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Abstract: Ischemic heart disease still represents a large burden on individuals and health care
resources worldwide. By conventions, it is equated with atherosclerotic plaque due to flow-limiting
obstruction in large–medium sized coronary arteries. However, clinical, angiographic and autoptic
findings suggest a multifaceted pathophysiology for ischemic heart disease and just some cases
are caused by severe or complicated atherosclerotic plaques. Currently there is no well-defined
assessment of ischemic heart disease pathophysiology that satisfies all the observations and sometimes
the underlying mechanism to everyday ischemic heart disease ward cases is misleading. In order
to better examine this complicated disease and to provide future perspectives, it is important to
know and analyze the pathophysiological mechanisms that underline it, because ischemic heart
disease is not always determined by atherosclerotic plaque complication. Therefore, in order to have
a more complete comprehension of ischemic heart disease we propose an overview of the available
pathophysiological paradigms, from plaque activation to microvascular dysfunction.

Keywords: ischemic heart disease; microcirculation; atherosclerosis; coronary blood flow; myocardial
infarction; ion channels

1. Introduction

Although over the last years clinical practice strategies have evolved optimizing prevention and
treatment for ischemic heart disease (IHD), the consequences of this condition represent a significant burden
on human health, in terms of mortality and morbidity [1]. Currently, basic, translational, and clinical
data have provided a massive amount of information about the etiology of myocardial ischemia.
However, both clinical, angiographic and autoptic findings suggest a complex pathophysiology of
IHD [2–8], which goes beyond the conventional and simplistic role of atherosclerosis. For this reason,
it is necessary to overcome the concept that IHD is always an atherosclerotic disease synonym. It is
important to analyze the proposed paradigms of IHD in order to better examine this complicated
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disease and to provide future perspectives. In the literature, there is a copious number of reviews
on this topic [9–11]. If the readers were wondering why we are going to propose another review
and another paradigm, our response would be that currently there is no well-defined evaluation of
IHD pathophysiology satisfying all the pathophysiological observations. Simply, the heart may be
equated to an airplane where more than one redundant regulatory mechanism has to fail jointly to
create an event. IHD pathophysiology is more complex and multifaceted than a single, simplistic,
cause–effect event.

2. Coronary Macrocirculation Involvement in the Ischemic Heart Disease Pathophysiology

In the coronary tree, the proximal section is represented by epicardial coronary arteries, with
diameters ranging from 250 µm to 2–5 mm [12]. These vessels have a capacitance function and offer
merely a tiny contribution to coronary vascular resistance under normal conditions. Epicardial arteries
are responsive to flow dependent dilatation and are subjected to shear stress that vary every heartbeat,
during the phasicity of coronary blood flow. The vasodilatory effects of shear stress are mediated by
endothelial-dependent vasodilatation.

2.1. Ischemic Heart Disease and the Hydraulic Paradigm: Role of Coronary Artery Disease and Vasospasm

According to the conventional IHD pathophysiological point of view, an obstructive plaque
that inhibits blood flow, through the coronary artery, triggers myocardial ischemia. Coronary artery
disease (CAD) is defined by the presence of an obstructive atherosclerotic plaque, which causes
a blood flow reduction to the myocardium (Figure 1). This “culprit” stenosis represents the final
stage of the complex atherosclerotic process. The latter is mostly associated with contemporary
lifestyles. However, atherosclerosis was common also in preindustrial populations [13]. Only in the
recent past, it was coined the concept of “critical” coronary stenosis, from a “hydraulic” point of
view. At rest, coronary blood flow is maintained up to the point of development of a critical stenosis
by the process of autoregulation, defined as the capacity to preserve blood flow during changes
in perfusion pressure, with constant metabolic needs. Although the exact mechanisms underlying
autoregulation have not been unequivocally proven, myogenic and metabolic mechanisms play a key
role. When an atherosclerotic plaque obstructs over 70% of the luminal cross-sectional area with 50%
coronary diameter reduction, it increases the proximal resistance significantly and decreases distal
coronary perfusion pressure. In this situation, autoregulation is able to maintain basal coronary blood
flow, but the dilator reserve is compromised. This may lead to a non-symptomatic condition at rest,
but insufficient flow at high metabolic demands, for example, during physical exercise [14].

“Hydraulic” modification of coronary arteries has been observed with aging [15,16]. Aging
represents a physiological mechanism. It is an independent cardiovascular risk factor, which may
have a great impact on IHD pathogenesis and pathophysiology, because it could act with diabetes,
arterial hypertension, dyslipidemia and tobacco smoke. Aging determines several changes in both
coronary epicardial arteries and microvasculature. Its pathogenetic role is strongly influenced by
genetic predisposition and environmental features. It is responsible for endothelial layer integrity loss,
arterial stiffness, loss of vessel’s elasticity and reduced vascular adaptability to physical forces related
to coronary blood flow [15,16]. These aspects facilitate CAD progression and complications. From the
histopathological point of view, aging is associated with vascular fibrosis, increase in collagen deposition
and elastin reduction, intimal thickening, subendothelial cholesterol and phospholipid storage.
Acting together with cardiovascular risk factors, aging determines the progression of atherosclerotic
lesions and arterial stiffness resulting in impaired myocardial perfusion. Moreover, aging promotes an
increased expression of cyclooxygenase (COX) 1 and 2, thromboxane A, von Willebrand factor and
factor VIII promoting platelet aggregation and a hypercoagulative state. Also, inflammation response
is enhanced with aging and participates in “hydraulic” modification of coronary arteries, facilitating
arterial stiffness and atherosclerotic plaque growth. In this case, macrophages are the main leukocytes
sub-type involved in the vascular inflammation damage induced by aging [15,16] (Figure 1).
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energy state and coronary blood flow. This is due to several conditions. In particular, atherosclerosis, 
coronary microvascular dysfunction, inflammation and vasospasm contribute to the multifaceted and 
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arteries; H2O2: hydrogen peroxide; KATP: ATP-sensitive potassium channel; Kv: voltage-gated 

Figure 1. Schematic representation of pathophysiological mechanisms involved in ischemic heart
disease. Ischemic heart disease is determined by an imbalance of the cross talk between myocardial
energy state and coronary blood flow. This is due to several conditions. In particular, atherosclerosis,
coronary microvascular dysfunction, inflammation and vasospasm contribute to the multifaceted
and complex pathophysiology of ischemic heart disease. CAD: coronary artery disease; AMI: acute
myocardial infarction; PCI: percutaneous coronary intervention; TNFα: tumor necrosis factor alpha;
CRP: C-reactive protein; IL-6R: interleukin-6 receptor; SARS-CoV-2: severe acute respiratory syndrome
coronavirus 2; RAAS: renin–angiotensin–aldosterone system; MINOCA: myocardial infarction
with non-obstructive coronary arteries; INOCA: ischemia with non-obstructive coronary arteries;
H2O2: hydrogen peroxide; KATP: ATP-sensitive potassium channel; Kv: voltage-gated potassium
channel; Nav: voltage-gated sodium channel; LOX-1: oxidized low-density lipoprotein receptor 1;
Ox-LDL: oxidized low-density lipoprotein; ROS: reactive oxygen species; NO: nitric oxide; ↑: increase;
↓: decrease.

