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Abstract

S100A14 is an EF-hand containing calcium-binding protein of the S100 protein family that exerts its biological effects on
different types of cells. However, exact extracellular roles of S100A14 have not been clarified yet. Here we investigated the
effects of S100A14 on esophageal squamous cell carcinoma (ESCC) cell lines. Results demonstrated that low doses of
extracellular S100A14 stimulate cell proliferation and promote survival in KYSE180 cells through activating ERK1/2 MAPK
and NF-kB signaling pathways. Immunoprecipitation assay showed that S100A14 binds to receptor for advanced glycation
end products (RAGE) in KYSE180 cells. Inhibition of RAGE signaling by different approaches including siRNA for RAGE,
overexpression of a dominant-negative RAGE construct or a RAGE antagonist peptide (AmphP) significantly blocked
S100A14-induced effects, suggesting that S100A14 acts via RAGE ligation. Furthermore, mutation of the N-EF hand of
S100A14 (E39A, E45A) virtually reduced 10 mg/ml S100A14-induced cell proliferation and ERK1/2 activation. However, high
dose (80 mg/ml) of S100A14 causes apoptosis via the mitochondrial pathway with activation of caspase-3, caspase-9, and
poly(ADP-ribose) polymerase. High dose S100A14 induces cell apoptosis is partially in a RAGE-dependent manner. This is
the first study to demonstrate that S100A14 binds to RAGE and stimulates RAGE-dependent signaling cascades, promoting
cell proliferation or triggering cell apoptosis at different doses.
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Introduction

S100 proteins are small calcium-binding proteins of the EF

hand motif which can function as both intra- and extracellular

signaling molecules. They exert a broad range of intracellular

functions through the modulation of their subcellular localization

and interacting with specific target proteins, responsible for cell

growth, differentiation, motility, and cell cycle regulation [1,2].

Some members are also secreted from cells exerting cytokine-like

paracrine or autocrine functions although the precise mechanisms

of secretion are still being elucidated [3–5]. Some S100 proteins

added to the extracellular medium result in the translocation of the

corresponding endogenous proteins [6]. Recently, S100 proteins

became of major interest owing to their close association with

several diseases including inflammation, neurodegenerative disor-

ders and cancer [7,8].

RAGE is a multiligand receptor of the immunoglobulin

superfamily and is constitutively expressed during embryonic

development, but its expression is down-regulated in adult life in

physiological states [9]. RAGE binds to multiple families of

ligands, such as advanced glycation end products (AGEs), S100s,

and amphoterin, and plays a key role in diabetes, inflammation,

and cancer [5,10]. The cytoplasmic region of RAGE appears to be

essential for RAGE signaling. RAGE ligation is known to activate

multiple signaling pathways such as MAPK, JNKs, Cdc42/Rac,

together with activation of transcription factors AP-1, NF-kB, etc.

that regulate important cellular functions [2,11,12]. Several S100

family members are found in the extracellular medium and appear

to have extracellular roles [7,13]. For instance, S100B secreted by

astrocytes activates the PI3K/AKT and NF-kB pathways via the

engagement of RAGE, modulating cell survival [14]. S100A8/A9

has been shown to stimulate cell proliferation via p38MAPK and

ERK1/2 activation in a RAGE dependent manner [15,16]. Of

course, there also are other receptors in addition to RAGE

mediating biologic effects of S100 proteins. S100B causes myoblast

apoptosis or inhibits myogenic differentiation in a RAGE-

independent manner [17,18]. S100A8/9 induces cell death that

involves selective release of Smac/DIABLO and Omi/HtrA2 via a

RAGE-independent pathway [19]. But to our knowledge, no data

are available on the extracellular effect of S100A14.

S100A14 is a member of the S100 family of calcium-binding

protein, whose biological function is largely unknown by now. It is

differentially expressed in a wide variety of cell types and is up-

regulated in certain types of tumors, such as lung, breast, and

uterus, but down-regulated in some other tumors, such as colon,

kidney, and rectal tumors [20]. S100A14 low-expression together

with S100A4 high-expression was correlated with high metastatic

potential in colorectal cancer [21]. S100A14 has been reported to

be able to interact with nucleobindin (Calnuc) in a yeast two-

hybrid system, a Golgi calcium binding protein which plays a key

role in the constitution of calcium storage [22]. The significance of

the translocation of S100A14 from cytosol to plasma membrane in
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breast cancer remains to be established [23]. S100A14 may play

vital roles in bladder tumorigenesis and progression [24]. S100A14

gene was found useful for detection of circulating tumor cells

(CTCs) in peripheral blood of advanced cancer patients [25].

