25, and 29. Besides, for the
structures whose alanine mutations do not affect the structural
stability, the interactions are distributed from the WW domain to
the α1-3 helices or the PPIase core. Because the NRI model can
capture the interaction pattern changes corresponding to
different structural stabilities resulting from mutations, the
relative free energy scores estimated by the NRI model agree
with the trend of experimental energies better than the CNA
approach and MD-based method.

Based on the per-residue free energy score (per-node weight), it
is possible to examine residue’s (node’s) importance in residue
interaction networks. We validated the NRI model on the Pin1
case study: positive and negative regulation in FFpSPR- and
pCdc25C- bound Pin1. The stability maps and per-residue free
energy score ΔGi;CNA (Eq. (4) in Supplementary Note 3) obtained
using the CNA approach show that only residues in the WW
domain can be identified as impactful on the structural stability
upon the ligand binding (Supplementary Fig. 35a). In compar-
ison, the interaction maps learned by the NRI-based model are
more informative to allosteric communication. Specifically, the

robust nodes’ weights detected in the catalytic loop, α helices, and
PPIase core of the FFpSPR-Pin1 complex are vital in the allosteric
pathways. However, no signal is contributed to the catalytic loop
in the negative regulation due to the pCdc25C binding
(Supplementary Fig. 35b).

Further, we compared the application of the NRI model with
the derivative centrality metric38. Derivative node metric (δnode)

38

for the FFpSPR- and pCdc25C- bound Pin1 identifies the node’s
importance at conveying the covariance between sources (WW
domain) and sinks (catalytic sites) (Supplementary Note 4). First,
we showcased the distribution of learned edges for frames
1–1000, 1000–2000, …, 4000–5000 of the trajectories (Supple-
mentary Fig. 36). It shows that the dynamics of biomolecular
change considerably over time. In contrast, the distributions in
frames 1–500, 1–1000, …, 1–5000 of the trajectories remain
relatively stable (Supplementary Fig. 37), which may reflect the
overall features of the whole dynamic process, instead of each
segment in the process. Hence, we will use the distribution of
frames 1-N in the following analyses.

As presented in Fig. 7a, the catalytic sites in the FFpSPR-Pin1
exhibit large δnode values after 200 ns (frame 2000). Thus, the
complete allostery propagation is detected after 200 ns (frame 2000)
by measuring the derivative centrality metric. In comparison, the NRI
approach has the potential to capture an allosteric signal transmitted
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Fig. 6 Evaluations of free energy score calculation performance of the NRI-based approach. a Summary of thermodynamic data for the WT and 23 Ala-
mutants of Pin1. N.D., not determined, represents that the mutant is too unstable to measure. b Effects of the Ala mutations on the equilibrium stability of
Pin1. A positive value of (ΔΔG ¼ ΔGAla�mu tan t � ΔGWT) indicates that the Ala mutation is destabilizing relative to the wild type. Mutations that destabilize
more than 3 kcal/mol (ΔΔG � 3 kcal=mol) are shown as red bars, more than 1 kcal/mol and less than 3 kcal/mol (1 � ΔΔG � 3 kcal=mol) are shown as blue
bars. c, d Correlation between the computed free energy score (ΔGZ ¼ EAla�mu tan t

z � EWT
z ) and ΔΔG from the chemical denaturation experiments for the 23

Ala-mutants of Pin1. Based on the position vector of Cα in Pin1 (PDB ID: 1PIN), the threshold of residue-residue distance was set to 12 Å (c) and 15 Å (d) to
present the residue-level interaction. e The correlation between the predicted ΔGCNA (Eq. (3) in Supplementary Note 3) and ΔΔG for the 23 Ala-mutants of
Pin1. f Correlation between the ΔGTotal ¼ GAla�mu tan t

Total � GWT
Total obtained from MD simulations and ΔΔG for the 23 Ala-mutants of Pin1. The Pearson

correlation coefficient and p-value were calculated by scipy.stats.pearsonr in Python package. The p-value was computed by two-sided test and no
adjustment was made for multiple comparison. The degree of freedom (df ¼ n� 2) is 21.
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from the WW domain to the catalytic loop in a shorter simulation
time. The relatively large edge weights in the catalytic loop are
learned within 50 ns (frames 1–500) (Fig. 7c). The corresponding
conformational changes show that the open conformation completes
the closing transition at ~108 ns after FFpSPR binding to the WW
domain of Pin1 (Fig. 7c and Supplementary Fig. 4a). Hence, the NRI
approach captures the allosteric signal propagated to the catalytic
sites before observing the complete open-to-closed transition.