Several years ago, it was proposed that myocardial ischemia might be caused by coronary
arteries spasms: vasospasm of one of the main coronary arteries are able to cause complete occlusion.
In 1959, Prinzmetal described a syndrome of angina with electrocardiographic ST-segment elevation,
in absence of coronary obstruction [17]. “Prinzmetal” angina is caused by transient vasospasm
with an acute reduction of coronary blood supply, rather than by a myocardial metabolic demand
increase [18,19]. The significance of coronary spasm has been demonstrated in other clinical scenarios
with an involvement of the coronary microcirculation. Moreover, it is now recognized that spasm can be
initiated by several factors, i.e., vasomotor tone at rest, segmental epicardial coronary hyperactivity, and
an organic stenosis (Figure 1). Coronary spasm frequently appears also at sites of hemodynamically
significant atherosclerotic stenosis, both in acute and chronic settings. Spasm of atherosclerotic
lesions may provoke myocardial ischemia, with coronary vasomotor response related to the plaque
burden [20]. Moreover, in patients with focal vasospasm, angiography demonstrates non significant
atherosclerosis [21], proposing that spasm may occur both during early and advanced stages of
disease [22]. A downstream vasospastic effector is Rho-associated protein kinase (ROCK), a small
ubiquitously expressed G protein involved in several cellular functions, such as circulating leukocytes
adhesion, smooth muscle contraction, and actin cytoskeleton organization [23,24] (Figure 1). In addition,
ROCK increases the expression of inflammation related molecules, thrombosis and fibrosis [25].
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Moreover, ROCK is involved in the pathophysiology of angina pectoris, coronary vasospasm,
hypertension, and pulmonary hypertension. For these reasons, ROCK activity can be a useful novel
biomarker for the assessment of disease severity and therapeutic responses in cardiovascular medicine.
Beyond Fasudil, other ROCK inhibitors are currently under development for many indications [23,24].
Fasudil, through molecular pathway PI3K/Akt/eNOS stimulation, may increase myocardial nitric oxide
(NO) concentration, restoring the related ischemic post conditioning cardioprotection, impaired by
hypercholesterolemia [26,27] (Figure 1).

2.2. The Biological Paradigm: The Bidirectional Link between Inflammation and Myocardial Ischemia

In the last decades, some authors suggested that the course of atherosclerosis is supported by
inflammation, from its beginning to thrombotic complications. In fact, it has been hypothesized
that inflammation stimulates atherosclerosis initiation and evolution. It also contributes to the acute
thrombotic complications of atherosclerotic plaque [28–33]. However, inflammation represents a
response to myocardial ischemia, which involves myocardium initially becoming systemic later.

2.2.1. Inflammation as Cause of Ischemic Heart Disease

In physiological conditions, leukocytes are not activated by endothelium. However, inflammation
changes the interaction between the endothelium and leukocytes severely, leading to endothelial
expression of adhesion molecules, that bind to leukocytes, persevering and enhancing a local
inflammatory response. Moreover, local inflammation produces some proteolytic enzymes making the
atherosclerotic cap prone to rupture.

Adaptive immune response plays an important role in atherosclerotic lesion development and
its clinical manifestations [34]. Moreover, they seem to be involved in the pathogenesis of traditional
cardiovascular risk factors, as arterial hypertension, diabetes mellitus and metabolic syndrome [35,36],
and seem to be deregulated on a genetic basis (i.e., single nucleotide polymorphisms (SNPs) for
interleukin (IL)-6 receptor) [37]. Some clinical studies hypothesized the correlation of inflammation
circulating markers, as C-reactive protein (CRP) and homocysteine [38,39], with the susceptibility to
develop IHD and with an associated worse prognosis.

IHD prognosis may be improved by antibiotic treatment [40,41] using the rationale that reducing
the amount of bacterial endotoxin, secondary to an infection, would minimize inflammation. Moreover,
other emerging non-traditional risk factors, such as elevated plasma and tissue levels of oxidized
low-density lipoprotein (oxLDL), seem to be equally important [42,43]. OxLDL are considered to play a
fundamental role in the entire process of atherogenesis, from plaque formation to plaque destabilization.
OxLDL determine endothelial dysfunction, stimulate generation of reactive oxygen species (ROS),
inhibit NO synthesis, and enhance monocyte adhesion to activated endothelial cells [44,45]. In addition,
oxLDL can induce vascular smooth muscle cells (VSMCs) migration and proliferation, and is avidly
ingested by macrophages, resulting in foam cell formation. OxLDL may also induce apoptosis and
necrosis of vascular endothelial cells, VSMCs and macrophages [17,19,26,28]. In this regard, oxLDL
increased levels relate to plaque instability with a significant positive correlation with myocardial
ischemia severity in human coronary atherosclerotic lesions. Moreover, the more severe lesions contain
a significantly higher percentage of oxLDL–positive macrophages [46]. These events are modulated by
the overexpression of the lectin-like oxidized LDL (LOX-1), a scavenger receptor that selectively uptakes
oxLDL into endothelial cells. LOX-1 is highly modulated by stimuli such as cytokines, mechanical
forces, angiotensin II, oxidative stress and directly by the occurrence of oxLDL [47–49]. At the final
stages of atherogenesis, oxLDL contributes to the development of endothelial cells apoptotic death,
possibly via overexpression of LOX-1. The latter seems to be mediated by the overproduction of
ROS (Figure 1). In particular, the modulation of LOX-1 by oxLDL leads to the superoxide anions
overproduction. In presence of NO, they promote the peroxy-nitrite (ONOO−) generation, a highly
reactive endothelial cells toxic oxidant that leads to cell apoptosis [47]. In atherogenesis and IHD,
the pathophysiological role of cholesterol and its relationship with inflammation has been widely
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described and it may counteract with several approaches. For example, the use of statins and
ezetimibe is associated with reduction of LDL blood values and cardiovascular diseases related to
hypercholesterolemia. Moreover, statins reduce also the inflammation related to atherosclerosis.
Novel targets to reduce hypercholesterolemia have recently been described [50,51]. The adenosine
triphosphate (ATP) citrate lyase is upstream of hydroxymethylglutaryl-CoA reductase (HMG-CoA
reductase), the enzyme inhibited by statins. It is involved in cholesterol biosynthesis and inhibited by
bempedoic acid. Bempedoic acid has demonstrated to reduce LDL cholesterol when associated with
statins [50]. Proprotein convertase subtilisin/kexin type 9 (PCSK-9) is responsible for LDL receptor
degradation and inhibits its migration to cells’ membranes. For this reason, PCSK-9 inhibition reduces
circulating LDL cholesterol and its related major cardiovascular events [51].