However, the functional role of S100A14 protein has not been

identified yet. Our previous studies showed that S100A14 gene was

regulated by p53 and was associated with esophageal squamous

cell carcinoma in vivo [26]. These evidences indicate the potential

importance of this protein in tumors. We also found that S100A14

could be secreted from stably overexpressing S100A14 of EC9706

cells which did not show endogenous expression and KYSE180

cells which showed endogenous expression (See Figure S1). So we

hypothesized that S100A14 might also exert extracellular roles.

In the present study, we investigated the function of exogenous

S100A14 on ESCC cell lines. We found that low doses of

exogenous S100A14 activate ERK1/2 and NF-kB signaling,

stimulating cell proliferation or promoting cell survival via RAGE

ligation; while high dose of S100A14 triggers apoptosis and

increases the production of ROS also in a RAGE-dependent

manner. Blocking the interaction of S100A14 and RAGE could

inhibit the effects of S100A14 in vitro; therefore, exogenous

S100A14 stimulates cell proliferation or induces apoptosis at

different concentrations via RAGE ligation.

Results

Low Doses of Extracellular S100A14 Stimulate Cell
Proliferation and Survival

To investigate the putative effect of extracellular S100A14 on

cell function, we produced purified S100A14 as a histidine-tagged

fusion protein in Escherichia coli. To ensure that the observed effects

were caused by S100A14, we used Myo117 as a negative control,

which is a protein of similar size, bearing the same His-tag and

produced in an identical manner with S100A14 [27]. Purity and

specificity of S100A14 protein were tested by SDS-PAGE and

Western blot (Figures 1A and B). We screened five ESCC cell lines

for the expression of S100A14 and finally chose KYSE180 cells

which had relatively high level of S100A14 and EC9706 which

had negligible endogenous S100A14 for further investigation

(Figure 1C). Low doses of S100A14 (0.01–20 mg/ml) added to

KYSE180 cells stimulated cell proliferation in a concentration-

and time-dependent manner, with a remarkable increase at 5–

20 mg/ml S100A14, as shown by MTT assay. The maximal effects

were observed with 10 mg/ml S100A14, and evident increase in

cell proliferation was noted within 48 h following 10 mg/ml

S100A14 treatment (Figures 1D and E). The promotion in cell

growth was further confirmed by FACS analysis, with an increase

of S phase proportion of the cells treated with 10 mg/ml S100A14

for 48 h (Figure 1F). Similar effects were obtained from EC9706

cell line (data not shown), indicating that the effects were not

confined to a single cell model. Additionally, immunohistochem-

ical analysis of the expression of S100A14 and proliferation

marker Ki67 was performed on forty-one paraffin-embedded

ESCC specimens. S100A14 positivity significantly correlated with

the expression of Ki67 (Figure 1G). The Spearman correlation

coefficient was 0.440 (P = 0.004). The immunoreactivity and

pathological characteristics of the specimens were shown in Table

S1 and Table S2.

Extracellular S100A14 also increased the survival of KYSE180

cells exposed to the cytotoxic agent Doxorubicin (Dox). The

addition of S100A14 protected cells from injuries induced by Dox

(0.5 mM, 48 h) in a concentration-dependent manner with

significant protection obtained at 10 mg/ml (Figure 1H). Further-

more, the survival benefits of S100A14 were confirmed by FACS

analysis that 10 mg/ml S100A14 decreased the percentage of sub-

G1 phase in KYSE180 cells with the treatment of Dox (Figure 1I).

Impact of Low Doses of S100A14 on MAP Kinase and NF-
kB

We next determined whether the effects of S100A14 on cell

proliferation and survival were related with the common signal

pathways. Consistent with cell growth, exogenous S100A14

induced ERK1/2 activation in a concentration- and time-

dependent manner, with significant effect observed at 1 mg/ml

and maximal effect achieved at 10 mg/ml with an incubation of

30 min (Figure 2A). With the concentration of 10 mg/ml, ERK1/

2 activation was noted significantly within 40 min, and phosphor-

ylation sustained up to 120 min (Figure 2B). To verify the

involvement of MAPK pathway, KYSE180 cells were then treated

with S100A14 (10 mg/ml, 30 min) in the presence of different

doses of U0126, an inhibitor of MEK/ERK. As shown in

Figure 2C, U0126 drastically reduced the activation of ERK1/2,

in contrast, the phosphorylation of SAPK/JNK and p38 remained

unchanged with the treatment of 10 mg/ml S100A14 (Figure 2D).