Then, the Pearson correlation coefficient (R2) between the
learned node’s weight and the residue-level RMSD value, on
average, more than 0.7, demonstrates that the strength of the
learned interactions is associated well with the structural stability
changes (Supplementary Figs. 36c, d, 38). By mapping repre-
sentative conformation with the average RMSD value in
trajectories of different time scales (Fig. 7c), we found that from
50 ns to 100 ns (frames 500–1000), the RMSD value in the
catalytic loop of FFpSPR-bound Pin1 increased by 3 Å, reflecting
the reinforced weights in edges connecting to the catalytic sites.
Then, as the simulation time increased to 200 ns (frame 2000),
the structural destabilization in α2-α3 helices represents the
enhanced interaction weights. In the later simulation, the
stabilities of the catalytic loop and α2-α3 helices do not change
much over time, so that the weights of the learned edges no
longer increase significantly. Since the conformation remains
open for the simulation of pCdc25C-bound Pin1, almost no
signal could be transmitted to the catalytic loop (Fig. 7b, d).

Moreover, we compared the NRI model with the dynamic
coupling index (DCI)10, which replaces the Hessian matrix with
the covariance matrix obtained from MD simulations to model
changes in interaction networks upon ligand binding more
accurately (Supplementary Note 5). The DCI metric identifies the
dynamic allosteric residue coupling between two distal residues/
domains based on such a matrix. We compared the DCI profile
between the WW domain and the rest of Pin1 to the nodes’
weights learned from our NRI model. After 100 ns (frame 1000),
the DCI metric presents the strong coupling from the WW
domain to the catalytic loop (Supplementary Fig. 39a). Our model
is sensitive enough to detect the signal conveying to the catalytic
loop in the first 50 ns (frames 1–500) as indicated in the more
robust weights in the catalytic loop than other domains in Pin1
(Supplementary Fig. 39b).

Finally, we compared the allosteric pathways learned from the
NRI model and the other methods. For the FFpSPR-Pin1
complex in the Pin1 case study, unlike the result of the NRI
model, the distributions of edges learned from DCI, Hessian, and
CNA methods do not contain the expected interactions between
the WW domain and the α1-3 helices (Supplementary Figs. 40
and 41). Interestingly, D112A/N and C113S caused a considerable
reduction in the catalytic activity. E100D, E104K, S105F, S106*,
and D112N have been reported as somatic mutations in
cancer24,39. Thus, mutating these residues in the α1-3 helices
may cause chemical shift perturbations in the interaction between
the catalytic loop and the PPIase domain. The NRI model
successfully learns the interaction patterns in the α2-3 helices that
are ignored by the other three methods. Similarly, upon the
pCdc25C binding to the WW domain of the closed conformation,
the edges learned from the NRI model are distributed between the
WW domain and the helices in the PPIase domain; other
methods tend to capture the interaction from the WW domain to
the PPIase core. For the extended conformation of FFpSPR-Pin1,
the NRI model, Hessian, and CNA methods all capture the high
node centralities in the PPIase core. In contrast, the DCI method
does not capture the topology from the WW domain to the
PPIase core. This suggests that the NRI model may be more
consistent with the positively and negatively controlled allosteric
regulation than other methods.

For the WT SOD1 case study, in contrast to the NRI model, the
Hessian and CNA methods ignored the pathways from the DL,
DiL, and ZL to the EL; DCI method missed the pathway from the
DL and DiL to the EL (Supplementary Figs. 42 and 43). This
contradicts the observation that the long active loop (contained
by a DL, DiL, and a ZL) is crucial in stabilizing Zn2+ binding to
the active sites27. For the MEK1 case study, the distribution of
edges learned from the NRI model and the other three methods
are similar (Supplementary Figs. 44 and 45). Except the pathways
directly starting from the activation segment to the αC helix in
the S218Sp/S222Sp MEK1, the NRI model determines that the
proline-rich loop also plays a bridging role in this message
passing. Notably, the proline-rich loop activates the downstream
ERKs in cells33,34.

In summary, the results for comparison demonstrate that (i)
computed relative free energy scores using our NRI-based
approach agree very well with experimental data, and (ii) the
NRI model can effectively capture residue-level interactions
within a shorter simulation time.