Diabetes mellitus promotes the quick progression and complications of atherosclerotic disease [52].
It enhances the vascular damage induced by other cardiovascular risk factors, such as dyslipidemia.
Hyperglycemia enhances ROS production that promote ox-LDL formation. Diabetes mellitus is also
associated with more frequent plaques rupture and asymptomatic myocardial ischemia [52]. Plaque
inflammation and their necrotic area are more widespread in patients affected by both type 1 and 2
diabetes mellitus. Moreover, inflammatory infiltrates are mainly constituted by T-cells and macrophages.
In particular, hyperglycemia and hemoglobin A1C (HbA1c) levels are associated with inflammation
entity and atherosclerotic plaques core size and calcification. In diabetes mellitus, coronary calcification
is driven by ROS, which stimulate several mechanisms, such as vascular inflammation induced by
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), protein kinase C (PKC) pathway
and formation of advanced end glycation products (AGEs) (Figure 1). These mechanisms promote the
expression of an osteoblast-like phenotype for VSMCs, which synthetize several proteins normally
involved in osteochondrogenesis [52]. Moreover, chronic kidney disease often affects patients with
diabetes mellitus and cardiovascular disease. It is characterized by hyperphosphatemia that promotes
the osteogenic related gene expression in VSMCs and facilitates vascular calcium deposition. For these
reasons hyperphosphatemia closely relates with plaque calcification extension [52].

Inflammation has been proposed as a cause of plaque vulnerability and potential rupture,
responsible for acute atherothrombotic vascular occlusion and tissue infarction. In fact, in patients
presenting acute coronary syndrome (ACS), angiographic studies have identified culprit lesions that
do not cause marked stenosis. It is now evident that the plaque activation rather than stenosis,
precipitates ischemia and infarction. Inflammation plays a key role in CAD and other atherosclerotic
manifestations [29,53–55]. Immune cells dominate early atherosclerotic lesions. Moreover, their effector
molecules accelerate lesions progression, and inflammation activation can elicit ACS. So, what causes a
silent atherosclerotic lesion to rupture finally? Activated macrophages, T cells, and mast cells at sites
of plaque rupture produce several types of molecules—inflammatory cytokines, proteases, coagulation
factors, radicals, and vasoactive molecules—that can destabilize lesions [56–59]. They inhibit the
formation of stable fibrous caps, attack collagen in the cap, and initiate thrombus formation. All these
reactions can conceivably induce the activation and rupture of plaque, thrombosis, and ischemia.
The balance between inflammatory and anti-inflammatory activity controls the atherosclerosis
progression. Metabolic factors may affect this process in several ways. Obviously, they contribute to
artery lipid deposition, initiating new rounds of immune-cell recruitment. Furthermore, the adipose
tissue of patients with metabolic syndrome and obesity produces inflammatory cytokines, particularly
tumor necrosis factor (TNF) and interleukin-6 (IL-6) [33].

2.2.2. Inflammation as Consequence of Ischemic Heart Disease

Acute myocardial infarction (AMI) produces a significant local inflammatory response, which starts
in the myocardium and propagates systemically through the blood stream. Lots of inflammatory
cytokines, such as tumor necrosis factor alpha (TNFα) and various chemokines that are weakly
represented in healthy hearts, reach high levels during myocardial infarction [60–62]. Elevation of acute
phase reactants such as CRP and increased peripheral white blood cell count, especially neutrophils,
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are common during ACS [63,64]. Several studies have reported correlations between increased
neutrophil count in peripheral blood and short-term post ST-elevation myocardial infarction (STEMI)
adverse outcomes, including mortality [65–67]. The panel of inflammation related molecules produced
during IHD is growing: high levels of soluble interleukin-6 receptor (sIL-6R) can predict future
cardiovascular events and mortality in STEMI patients [68]. In the biological atherothrombosis
associated with IL-6 pro-inflammatory pathway, interleukin-1β (IL-1β) stimulates proliferation and
hypertrophy of VSMCs. It has a procoagulant effect and facilitates the leukocytes recruitment
to the vessels’ walls [69]. For this reason, a human monoclonal antibody directed versus IL-1β
called Canakinumab reduces inflammatory response, atherothrombosis and cardiovascular events [69].
It diminishes plasmatic CRP and IL-6 in patients with myocardial infarction history, without influencing
cholesterol levels [69]. Moreover, decreased serum vasostatin-2 level is associated with post-ischemic
chronic heart failure and with major cardiovascular events [70]. Galectin-3 binding protein plasma
levels are associated with long-term mortality in CAD, independent from plaque morphology [71].
In this context, statin treatment seems to mitigate the cellular inflammatory response after the
myocardial infarction, reducing leukocyte and neutrophil cell counts [72]. Also percutaneous coronary
intervention (PCI) may induce a local inflammatory response that contributes to restenosis, together
with other factors, such as the possible interaction between stent materials and passive red blood
cell membrane electrical parameters [73] (Figure 1). Inflammation originates from several molecular
signals. Injured cardiomyocytes start innate immune responses involving neutrophils, ROS, toll-like
receptors, myeloperoxidase, interleukins [73–75].