Moreover, NF-kB activation is an important event mediating

cell growth and survival, thus we analyzed NF-kB activity in

KYSE180 cells transfected with NF-kB reporter plasmid which

then treated with low doses of S100A14 for 8 h. As shown in

Figure 2E, NF-kB activity was significantly activated with 1 mg/ml

S100A14 for up to 275.5%. Contrast to the above results, 1 mg/ml

rather than 10 mg/ml S100A14 evidently stimulated NF-kB

activation.

We also found that constitutive activation of ERK or NF-kB

could regulate cell proliferation as low doses of S100A14 in

KYSE180 cells by BrdU assays (Figure 2F). Taken together, the

study indicated that low doses of S100A14 stimulated cell

proliferation and survival through the activation of p44/42

MAPK and NF-kB signaling pathways.

S100A14 Functions via RAGE Activation
RAGE ligation can activate multiple signaling pathways.

Previous studies revealed that several S100 family members can

function extracellularly through RAGE ligation [3]. So we

presume that RAGE could be the receptor responsible for

S100A14-induced cell effects. To test the hypothesis, we first

examined the expression of RAGE in ESCC cell lines, and found

that RAGE can be detected in four of five ESCC cell lines except

for KYSE450 cells (Figure 3A). Immunofluorescence assay showed

that RAGE was mainly localized on the cell surface of four ESCC

cell lines (data not shown). Pull-down assay was then performed

using KYSE180 lysates with purified S100A14 to investigate

whether there is a direct interaction between S100A14 and

RAGE. Result indicated that S100A14 could bind to RAGE from

KYSE180 cell lysates. Furthermore, the interaction can be

inhibited by preincubation with a RAGE antagonist peptide

(AmphP) [28], which had been reported to block the interaction of

RAGE and ligands (Figure 3B). To further confirm the interaction,

we performed co-immunoprecipitation assays using lysates from

KYSE180 cells. RAGE was identified in the precipitate, indicating

an interaction between S100A14 and RAGE (Figure 3C).

We subsequently constructed KYSE180 cell clones stably

expressing either full-length RAGE or dominant-negative mutant

of RAGE which were designated as KYSE180-RAGE or

KYSE180-RAGEDcyto, respectively (Figure 4A). Meanwhile,

RAGE expression was suppressed in KYSE180 cells by RAGE-

specific siRNA, as shown in Figure 4B.

To explore whether RAGE was involved in cell proliferation

and the signaling pathways driven by S100A14, we utilized several
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methods to inhibit RAGE activation. Overexpression of RAGED-
cyto or addition of AmphP or pretreatment with RAGE-siRNA or

incubation with U0126, all these treatments significantly inhibited

10 mg/ml S100A14-induced KYSE180 cell proliferation

(Figure 4C). Meanwhile, inhibition of RAGE function by

overexpression of RAGEDcyto or pretreatment with RAGE-siRNA

evidently blocked ERK1/2 activation induced by 10 mg/ml

S100A14 (Figure 4D). Likewise, preincubation with AmphP also

inhibited S100A14-induced ERK1/2 activation (Figure 4E).

KYSE180-RAGE or KYSE180-RAGEDcyto transiently transfect-

ed with NF-kB reporter plasmid was subsequently stimulated with

10 mg/ml S100A14 for 8 h. KYSE180-RAGE cells showed a strong

induction of NF-kB dependent transcriptional activity, whereas

KYSE180-RAGEDcyto cells did not show significant changes to

extracellular S100A14. The same results were found in KYSE180

cells pretreatment with RAGE-siRNA or addition of AmphP before

stimulation with S100A14 (Figure 4F). The above experiments were

also performed in KYSE450 cells stably transfected RAGE or

RAGEDcyto plasmid which did not express RAGE endogenously,

and similar results were obtained (data not shown).

Further studies indicated that key amino acid mutations of N-

EF hand (E39A, E45A) significantly attenuated the effects of

S100A14. Cell viability assays indicated that incubation with

mS100A14-N protein (10 mg/ml, 48 h) did not stimulate

KYSE180 cell proliferation compared to those with S100A14

(Figure 4G). As expected, 30 min incubation of mS100A14-N

protein also abrogated ERK1/2 activation (Figure 4H), indicating

that key amino acid of N-EF hand might play an important role on

S100A14 function. These results suggest that the interaction

between RAGE and S100A14 may play an important role in cell

proliferation and survival by activating ERK1/2 and NF-kB

signaling.