Discussion
This study applied a GNN-based NRI model to analyze latent
interactions between residues from reconstructing MD trajec-
tories of proteins. We carried out three case studies to explore the
allosteric long-range interactions for the Pin1, SOD1, and
MEK1 systems. We have demonstrated that our NRI model can
effectively generate the interaction graphs related to the protein’s
slow motion by embedding reconstructed MD trajectories. The
shortest pathways between the allosteric site and the active site in
the interaction graphs can reveal the pathways mediating allos-
teric communications. In addition, the model can capture
allostery-related interactions and the trend of dynamic motions
using a shorter simulation than other methods.

Recently, two distinct allosteric mechanisms of human Pin1
have been well studied using computational approaches. Grati-
fyingly, we have some findings consistent with some recent
result40, which shows that the presence of the positive allosteric
ligand FFpSPR enhances the interdomain interaction between the
WW domain and the PPIase domain through two pathways.
Path1 emanates from the WW backside and propagates through
the inter-domain interface and the PPIase core to the catalytic
sites; Path2 emanates from the WW front pocket and propagates
through the bound substrate, α1, and the α1-core interface to the
catalytic loop. Our results not only show the strengthened
interdomain contact but also identified another pathway of open
communication from the WW through the α1 and α2-3 helices,
ending in the catalytic loop (see Fig. 3a, right). In addition, we
investigated the effects of the positive and negative ligand on the
conformational transition of the well-separate structure. The
result on the negative mechanism confirms a recent finding, i.e.,
the negative allosteric ligand pCdc25C binding reduces the
intradomain contact in the PPIase domain.

The allosteric pathways derived from the shortest paths pro-
vide valuable information when considering protein design. It
may be possible to mutate the residues in the allosteric pathways
to alter the biological functions and regulatory properties of
proteins. One example we demonstrated is residue I28 in Pin1
with a known impact of allostery appearing next to T29. The
exemplary residue T29 is a key residue on one pathway identified
in Fig. 3a. Furthermore, both residues R49 and K57 in the αA-
helix appear on the allosteric pathways of the two activated
MEK1s (Supplementary Fig. 13). Since the αA-helix is the critical
interface interacting with the rest of the kinase domain,
the mutations of residues R49 and K57 are likely to cause sig-
nificant alterations in the helical structure, thereby inducing ERK
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Fig. 7 Comparison of the performance of the Hessian-based and NRI-based approaches in capturing the allosteric signals in simulations. a, b Derivative
node metrics δnode based on Hessian as a function of residues for FFpSPR- and pCdc25C-bound Pin1 systems. The metrics are calculated using frames
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phosphorylation41. In addition, residues G213 and D217 in the
activation segment show a significantly high frequency on the
pathways of the two activated MEK1s, which confirms their roles
as global mediating sites in allosteric communication (Supple-
mentary Fig. 13). Mutations in this region indeed lead to con-
stitutive activation of the MAPK pathway42. Thus, the allosteric
pathways learned by our NRI model may potentially reduce the
need for mutation screening significantly by a targeted design.
Such an approach can be used for general mutation effect pre-
dictions, as well as a guide in designing allosteric drugs capable of
modulating protein function with potentially higher specificity
and lower toxicity than traditional drugs.

Due to large energy barriers, the conformational changes of
biomolecules usually occur in milliseconds or longer time scales,
which is typically inaccessible in the MD simulations with hun-
dreds of nanoseconds to tens of microseconds. On the other
hand, the driving forces leading to the long-term conformational
changes and the underlying inter-/intra-domain interactions
reveal themselves long before the conformational changes are
revealed in trajectories. As reported, many analysis methods of
MD simulations have been used to identify allosteric importance
based on positional covariance-based metrics. Our study per-
formed a range of comparison studies between our NRI-based
model and other MD approaches (constraint network analysis,
derivative centrality metric of the Hessian, and dynamics cou-
pling index). The current NRI models indeed take more time to
compute than the other methods compared. Nevertheless, the
strength of the NRI model is not the computing time but rather
its potential to identify some long-range interactions that other
methods may miss. This does not mean a replacement of other
methods, but our method is complementary to them. The
advantages of our model are as follows: (i) our model is sensitive
enough to capture the allosteric signal earlier before observing the
complete conformational transition; (ii) our model can clearly
present the interaction patterns and signal-transmit pathways
during protein biological function; and (iii) our model has sig-
nificant potentials in estimating free energy changes upon
mutations.