A crucial scenario is the myocardial ischemia-reperfusion injury. In fact, the process of myocardial
reperfusion can induce cardiomyocyte death paradoxically. Post-ischemic intracellular edema
represents the inflammatory response to the acute ischemic insult and so, it can expose the myocardium
to adverse effects related to ROS, during ischemia-reperfusion [76]. In addition, free fatty acids strongly
increase during reperfusion and their toxic effects on cellular membranes lead to arrhythmias and
cardiac function decrease [77,78].

Thrombus formation in correspondence to an unstable coronary plaque may associate with
low-grade endotoxemia [79]. Higher levels of Escherichia Coli derived endotoxin lipopolysaccharide
(LPS), and other inflammatory products as CPR, tissue factor, and several cytokines, are present in
patients with STEMI, compared to control group and to stable angina patients. Escherichia Coli derived
LPS levels positively correlate with the levels of Zonulin and P-selectin, suggesting a role of intestinal
microbiota in coronary thrombosis after its translocation in systemic circulation [79]. However, the link
between Escherichia Coli derived LPS and STEMI is not univocal because the higher levels of LPS in
STEMI patients may represent a consequence of infarction related inflammation, more than the cause
of myocardial infarction. According to the complexity of IHD pathophysiology, LPS and inflammation
may destabilize atherosclerotic plaques, contributing to their evolution, together with other factors,
rather than being a primary cause of IHD.

2.3. Coronary Circulation Involvement during HIV Infection and Antiretroviral Therapy

Human immunodeficiency virus (HIV) infection is associated with an increased risk of AMI,
ischemic stroke and heart failure [80–85]. The underneath mechanism driving cardiovascular disease
(CVD) risk associated with HIV is not clear, but likely involves a combination of factors including the
virus itself, the side effects of antiretroviral therapy, the burden of coronary heart disease traditional
risk factors and non-traditional risk factors (i.e., hepatitis C, substance use or abuse) [86]. HIV-infected
patients could show a peculiar scenario. Virtual Histology-Intravascular ultrasound (IVUS) analysis
showed a high prevalence of unstable plaque morphology rich in necrotic tissue. HIV-related plaque
seems to be different from those of the general population: less calcific and more necrotic, with a
thick-cap. This suggests a peculiar pathophysiological mechanism for HIV-related atherosclerosis
that is independent from traditional risk factors [87]. In fact, HIV infection itself seems to play a
crucial role in the development of atherosclerosis: coronary plaque is positively associated with
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immune activation marker CD8+CD38+DR and E-selectin, a marker of endothelial inflammation [88].
HIV also plays a pathogenic effect on cholesterol metabolism, through down-modulation and functional
impairment of ATP-binding cassette A1 (ABCA1) cholesterol transporter through the HIV-1 protein
negative factor (Nef) [89]. In non HIV-infected patients and animal models, CD4+ cells modulate
inflammation and consequently atherosclerosis. During HIV infection, this equilibrium is imbalanced
and the inflammatory process together with opportunistic infections lead to an increased cytokine
expression and vascular damage [90–92]. Additionally, antiretroviral (ART) therapy is an important
risk factor for CVD, in HIV patients [93]: in fact, despite the ART therapy, immune activation
persists in people with HIV infection, contributing to accelerated atherosclerosis and promoting
coronary atherosclerotic plaques rupture [94]. Moreover, ART therapy worsens the circulating lipid
profile. Several biological mechanisms link HIV infection to myocardial ischemia. Among HIV
proteins, glycoprotein 120 (gp120) enhances endothelin-1 release from endothelium, while Nef and
transactivator of transcription (Tat) contribute to endothelial dysfunction and inflammation [95–97].
Plasma circulating virus and immune dysregulation are associated with CVD. In particular, the presence
of atherosclerosis and higher cardiovascular mortality has been described in patients with reduced
CD4+ T lymphocytes and detectable viremia [95,98,99]. T cells activation contributes to endothelial
dysfunction, while higher CD163 plasma levels, determined by increased macrophages activation,
relates to arterial inflammation [95,100]. During HIV infection, the presence of circulating CD14
represents a microbiota translocation marker. It associates with higher circulating levels of TNF and
IL-6 and it may have a role in the faster evolution of the atherosclerotic process [95]. According to a
better comprehension of cardiovascular involvement during HIV infection, a differentiation of patients
based on circulating biomarkers may be useful also from a clinical point of view. Increased Nterminal
pro Btype natriuretic peptide (NT-proBNP), ST-2 and growth-differentiation factor 15 levels define
the cardiac phenotype, which seems to develop more frequently pulmonary arterial hypertension
and right ventricle dysfunction. Instead, higher d-dimer, IL-6 and CRP characterize the inflammatory
phenotype, which develops mainly microvascular and diastolic dysfunction [94,101]. In treated HIV
patients, increased levels of plasmatic PCSK-9, a marker of lipid metabolism, are associated with
coronary endothelial dysfunction. It is confirmed by the presence of higher levels of endothelial
damage markers, such as thrombomodulin and P-selectin [102]. HIV patients who are co-infected
with other viral agents, such as cytomegalovirus (CMV), together with a long treatment history of
ART therapy administration, have a higher number of circulating CD8+ T lymphocytes. They show a
quicker atherosclerosis progression [95,103].

3. Role of Coronary Microcirculation in the Pathophysiology of Ischemic Heart Disease

In the coronary tree, arterioles with 50–200 µm in diameter represent the microcirculation that
reflects approximately 60% of coronary resistance [12].

In the last decades, coronary microcirculation function and structure abnormalities have been
described as a relevant IHD pathogenic mechanism. Coronary microvascular dysfunction (CMD)
represents a common pathophysiological mechanism of type II myocardial infarction [104]. CMD
determines an increase in flow resistance, leading to myocardial ischemia, in response to reduced
perfusion pressure [105]. The term ‘microvascular angina’ for this patient population was used for
the first time in 1985, referring to ischemia triggered by an altered vasoregulation of the coronary
microcirculation. Subsequently, several studies lead to a better, but not full, knowledge of CMD. From a
clinical point of view, the terms ‘coronary microvascular dysfunction’ and ‘microvascular angina’
seem to be more appropriate, rather than ‘angina with normal coronary arteries’ [106]. A pre-existing
transient or permanent microvascular dysfunction may contribute to the development and prognosis
of ACS, via reduction of coronary blood flow. Moreover, a shear stress alteration aggravates endothelial
dysfunction and enhances thrombus formation, in epicardial arteries [107]. A chronic coronary artery
stenosis brings arteriolar inward remodeling and rarefaction, as well as blunting of myogenic responses
and increased vasoconstrictor responses to endothelin, due to a loss of endothelin B receptor-mediated
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vasodilation [108–110]. Nevertheless, as seen in severe hypertrophy, a two-fold increase in left
ventricular mass may drastically reduce coronary flow reserve in a non-stenotic artery, despite the
absence of mean aortic pressure change [111]. In addition, CMD may associate with intramural
vessels structural abnormalities, due to hypertrophy and hyperplasia of VSMCs [112], or small vessels
infection, due to cardiotropic viruses [113].