Impact of High Dose of S100A14 on Cell Viability
In addition to cell proliferation, S100A14 was able to trigger cell

injuries at relatively high dose. We found that 80 mg/ml S100A14

could remarkably induce cytotoxicity by evaluating the cell

viability using MTT assay (Figure 5A). To investigate the

underlying mechanisms, we detected the effect of S100A14-

induced apoptosis and the activation of apoptotic mediators. Flow

cytometry analysis showed that 80 mg/ml S100A14 significantly

triggered cell apoptosis (Figure 5B). Western blot displayed the

increased activity of apoptotic caspase-3, caspase-9, poly(ADP-

ribose) polymerase, but pro-apoptotic caspase-8 was unchanged

(Figure 5C), indicating that cell death was probably mediated by

the mitochondrial apoptotic pathway. These data were in

agreement with a report of Ghavami et al. demonstrating that

S100A8/9 within the range of 80–100 mg/ml induced apoptosis in

colon cancer cell lines [29]. We further investigated whether the

effect was dependent on RAGE activation. As shown in Figure 5D,

indeed 80 mg/ml S100A14 treatment of KYSE180-RAGEDcyto

or KYSE180-RAGE-siRNA cells significantly attenuated cell

injuries in contrast to KYSE180 cells by MTT assay. Moreover,

the apoptotic cells from KYSE180-RAGE were increased up to

25.4%, whereas those from KYSE180-RAGEDcyto cells were

increased to 14.7% as detected by flow cytometry assay (Figure 5E).

These data suggested that apoptosis induced by S100A14 could be

partially RAGE-dependent and RAGE inhibition afforded a

protective effect from the toxicity of S100A14.

To further substantiate the data, mitochondrial membrane

potential (MMP) was measured. As shown in Figure 5F,

KYSE180-RAGE showed a significant reduction of the MMP

compared with KYSE180-RAGEDcyto cells and the mock control

by the addition of 80 mg/ml S100A14 for 48 h, which points to

mitochondrial dysfunction, an event commonly associated with

ROS production and apoptosis [30]. Vincent et al. found that

RAGE-induced PI3K activity was associated with the formation of

ROS, caspase-3 activation and nuclear DNA degradation [31].

Therefore, we further investigated whether 80 mg/ml S100A14-

induced apoptosis was related with the production of ROS. As

shown in Figure 5G, high dose of S100A14 could induce the

formation of ROS in KYSE180 cells and the antioxidant N-acetyl-

L-cysteine (Nac) was capable of conferring protection against

80 mg/ml S100A14-induced cell injuries in a dose-dependent

manner (Figure 5H), which confirmed that ROS was involved in

the injury process induced by S100A14. While 80 mg/ml S100A14

could not result in increased production of ROS in KYSE180-

RAGEDcyto cells indicating that S100A14-induced ROS forma-

tion was also RAGE dependent (data not shown).

Discussion

More attention has been paid to the extracellular functions of

S100 proteins recent years. So far, the S100 family members

S100A4, S100A6, S100A8/9, S100A12, S100A13, S100B and

S100P have been shown to interact with RAGE, resulting in

activation of signal pathways and involving in numerous

pathologic situations [3,13]. S100B and S100A12 were the first

members of the family found to interact with RAGE and induce

cellular effects [32]. Extracellular S100A4 stimulates matrix

metalloproteinase 13 release from chondrocytes in a RAGE-

mediated manner [33]. S100A11 has previously been shown to

activate RAGE signaling via a p38 MAPK pathway, promoting

chondrocytes hypertrophy [34]. Exogenous S100P stimulates cell

proliferation, migration, invasion, and activates MAP kinase and

NF-kB pathways via RAGE ligation in pancreatic and colon

cancer cell lines [35–37]. Inhibition of the interaction and

signaling of RAGE and ligands could suppress tumor growth,

motility and metastasis in nude mice [11].

We have found that S100A14 was secreted into the extracellular

medium from S100A14 transfected EC9706 stable clones and

KYSE180 cells, and extracellular S100A14 might regulate its

endogenous expression, creating a positive feedback loop.