This model is not restricted to allosteric regulation. Many other
biological and pharmaceutical processes, such as protein folding/
unfolding, protein activation, or drug molecule binding targets
can also be formulated as a dynamic interaction graph by the NRI
model. In particular, the NRI model is appealing when probing
non-periodic biomolecular motion. Unlike the periodic physical
movement where interactions do not change over time, proteins
during performing functions are often accompanied by con-
siderable conformation and interaction changes. Using NRI in
those cases will retrieve interactions over time. We believe the
NRI model can be developed to recover the interactions between
residues at every time interval in the process of performing
protein functions. Additional NRI methods, such as dynamic
NRI43 can be applied for this purpose. Future studies include
making this model more robust, computationally more efficient,
and biologically more explainable, which will lead to a useful
software tool for analyzing MD trajectories in general.

Methods
NRI model. The NRI model17 consists of two co-training parts: an encoder to
predict the interaction given the dynamic system’s trajectories, and a decoder to
predict the trajectories of the dynamic system given in the interaction graph.
Specifically, the input consists of N nodes. The feature vector (position and velocity
in the dimensions of x, y, and z) of node i (input/output dimension of 6 for each
node) is denoted as xti at time t. All N nodes’ feature set is denoted as
xt ¼ fxt1; � � � ; xtN g. The trajectory of node i is denoted as xi ¼ fx1i ; � � � ; xTi g, where T
is the number of time steps. Finally, all trajectory data are recorded as
x ¼ fx1; � � � ; xT g. The NRI model simultaneously learns the edge values and
reconstructs the future trajectories of the dynamic system in an unsupervised

manner based on an unknown graph z. The interactions between nodes i and j take
the form of a latent variable zi;j 2 f1; :::;Kg, in which K is the number of inter-
action types being modeled. These interaction types do not have any pre-defined
meaning, but rather the model learns to assign a meaning to each type. The
structure of the model is presented in Fig. 1. The code is freely available at https://
github.com/juexinwang/NRI-MD.

This model is formalized as a variational autoencoder (VAE)44,45 that
maximizes the evidence lower bound (ELBO):

LðΦ; θÞ ¼ EqΦðzjxÞ
½ log pθðxjzÞ� � KL½qΦðzjxÞjjpθðzÞ� ð1Þ

in which Φ and θ are trainable parameters of probability distributions. This
formulation consists of three primary probability distributions: First, the encoder
qΦðzjxÞ, returns a factorized distribution of zi;j , in which a one-hot encoding
representation of the K interaction types is used on zi;j. For easy visualization, we
used K=4 types to train the model. The first edge type is “hard-coded” as nonedge
and was trained with a prior probability of 0.91. All other edge types received a
prior of 0.03 to favor sparse graphs. These priors were the default values in the
original NRI model17. Second, the decoder pθðxjzÞ, reconstructs the dynamic
systems given a sampled set of interactions zi;j . Third, the prior pθðzÞ, is a uniform
independent categorical distribution per relation variable.

More formally, as shown in Fig. 1d (on the left), the encoder takes the form

qΦðzijjxÞ ¼ softmaxð f enc;ΦðxÞij;1:K Þ ð2Þ
in which f enc;ΦðxÞ is a GNN performed on the fully connected networks (without
self-connection) to predict the latent graph structure. The encoder operation is
presented as follows:

hlj ¼ f embðxjÞ ð3Þ

hlði;jÞ ¼ f le hli; h
l
j

h i� �
ð4Þ

hlþ1
j ¼ f lv ∑

i≠j
hlði;jÞ

� �
ð5Þ

hlþ1
ði;jÞ ¼ f lþ1

e hlþ1
i ; hlþ1

j

h i� �
ð6Þ

where h1j is the embedding of node vi in layer l, hlði;jÞ is an embedding of the edge eði;jÞ.
Equations (4), (5) represent node-to-edge (v ! e) and edge-to-node (e ! v)
operations, respectively. The encoder runs two rounds of node-to-edge (v ! e) and
an edge-to-node (e ! v) message passing. The node-to-edge operation generates the
edge features connecting the node embeddings and the edge-to-node operation
aggregates the message of edge embeddings from all incoming edges. Since the graph
is fully connected, each node obtains a message from the entire graph. Finally, all
messages pass from nodes to edges. In our implementation model, every message
passing operation is performed by a 2-layer perceptron17.

The distribution of z, qΦðzjxÞ, is learned from the encoder. Then the sampling is
performed to generate zij only available in the K edge type. We sampled from a
continuous approximation of the discrete distribution and used reparameterization
to obtain gradients from this approximation, which were calculated as46:

zi;j ¼ softmaxððh2ði;jÞ þ gÞ=τÞ ð7Þ
where g 2 RK is an independent and uniformly distributed vector from the
Gumbel distribution (0, 1), and τ (softmax temperature) represents the smoothness
of sampling. The distribution tends to become one-hot encoded samples when
τ ! 0.