In clinical practice, modern cardiologists consider cardiovascular imaging as an ineluctable tool
to make the right diagnosis. However, in humans, coronary microcirculation is not visualized with
routine invasive and non-invasive imaging tools. Several coronary blood flow measuring methods
are used to evaluate systemic microvascular function, providing just indirect information about the
microcirculation. Among these, there are the ankle-brachial index and toe-brachial index, for the
assessment of microvascular peripheral artery disease [111,114], and Doppler echocardiography on
coronary arteries origin, for coronary microvascular dysfunction assessment [111,115].

For this reason, the real role of coronary microcirculation in IHD pathophysiology is still not
totally recognized and understood.

3.1. The Mechanistic Point of View of Coronary Microvascular Dysfunction Pathophysiology

In a substantial proportion of patients who underwent mechanical reperfusion by PCI, the opening
of the obstructed epicardial vessel does not accomplish myocardial reperfusion. In this scenario,
the increase of myocardial microvascular resistance and the reduction of myocardial perfusion may
provide a pathophysiological link between microvascular obstruction and cardiac remodeling and
death after AMI and PCI. Three mechanisms may be responsible for coronary microvascular obstruction:
distal embolization, ischemia-reperfusion related injury and individual susceptibility [116]. Coronary
embolism is frequent in several conditions associated with high risk of systemic embolization, such as
chronic atrial fibrillation, infective endocarditis, prosthetic heart valves, cardiac tumor and PCI [117,118].
Microembolization should be detected by Doppler ultrasound, during PCI. In fact, coronary microemboli
are observed in each of the PCI procedural phases [119,120]. Interestingly, systemic inflammatory
response and microvascular impairment after PCI are significantly higher in patients with non ST
segment elevation myocardial infarction (NSTEMI), than patients without NSTEMI [119,120]. Platelets
adhere and aggregate to inflamed microvessel endothelium, where they release several molecules,
such as thromboxane and ROS. After activation, platelets may support neutrophil extracellular traps
(NETs) formation, because they express high mobility group box-1 (HMGB1). This mechanism may
have a central role in microthrombosis and no reflow phenomenon [121,122]. Moreover, the interaction
among platelets and endothelial cells through CD40L and its receptor, respectively, mediates local
inflammation, predisposing to microvascular thrombosis [121]. During PCI, adjunctive therapies that
may reduce microemboli formation include intensive antiplatelet therapy, coronary vasodilators and
embolization devices protection. At the same time, the addition of ranolazine to standard anti-ischemic
therapy seems to determine a significant improvement of ECG stress-test tolerance, improving the
myocardial ischemic threshold. Moreover, ranolazine reduces exercise angina symptoms and ischemic
related arrhythmias [123]. Ischemia-reperfusion damage is typically mediated by local microvascular
responses: activated endothelial cells in all microcirculation segments produce more oxygen radicals
and less NO, in the initial period following reperfusion. The resulting imbalance between superoxide
and NO leads to the production and release of inflammatory mediators (e.g., platelet-activating
factor, tumor necrosis factor) and enhances the adhesion molecules biosynthesis that mediates
leukocyte–endothelial cell adhesion [124].

Another scenario is represented by myocardial ischemia in hypertrophic cardiomyopathy
(HCM). HCM is the most common inherited cardiovascular disorder, affecting 1 in 500 individuals
worldwide [125]. From the histopathological point of view, HCM is characterized by microvascular
rarefaction, intimal hyperplasia, medial hypertrophy, increased collagen deposition and small intramural
coronary arteries decreased luminal size. These morphological alterations lead to microvascular
dysfunction, decreased coronary flow reserve and myocardial fibrosis [125–129]. The microvascular
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structural abnormalities are revealed by an inadequate increase in myocardial blood flow after
intravenous administration of the vasodilator dipyridamole and on positron-emission tomography
(PET), in the majority of patients with HCM [130,131]. Moreover, a weak vasodilator response in the
endocardium is proportional to the extension of wall hypertrophy, during stress perfusion-cardiac
magnetic resonance imaging (MRI) [129,132].

Arterial hypertension increases shear stress induced by blood flow on the endothelial layer.
It worsens atherosclerotic lesions and endothelial dysfunction. Arterial hypertension determines
increased contraction of VSMCs, which protects microcirculation from hypertension related damage
and reduces the development of myocardial edema. Conversely, blood flow velocity and shear stress
increase determine the imbalance of endothelial function. It represents an example of how abnormal
mechanical forces are transduced in functional and molecular dysregulation [121,133]. In epicardial
vessels, CMD seems to trigger debris, vasoconstrictor and pro-inflammatory substances release from
culprit lesion. They enhance microvascular dysfunction, promoting the microvascular function
worsening. Conversely, CMD may have consequences also on hemorheological features of blood
flow in epicardial arteries, worsening CAD and establishing a vicious circle, which contributes to
myocardial ischemia [134,135].

In patients with ACS who underwent PCI, coronary microcirculation should be inadequately
perfused, despite the treatment of the culprit lesion. This condition is known as microvascular injury
(MVI). It is related to ischemia, occurs in the infarction core zone and develops during reperfusion.
At microcirculation, MVI represents the main expression of ischemia reperfusion damage and it is
known as no reflow phenomenon or microvascular obstruction, from the clinical point of view. Due to
no reflow phenomenon, the infarct area shows lesser healing and greater size. No reflow phenomenon
contributes to eccentric hypertrophy, left ventricle remodeling and heart failure [136]. It is associated
with the duration of coronary occlusion, the Thrombolysis In Myocardial Infarction (TIMI) score before
the reperfusion, the hyperglycemic state and aging [137]. From the histopathological point of view,
MVI is characterized by the presence of microvascular obstruction, leakage, and hyperpermeability
until intra-myocardial hemorrhage, which is characterized by erythrocytes extravasation [138,139]
(Figure 1). Microvascular leakage is a critical consequence of MVI because it involves a myocardial area
greater than that one involved in acute ischemia. Moreover, the extension of microvascular leakage is
associated with ventricular remodeling and dilatation severity [140].