However, it is unclear whether S100A14 exerts extracellular

effects. In the present study, using human ESCC cell lines, we

found for the first time that low doses of S100A14 promote cell

Figure 1. Low doses of S100A14 stimulate cell proliferation and promote cell survival. (A) Purity of S100A14 recombinant protein was
analyzed by SDS-PAGE. (B) Specificity of S100A14 was tested by Western blot using S100A14 antibody. KYSE180 cell lysates were used as a positive
control, and Myo117 protein was used as a negative control. (C) Endogenous S100A14 expression in ESCC cell lines was tested by Western blot. (D)
S100A14-stimulated cell proliferation was dose-dependent. KYSE180 cells were incubated with indicated doses of S100A14 for 48 h. (E) S100A14-
stimulated cell proliferation was time-dependent. At the dose of 10 mg/ml, evident effects were achieved at 48 h. (F) 10 mg/ml S100A14 increased S-
phase percentage of KYSE180 cells at 48 h. (G) Immunohistochemical staining of S100A14 and Ki67 in ESCC specimens (640). (H) Exogenous
S100A14 increased cell survival exposed to Dox (0.5 mM, 48 h) in a dose-dependent manner. (I) 10 mg/ml S100A14 decreased the percentage of sub-
G1 phase of KYSE180 cells with the treatment of Dox (0.5 mM, 48 h). Myo117 was used as a control. Cell viability was estimated using MTT assay and
S-phase and sub-G1 phase were analyzed by flow cytometry assay. Results are expressed as difference to corresponding controls and represent the
mean 6 SD of three independent experiments (*, P,0.05).
doi:10.1371/journal.pone.0019375.g001
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proliferation in a concentration- and time-dependent manner.

S100A14 also protected KYSE180 cells from injuries induced by

chemotherapeutic agent Dox. At the intracellular level, at least two

signal pathways ERK and NF-kB were involved. Low doses of

S100A14 stimulate ERK1/2 phosphorylation in a concentration-

and time-dependent manner. In contrast, the phosphorylation of

JNK or p38 was unchanged which has been classically linked to

cell stress and induction of apoptosis [38]. NF-kB is an important

transcription factor linked to many signal pathways, activating the

expression of various molecules that mediate many biological

events including cell survival. Luciferase assay indicated that NF-

kB signaling was also involved in the process.

More importantly, we have confirmed the direct interaction of

S100A14 and RAGE by pull-down and co-immunoprecipitation

assays, and further shown that S100A14 stimulated KYSE180 cell

proliferation via interaction with RAGE, since the addition of

siRNA for RAGE, AmphP, or RAGEDcyto expression were all

able to clearly block the proliferation effect in a concerted manner.

The effects were similar with that of S100P on NIH3T3 cells,

which may due to considerable sequence homology within S100

protein family members [35]. Previously it has been shown that

key amino acid mutation of EF hand of S100A4 is responsible for

metastasis-inducing properties and self-association [39,40]. To

explore the role of amino acid of EF hand of S100A14, we

Figure 2. Low doses of S100A14 treatment activate ERK1/2 and NF-kB but not JNK or p38. (A) KYSE180 cells were incubated with
different doses of S100A14 protein for 30 min, Myo117 was used as a control. (B) 10 mg/ml S100A14 added to KYSE180 cells for the indicated time
periods. (C) Cells were pretreated with the MEK/ERK inhibitor U0126 for 30 min, followed by 10 mg/ml S100A14 exposure for another 30 min. T-ERK
was used as a loading control. (D) No increased activity of the MAP kinase JNK or p38 was observed. Actin was used as a loading control. (E) Influence
of S100A14 on NF-kB activity in KYSE180 cells was examined by luciferase reporter assay. Cells were treated with the indicated doses of S100A14 for
8 h and subjected to analysis of NF-kB activity (*, P,0.05). (F) KYSE180 cells transfected with ERK2 or NF-kB p65 plasmid were cultured for 24 h in the
presence of 10 mM BrdU. Empty vector was transfected as a negative control. The percentage of BrdU-positive cells over the total number of cells was
determined (*, P,0.05). Bars represent mean 6 SD of three independent experiments.
doi:10.1371/journal.pone.0019375.g002
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produced mutant protein. As shown in Fig. 4G and H, mutations

of the N-EF hand of S100A14 (E39A, E45A) virtually abolished its

effects on cell proliferation and ERK1/2 activation, suggesting

that N-EF hand motif of S100A14 was presumably responsible for

RAGE binding and function.