The decoder is expressed as:

pθðxjzÞ ¼
YT

t¼1
pθðxtþ1jxt ; � � � ; x1; zÞ ð8Þ

which reconstructs the dynamic systems pθðxtþ1jxt ; � � � ; x1; zÞ with a GNN given
the latent graph structure z. A recurrent decoder with a GRU unit47 is required to
model pθðxtþ1jxt ; � � � ; x1; zÞ. The decoder operation is presented as follows:

~h
t
ði;jÞ ¼ ∑kzij;k~f

k
e ð½~h

t
i ;
~h
t
j �Þ ð9Þ

MSGt
j ¼ ∑

i≠j

~h
t
ði;jÞ ð10Þ

~h
tþ1
j ¼ GRU MSGt

j ; x
t
j

h i
; ~h

t
j

� �
ð11Þ

μtþ1
j ¼ xtj þ f out

~h
tþ1
j

� �
ð12Þ

pðxtþ1jxt ; zÞ ¼ Nðμtþ1; σ2IÞ ð13Þ
in which zij;k is the k-th element of the vector zij , σ

2 is a fixed variance, xtj is the
correct input, μtj is the predicted mean, and f out denotes an output transformation.
The decoder runs multiple GNNs in parallel to the encoder. In the node-to-edge
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(v → e) message passing, Eq. (9), the input is the recurrent hidden state from the
previous time step. The hidden state of an edge is determined by the hidden state of
its connecting nodes, and it allows the message at each time step to pass through
the hidden state. Thus, the prediction at t þ 1 is based not only on the previous
time step but also on messages from all the previous time steps. In the edge-to-
node (e → v) message passing, shown in Eqs. (10)-(12), the concatenation of the
aggregated messages MSGtþ1

j , the current input xtþ1
j , and the previously hidden

state ~h
t
j , is denoted as the input of node vj into the GRU to generate the hidden

state at the next time step. Then, the value observed previously and the hidden state
at the current time step are used to predict the state’s distribution (position and
velocity) in future time steps.

The ELBO described in Eq. (1) has two terms: first, the reconstruction error
EqΦðzjxÞ

½log pθðxjzÞ�, which assumes the predicted outputs represent means of a

Gaussian distribution with the fixed variance σ and is calculated through:

EqΦðzjxÞ
½log pθðxjzÞ� ¼ �∑j ∑

T

t¼2

jjxtj � μtj jj2
2σ2

þ const ð14Þ

Second, the KL divergence KL½qΦðzjxÞjjpθðzÞ�, is the sum of entropies and a
constant:

KL½qΦðzjxÞjjpθðzÞ� ¼ ∑
i≠j
HðqΦðzijjxÞÞ þ const ð15Þ

where H represents the entropy function. The constant term is due to the uniform
prior, which leads to marginalization of one of the encoder terms in the loss.

The whole training process was carried out as follows: (i) We first performed the
encoder to calculate qΦðzijjxÞ given a training MD trajectory X; (ii) we then sampled
zij from a continuous approximation of the discrete distribution, and (iii) we finally
ran the decoder to reconstruct the interacting dynamics pθðxtþ1jxt ; � � � ; x1; zÞ for
the Pin1, SOD1 and MEK1 systems.

Software implementation. Tools and packages used in this paper include: Python
version 3.7.1, torch version 1.2, matplotlib version 3.1.1, seaborn version 0.9.0,
numpy version 1.19.5, networkx version 2.3, argparse version 1.1, pandas version
0.25.1, R version 3.6.2, CNA version 2.0, VMD 1.9.3, AmberTools16, CPPTRAJ
version 16.16, Cytoscape version 3.8.0, Autodock 4.2, and SWISS-MODEL server
(https://swissmodel.expasy.org/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding authors upon
reasonable request. Three case studies data sets have been deposited in the Zenodo
database (https://doi.org/10.5281/zenodo.5941385). The initial structures of Pin1 system
obtained from PDB 3TDB, 1PIN, and 1NMV. The initial structures of SOD1 system
obtained from PDB 2C9V. The initial structures of MEK1 system obtained from PDB
3SLS. Source data are provided with this paper.

Code availability
The tool described in this study is open source and publicly available at GitHub (https://
github.com/juexinwang/NRI-MD).
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