Interstitial edema formation is the consequence of microvascular leakage and permeability.
During ischemia, it begins early being sustained by the inflammation response and it enhances
during reperfusion, due to hyperemic reaction and vasoactive molecules wash-out. Edema worsens
CMD, during no reflow phenomenon [137]. Moreover, pericytes contraction may also contribute to
microvascular constriction and dysfunction [136]. MVI is also associated with local thrombus formation,
which worsens the no reflow condition. During PCI, the balloon expansion and stent application
determine the distal massive migration of microemboli and thrombotic residues. These, together with
several substances, such as endothelin, neuropeptide Y, cholesterol crystals, cytokines, thromboxane and
serotonin, may promote microvascular vasoconstriction [136,141]. From the functional point of view,
enhanced microvascular endothelium dependent vasoconstriction and impaired endothelial dependent
vasodilation have been observed during MVI [142,143]. Despite the absence of residual angiographic
epicardial stenosis, the ischemia reperfusion phenomenon is associated with the coronary blood flow
reserve reduction. The coronary flow reserve reduction is a marker of CMD and it occurs independently
by the revascularization of the main epicardial arteries [144]. During MVI, several mechanisms
contribute to the vascular wall damage, such as inflammation, leukocytes action, complement
pathways activation, mitochondrial dysfunction and ROS induced cell death. During ischemia
reperfusion injury, ROS production is induced by the telomerase reverse transcriptase (TERT) genetic
loss and it is associated with an imbalance of endothelial NO production. Nucleotide-binding domain
oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) contributes to the local
cytokines production and cell death related inflammation [142]. The endothelial damage begins during
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ischemia with microvessel’s lumen enlargement. During reperfusion, it continues with thickening
and destruction of endothelial cells. Moreover, the microvascular leakage and hyperpermeability
are associated with a wide loss of cell junctions, after reperfusion [138]. Conversely the heat shock
protein specifically expressed by endothelial cells during ischemia reperfusion, named HSPA12B,
acts via an endothelial NO synthase (eNOS) mediated angiogenesis mechanism, attenuating the cardiac
remodeling and reducing the no-reflow phenomenon. HSPA12B diminishes vascular leaking and
endothelial damage, improving microvascular function [145]. Cardiac magnetic resonance represents
the main technique to identify and assess MVI and no reflow phenomenon. Also, microvascular
leakage may be identified with CMR and it has a negative prognostic meaning for left ventricular
remodeling [137].

There are several treatments to deal with the ischemia reperfusion injury, guaranteeing
cardioprotection. Pharmacological and physical treatments, as well as ischemic conditioning have
been described [146]. Regarding physical treatment, electrical nerve stimulation and hypothermia
have been proposed [146]. The rationale behind ischemic conditioning consists in the activation
of several protective molecular pathways, through the induction of short periods of ischemia and
reperfusion, before or after the main insult, as happens in the ischemic preconditioning and ischemic
postconditioning respectively. Remote ischemic conditioning consists in the application of short
periods of ischemia reperfusion injury in a different site from the heart [146]. In this regard, remote
ischemic conditioning protects mitochondrial function and the production of NO and protein kinase G
(PKG). Ischemic preconditioning counteracts the NO synthase uncoupling, reducing nitrogen species
and ROS production.

Several pharmacological approaches against ischemia reperfusion injury have been studied [146–152].
During reperfusion, the use of exenatide, an incretin mimetic, or glucose-insulin-potassium,
together with remote ischemic conditioning, is associated with infarct size reduction. The same
effects were obtained through the use of recombinant human angiopoietin-like protein 4 (ANGPTL4),
which contrasts the no reflow phenomenon and the intra-myocardial hemorrhage. The caspase
1 related pyroptosis inhibitor, named VX-765, as well as necrostatin-1 and Z-VAD administered
together with P2Y12 inhibitors, contrast necroptosis and apoptosis, determining infarct size reduction
and cardioprotection [146,148]. Regarding P2Y12 inhibitors, the “The Platelet Inhibition to Target
Reperfusion Injury” (PITRI) trial is ongoing. It is evaluating if Cangrelor administration may contrast
reperfusion injury [147]. During reperfusion, the simultaneous administration of two molecules acting
on the same pathway, such as tetrahydrobiopterin and L-Arginine, promotes the NO production and
reduces infarct area size [148]. During reperfusion, the intravenous administration of metoprolol
reduces neutrophil-platelet aggregate formation while it reduces myocardial work and cardiomyocytes
metabolic demand, during ischemia. When infused before reperfusion, metoprolol reduces infarct area
size, as demonstrated by “Metoprolol in Cardioprotection During an Acute Myocardial Infarction”
(METOCARD-CNIC) trial [149]. There are many ongoing trials to find an adequate treatment to induce
cardioprotection, in patients with STEMI who undergo PCI. In this regard, the “Combined Application
of Remote and Intra-Coronary Ischemic Conditioning in Acute Myocardial Infarction” (CARIOCA)
trial evaluates the effect of ischemic post-conditioning and remote ischemic conditioning on the
clinical outcome, before reperfusion [148]. The “COMBi-nAtion Therapy in Myocardial Infarction”
(COMBAT-MI) trial evaluates the combined effect of remote ischemic conditioning and exenatide
administration [148]. “N-acetylcysteine in Acute Myocardial Infarction” (NACIAM) trial reported
a reduction of an extra 5.5% infarct area size in patients who received additional N-acetylcysteine,
beyond nitroglycerine infusion [148,150]. The “Acute Myocardial Infarction with Hyperoxemic
Therapy II” (AMIHOT-II) trial demonstrated the role of supersaturated oxygen, in the reduction of
anterior infarct area extension [151]. The β adrenoceptors stimulation promotes NO production and
mitochondrial KATP channels activation, in cardiomyocytes. They determine cardioprotection and
reduce cell death and arrhythmias. The binding between adenosine agonists and its receptors induces
cardioprotection, through the stimulation of NO and cysteinyl leukotrienes release [146]. Moreover,
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relaxin, a pleiotropic peptide hormone, acts against microvascular leakage and obstruction. Relaxin
protects endothelium, regardless of NO. It promotes local inflammation suppression and protection
against endothelial leakage, through VE-cadherin preservation [152]. Other pharmacological agents,
in particular, resveratrol, L-Arginine, low molecular weight heparins, sodium nitroprusside, methylene
blue, N-hydroxy-nor-L-arginine (NOHA), L-type calcium channels blockers act on several pathways
involved in the cardioprotection, such as intracellular calcium homeostasis, NO production and release,
strengthening of antioxidants systems, cellular and mitochondrial ion channels modulation [146].