Another aspect of the cellular function of S100 proteins is

related with cell death. For example, S100B was found to exert a

cytotoxic effect via stimulation of ROS production in myoblast

[17]. In human SH-SY5Y neuroblastoma cells, S100A6 bound to

RAGE triggers the JNK and caspase pathways, resulting in

apoptosis [14]. Sustained activation of ERK1/2 resulting in

excessive RAGE-dependent production of ROS has been

proposed as the mechanism of high concentration of S100B-

induced neuronal death [41]. Interestingly, in the current study,

we have demonstrated that treatment of KYSE180 cells with high

dose of S100A14 also leads to cell apoptosis, displaying a PARP

and caspase-9 cleavage, as well as a reduction of the mitochondrial

membrane potential. Nac, an inhibitor of ROS, inhibited the

injuries induced by high dose of S100A14, indicating that

S100A14-induced apoptosis likely depended on intracellular

accumulation of ROS.

Furthermore, the cytotoxic activity of high dose S100A14 is also

RAGE-dependent since KYSE180 cells transfected with RAGE

siRNA or expressing RAGEDcyto both remarkably inhibited its

toxic effects, and KYSE180-RAGEDcyto obviously protected cells

from the decrease of mitochondrial membrane potential. RAGE

knockdown, at least in part, reversed the injury of high dose of

S100A14, which was different from S100A8/9 whose bimodal

function is mediated by two distinct receptors and signaling

pathways [16,19]. Moreover, we also observed that S100A14 can

not promote RAGE-negative KYSE450 cell proliferation; while it

can again stimulate cell proliferation and activate ERK1/2 on

KYSE450 cells by overexpressing full-length RAGE (data not

shown).

In summary, the work presented in this paper revealed

important dual effects of S100A14 on KYSE180 cells. We have

for the first time demonstrated that S100A14 can interact with

RAGE, activating ERK1/2 and NF-kB signaling, promoting cell

proliferation and survival at relatively low doses; whereas high

dose of S100A14 induced apoptosis in a RAGE-mediated and

oxidant-dependent manner. Our data are in line with the function

of S100B with trophic or toxic effects on neurons or neuroblas-

toma cells depending on its concentration via RAGE ligation

[41,42]. An increasing body of evidence suggests that RAGE can

function in other types of tumor cells. However, little is known

concerning the function of RAGE in ESCC cell lines. The current

data suggest that RAGE activation may be crucial for the effects of

exogenous S100A14. However, it remains possible that there are

other mechanisms or receptors participating in the process since

inhibition of RAGE function can only block the effects partially

and further study will be necessary to fully understand the complex

biological behavior of S100A14 on ESCC cells in vitro and in vivo.

Moreover, investigation of S100A14 signaling, regulation of

S100A14 expression and secretion as well as interacting proteins

may help unveil the complicated biological process. Given the

prominent role of S100A14 on cell proliferation and apoptosis,

therapeutic intervention targeting the S100A14 and RAGE

signaling pathway may provide a novel approach for cancer

therapy.

Materials and Methods

Expression and Purification of S100A14 Protein
Expression and purification of the human recombinant

S100A14 protein in E. coli was performed as described [35]. After

dialysis against PBS (pH 7.4) containing 0.1% Triton X-100

overnight at 4uC using dialysis membrane (Spectrum), the protein

was concentrated using PEG 20000. Control plasmid of Myo117

with the similar size of S100A14 was a gift from Dr. Mariam

Grigorian (Institute of Cancer Biology, Copenhagen, Denmark) to

monitor for nonspecific effects which was expressed and purified in

an identical manner [27].

Site-directed Mutagenesis of S100A14
Point mutations were introduced into the S100A14 cDNA to

convert calcium-coordinating amino acids in the loop of the N-EF

hand E39, E45 to A using site-directed mutagenesis by PCR

(Beijing SBS), which was designated as mS100A14-N. The

plasmid pET-28a-S100A14 was used as template. The nucleotide

sequences of the mutant cDNA were checked by DNA sequencing

(Applied Biosystems).