3.2. The Functional Point of View of Coronary Microvascular Dysfunction Pathophysiology

IHD pathophysiology is complicated and multifaceted and it is not only attributable to the
simplistic obstructive CAD. Atherosclerosis is just one of multiple components playing in a complex
pathophysiological process that includes inflammation, thrombosis, CMD and impaired angiogenesis,
underlying the “elusive link” between CAD and IHD [135,153]. Positron emission tomography (PET)
scan confirms the clinical findings, according to which a patient with critical CAD may not always
express myocardial ischemia and a patient with myocardial ischemia does not always show a critical
CAD. In fact, comparing myocardial flow reserve by PET, patients with 100% coronary occlusion
may present normal myocardial perfusion while no coronary occlusions may associate with abnormal
myocardial flow [154]. Moreover, cardiac death rate at 12 months may be similar between patients
with CAD and patients without obstructive CAD. Non-cardiac death rate may be higher at 30 days and
1 year, for patients with non-coronary obstructive stenosis [155,156]. Those patients show myocardial
ischemia and coronary vascular dysregulation, due to endothelial and/or non-endothelial dependent
microvascular dysfunction. In fact, endothelial dysfunction limits the protective effect of endogenous
anti-inflammatory systems within endothelial cells, causing anomalous smooth muscle tone that
impacts on myocardial perfusion [157].

Microvascular dysfunction worsens in hyperglycemic and glucose intolerance conditions
because they predispose to microvascular inflammation and endothelial dysfunction [158].
Beyond macrovascular complications, diabetes mellitus plays a pivotal role in CMD development.
Taken together, these conditions contribute to the development of diabetic cardiomyopathy, which is
closely associated with IHD and heart failure. Diabetes mellitus promotes CMD determining an
imbalance between myocardial metabolic demand and coronary blood flow [159–161]. Diabetic induced
endothelial dysfunction may be related with several aspects associated with diabetic cardiomyopathy,
such as autonomic dysfunction, neuroendocrine dysregulation, atherosclerotic lesions progression and
complications, and microvascular dysfunction. Several aspects contribute to endothelial dysfunction
and CMD in diabetes mellitus. In this regard, hyperglycemia is associated with massive AGEs and
ROS production. They impair antioxidant systems and reduce NO bioavailability (Figure 1). Moreover,
the endothelium-dependent vasodilation is compromised because of 20-hydroxyeicosatetraenoic acid
(20-HETE) increased production, which has a vasoconstrictor effect. Hyperglycemia enhances vascular
permeability, through the activation of the diacylglycerol (DAG)-PKC pathway and intracellular
junctions weakening. Coronary ion channels physiological activation is associated with coronary
vasodilation, but diabetes determines coronary vasomotor tone impairment due to coronary ion
channels imbalance, such as KATP and transient receptor potential vanilloid type 1 (TRPV1) [159–163].
In patients with diabetes mellitus hyperinsulinemia and insulin resistance are often found. They
have a pathogenetic role. In fact, they suppress NO production and release, promote endothelin-1
production and mitogen-activated protein kinase (MAPK) pathways stimulation. They are also
associated with the increase in cytokines and free fatty acids production and PI3K/Akt pathway
suppression. This latter pathway is involved in vasomotor tone regulation, under physiological
conditions [159–163]. Several molecules used in diabetes mellitus treatment may have a beneficial
impact on cardiovascular complications. Glucagon like peptide 1-receptor agonists (GLP-1) and
sodium glucose co-transporter 2 inhibitors (SGLT2) may improve cardiovascular outcome, in patients
with diabetes mellitus and cardiovascular disease. In particular, GLP-1 agonists may improve the
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endothelial function, through the stimulation of eNOS activity, the suppression of vascular adhesion
molecule and plasminogen activator inhibitor type 1 expression. Moreover, they may have beneficial
effects on atherosclerosis progression, promoting cardioprotection. SGLT2 inhibitors also have a
cardiovascular impact in patients with diabetes mellitus, in particular in heart failure hospitalization
reduction. Beyond the effect on diuresis, natriuresis, glucose urinary excretion and heart failure fluid
overload, SGLT2 inhibitors have a beneficial effect on myocardial metabolism [159–163].

Aging is an important cause of CMD causing endothelial dysfunction, vasomotor tone imbalance
and coronary flow reserve reduction [15,16]. Aging affects VSMCs and endothelial cells integrity
and function. From the molecular point of view, the increased production of ROS and reactive
nitrogen species (RNS) and their reduced degradation represent an important CMD pathogenetic
mechanism in aged patients. ROS and RNS activate the PI3K/Ras/Akt/MAPK pathway, reducing
eNOS activity. Moreover, they inactivate NO and many antioxidants systems, such as superoxide
dismutase and catalase. Also endothelial phosphodiesterase type 5 (PDE-5) levels increase, reducing
NO bioavailability, through cyclic guanosine monophosphate (GMPc) degradation. Moreover, aging
reduces bradykinin-related vasodilation and the endothelium-dependent hyperpolarization [15,16].
Due to these molecular mechanisms, aging is associated with microvascular rarefaction, impaired
angiogenesis, reduced gradient of intramyocardial perfusion pressure, increased deposition of cardiac
extracellular matrix and left ventricular hypertrophy. These aspects contribute to the mismatch of the
cross talk between cardiomyocytes and coronary circulation, a condition predisposing to IHD and
heart failure [15,16,160,161].