Figure 3. The interaction of S100A14 with RAGE. (A) Western blot
showed the endogenous RAGE expression in ESCC cell lines. (B)
KYSE180 cell lysates were incubated with exogenous S100A14 and His-
resin. RAGE was identified in the immunoprecipitates by Western blot
with an anti-RAGE antibody. KYSE180 cell lysates were used as a control.
Myo117 protein was added as a negative control. Preincubation with
AmphP (5 mM) for 1 h interfered with the interaction of S100A14 and
RAGE. (C) KYSE180 cell lysates were immunoprecipitated with anti-
S100A14 polyclonal antibodies and RAGE was identified in the
immunoprecipitates by Western blotting.
doi:10.1371/journal.pone.0019375.g003
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Cell Culture, Treatment and RNA Interference
Human ESCC cell lines KYSE180 and KYSE450 were gifts

from Dr. Y. Shimada of Kyoto University (Kyoto, Japan) [43], and

EC9706 was established in our own laboratory [44]. Cells were

cultured in RPMI 1640 medium supplemented with penicillin/

streptomycin (100 units/ml), and 10% fetal bovine serum at 37uC
in 5% CO2 humidified atmosphere. After plating, cells were

cultivated for 24 h and then serum-starved for an additional 24 h

before treatment with indicated doses of S100A14 in serum-free

medium. The target siRNA for RAGE (sc-36374) and a negative-

control siRNA (sc-37007) with an irrelevant sequence were

purchased from Santa Cruz Biotechnology (Santa Cruz). Cells

were grown to 60% confluence and then transfected with the

siRNA duplex (50 nM) using HiperFect (Qiagene) according to

the manufacturer’s instructions. The transfected cells (72 h post-

transfection) were then treated with S100A14 for indicated

periods.

Establishment of Stable Cell Lines
Cells were seeded at 35-mm-diameter plate and transfected

using Lipofectamine 2000 (Invitrogen) with pcDNA3.0/RAGE

and pcDNA3.0/RAGEDcyto plasmids [12]. Stable cell lines were

established following selection with 400 mg/ml G418 (Life

Technologies).

Cell Viability Assays
Different concentrations of S100A14 were added to the cells for

indicated time intervals, and cell proliferation was determined by

MTT assay as instructed by the manufacturer (Roche Applied

Science). Percentage of viability was determined by comparing the

number of viable cells in treated culture to that in control culture

treated in parallel with Myo117 protein. For survival test, cells

were treated with 0.5 mM Dox as well as S100A14 protein for

48 h, cell viability was then estimated by MTT assay.

Incorporation of 5-bromo-29-deoxyuridine (BrdU) was per-

formed as another cell proliferation assay according to the

manufacturer’s protocol (Roche Applied Science).

Immunoblotting
Protein extraction and Western blot were performed as

described [45]. Antibodies for MAPKs, PARP, caspase-3,

caspase-8 and caspase-9 were from Santa Cruz. Antibody for

RAGE was from R&D Systems, Inc. b-actin antibody (Sigma,

A5316) was used to test for equal loading. Antibody against

S100A14 was a generous gift from Dr. Iver Petersen (University

Hospital Charite’, Berlin, Germany). ESCC cells were treated with

different doses of S100A14 for different intervals.

For S100A14-RAGE pull-down experiments, purified S100A14

protein (10 mg) was incubated with His-resin beads at 4uC for 1 h

and then incubated with KYSE180 cell lysates overnight at 4uC.

In some experiments, cells were pretreated with AmphP for 1 h

before incubated with KYSE180 lysates. Bound proteins were

eluted with 26SDS sample buffer and subjected to SDS-PAGE,

followed by immunoblotting using a RAGE polyclonal antibody.

For coimmunoprecipitation experiments, KYSE180 cell lysates

were immunoprecipitated with anti-S100A14 antibody at 4uC
overnight and RAGE was identified in the immunoprecipitates by

Western blotting.

Immunohistochemical Staining
Paraffin-embedded forty-one ESCC samples were preserved in

our lab [45]. As for antigen retrieval, we used citrate buffer

(pH 6.0) boiling for 15 minutes at microwave. Sections were

incubated with primary antibody (mouse anti human Ki67 from

Santa Cruz and S100A14 from Dr. Iver Petersen) at a 1:100

dilution overnight at 4uC. DAB was used to visualize the reaction,

followed by counterstaining with Hematoxylin.

Flow Cytometry Assays
Cells were seeded onto 35-mm plastic dishes for 24 h, and

cultivated for 48 h in the presence of different doses of protein.

Standard PI staining was used for cell cycle analysis and the

content of sub-G1 was regarded as apoptotic cells. Annexin V-PI

staining was used for the apoptosis assay [46]. Annexin V was

incubated for 30 min and PI for 5 min according to the

manufacturer’s protocol (Beijing Biosea) for the analysis of

apoptotic cells.

Luciferase Reporter Assays
Cells (approx.1.06104) were seeded in a 96-well plate and

transfected with the NF-kB reporter plasmid using Lipofectamine

2000 (Invitrogen). 24 h after transfection, indicated doses of

S100A14 were added to the medium. Cells were harvested 8 h

later and assayed for luciferase activity using the Dual Luciferase

Reporter Assay System (Promega) according to the manufacturer’s

manual. The luciferase activities were normalized to the Renilla

luciferase activity of the internal control. NF-kB activity is

expressed as relative luciferase activity as compared to control

cells.

Determination of Mitochondrial Membrane Potential
To detect changes in the mitochondrial membrane potential,

KYSE180 cells were incubated for 10 min at 37uC with 10 mM

Rh123 RPMI 1640 working solution. Cells were washed three

times in PBS and then resuspended in RPMI 1640. A total of

10,000 cells were measured per sample by FACS flow cytometer

(Becton Dickinson).

Intracellular ROS Formation Assays
Intracellular ROS production was evaluated by using indirect

ROS inhibitory kit (Nanjing Jiancheng Bioengineering Institute,

China) according to the manufacturer’s protocol. The clear ability

of superoxide is high in untreated control cells considering as

Figure 4. The effects of S100A14 were dependent on RAGE ligation. (A) Overexpression of RAGE and RAGEDcyto in KYSE180 cells were
confirmed by Western blot. (B) siRNA-mediated RAGE silencing in KYSE180 cells for indicated intervals was detected by Western blot. (C) KYSE180 or
KYSE180-RAGEDcyto cells were treated with 10 mg/ml S100A14 (+) or Myo117 (2) and with (+) or without (2) 5 mM AmphP or 50 nM RAGE-siRNA or
5 mM U0126 for 48 h, and the effects on cell proliferation were analyzed by MTT assays (*, P,0.05 versus control; #, P,0.05 versus S100A14). Western
blot showed the effect of RAGE silence at 48 h. (D) KYSE180 or KYSE180-RAGEDcyto or KYSE180-RAGE-siRNA cells were treated with 10 mg/ml
S100A14 (+) or Myo117 (2) for 30 min, and the effects on ERK1/2 activation were estimated by Western blot. T-ERK was served as a loading control.
(E) S100A14-induced ERK1/2 activation was inhibited by AmphP. KYSE180 cells were incubated with 10 mg/ml S100A14 (+) or different doses of
AmphP for 30 min. (F) KYSE180-RAGE or KYSE180-RAGEDcyto cells were treated with 10 mg/ml S100A14 (+) or Myo117 (2) or RAGE-siRNA or AmphP
for 8 h, then NF-kB activity was examined by luciferase reporter assay (*, P,0.05). (G) mS100A14-N protein (mutation of N-EF hand amino acid, E39A,
E45A) can not stimulate cell proliferation (*, P,0.05 versus S100A14). (H) mS100A14-N can not activate ERK1/2 in KYSE180 cells. Bars represent mean
6 SD of three independent experiments.
doi:10.1371/journal.pone.0019375.g004
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100%, while increased intracellular ROS caused decreased clear

capacity.

Statistical Analysis
Data were presented as mean 6 SD and one-way analysis of

variance (ANOVA) analysis was performed using SPSS 13.0

software. The correlation between S100A14 and Ki67 was

assessed using Spearman correlation analysis. P,0.05 was

considered as significant.

Supporting Information

Figure S1 Western blot analysis for secretion of
S100A14 from EC9706 or KYSE180 cells. (A) Western blot

was performed to detect S100A14 in the culture media from

EC9706 cells stably transfected with HA-tag S100A14 full-length

plasmid. Stable EC9706 transfectants with empty vector were used

as a negative control (Mock). (B) S100A14 was secreted

extracellularly from KYSE180 cells whereas no S100A14 secretion

could be detected in EC9706 cells.

(DOC)

Table S1 Immunoreactivity for S100A14 and Ki67 in 41
ESCC specimens. For each case, an immunostaining score was

given based on the percentage of cells showing definitive staining

regardless of the staining intensity: 0 = no staining, 1 = less than

10%, 2 = 10–25%, 3 = 26–50%, 4 = .50% of cells stained.

(DOC)

Table S2 The pathological characteristics of the spec-
imens.

(DOC)
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