Endothelial dysfunction seems to have a central role in vasospastic angina. Microvascular angina
and vasospastic angina are typically associated with microvascular dysfunction in patients with
ischemia with non-obstructive coronary artery disease (INOCA) [164,165]. INOCA is a relevant
problem worldwide and it affects a considerable part of patients who do not show obstructive
CAD at coronary angiography. Patients with INOCA show several atypical symptoms, which often
remain misdiagnosed [164]. These patients showed a reduced response to acetylcholine, a marker of
endothelial dysfunction and enhanced vasoconstrictor response to U46619, which is a thromboxane and
endothelin-1 agonist. Easier and enhanced response to vasoconstrictor agents are due to abundance of
thromboxane, endothelin-1 and ROS compared to endothelial derived hyperpolarizing factors, NO and
prostacyclin. This imbalance seems to represent the molecular mechanism, which is common between
microvascular and vasospastic angina, in patients with INOCA [164,165] (Figure 1). The myocardial
infarction with no obstructive coronary artery disease (MINOCA) and INOCA syndromes are associated
with several CVD, even stroke and peripheral arterial disease. Moreover, patients with these syndromes
seem to frequently develop heart failure with preserved ejection fraction [166].

However, CAD and CMD are often coexisting pathophysiological mechanisms in IHD. Endothelial
dysfunction is closely associated with the vasoconstrictor response of epicardial vessels in response to
intracoronary acetylcholine infusion. The impaired endothelial function may be an early alteration
in IHD and the atherosclerosis process [121]. Dysregulation of the cardiovascular autonomic system
occurs often in IHD and other CVD. In healthy conditions, at rest, neural control has an irrelevant role
and the regulation of coronary blood flow depends on other regulation mechanisms. However, during
physical stress and pathological conditions, such as endothelial dysfunction, it assumes a central role
in the regulation of coronary blood flow. In particular, coronary microcirculation mainly expresses
β2 and α2 receptors, the stimulation of which is associated with coronary vasodilation. However,
except α2 receptors, α adrenergic stimulation is associated with vasoconstrictor response, which is
enhanced in CMD condition and myocardial ischemia [121,167,168]. The pathophysiological role of
neural control is emphasized by the effect of α blockers in contrasting vasoconstriction associated
with microvascular dysfunction. The activation of the muscarinic M3 receptor may associate with NO
coronary induced vasodilation, pointing out a possible role of the parasympathetic system in coronary
blood flow regulation [121].
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Recent evidence focuses on coronary microvasculature and inflammation involvement, in the
heart damage, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the causal
agent of Coronavirus Disease 19 (COVID-19) [169–178]. The SARS-CoV-2 mortality rate seems higher in
patients affected by CVD and hypertension in particular. Several COVID-19 infection cases may cause
a “cardiovascular syndrome”, in which the clinical expression may be cardiomyopathy, myocarditis,
ventricular arrhythmias, cardiac ischemic injury and myocardial ischemia with and without obstructive
CAD [169–178]. Myocardial damage may be sustained by several conditions, in COVID-19. In this
regard, myocarditis is an important condition of myocardial injury. The cardiomyocytes damage and
molecular mimicry, together with the cytokines storm determine an autoimmune myocarditis. Its clinical
manifestations appear two weeks later than the initial COVID-19 symptoms [169,170]. The cytokines
storm and the pro-thrombotic state seen in COVID-19 contribute to atherosclerotic plaque destabilization
and type I myocardial infarction. However, type II myocardial infarction is the main expression of IHD,
in viral diseases [169,170]. Some reports described patients affected by acute myocardial injury with
increase of cardiac troponin, ST-segment depression or elevation and absence of angiographic CAD.
This early data suggest that the dominant cause of myocardial injury occurs in the absence of obstructive
CAD for this group of patients [169–172]. Microvascular dysfunction and, in particular, endothelial
dysfunction are pivotal mechanisms involved in the pathogenesis of systemic damage, induced by
SARS-CoV-2. In particular, it is involved in the vascular inflammation related to acute respiratory
distress syndrome (ARDS), but also in cardiovascular manifestations associated with COVID-19.
Among the mechanisms, which could enhance this damage, the hyperinflammation and pro-coagulant
state may be a possible explanation of microvascular dysfunction and small vessel thrombosis [169–178]
(Figure 1). Endothelial dysfunction is the main mechanism leading to microthrombi formation and
COVID-19-induced coagulopathy [169–178]. In this case, during the infection, an increased production
of thromboxane, a reduced production of prostacyclin and an enhanced expression of von Willebrand
factor have been observed. Moreover, the endothelial cells–leukocytes–platelet aggregates reduce
microvascular perfusion, contributing to ischemic damage. Several authors detected SARS-CoV-2
in endothelial cells in the heart, lung, kidney, liver, brain and skin, where it may cause endotheliitis
and vascular damage [169–178]. The cytokine storm, mainly characterized by interleukin-1 (IL-1) and
IL-6, directly struck the endothelium, driving the pro-inflammatory gene expression in endothelial
cells. The following integrins and chemokines exposure determines the amplification of inflammation
cascade and the massive leukocyte recruitment [169–178]. The endothelial dysfunction in COVID-19
may also associate with the inflammation antibody-dependent enhancement (ADE), in which the
virus uptake by macrophages, determined by the circulating non-neutralizing antibodies, enhances
the inflammation cascade and endothelial cells activation [169–178]. Endotheliitis is associated with
several consequences, such as increase of vascular permeability, thrombosis, vascular rarefaction and
angiogenesis. In this case, although some differences, several cases of a Kawasaki disease-like syndrome
in children affected by COVID-19 have been reported [179,180]. Moreover, dyslipidemia, diabetes
mellitus and arterial hypertension, often seen in COVID-19 patients, determine the involvement
of pericytes, which contributes to the pro-thrombotic state [169–178]. However, a cytokine storm
related to hyperinflammation syndrome promotes the onset and following precipitation of myocardial
injury [181,182]. A growing interest is focused on the angiotensin 2 converting enzyme (ACE 2),
which is the SARS-CoV-2 receptor. It creates important connections between the virus replication
pathway and the cardiovascular system. In this regard, all cardiovascular conditions share an
imbalance of the renin–angiotensin–aldosterone system (RAAS), in which ACE 2 plays a central
role [183]. SARS-CoV-2 infection is triggered by binding of the virus spike protein to ACE2, which is
highly expressed in the heart, lung and kidney. SARS-CoV-2 mainly invades alveolar epithelial
cells, causing respiratory symptoms and atypical pneumonia [183–185]. ACE 2 is involved also in
myocardial recovery, in response to injury associated with several pathological conditions, such as
heart failure [183,186,187]. Conversely, the “angiotensinic storm”, characterized by the coexistence of
all the pathophysiological effects of Angiotensin II, may occur during the earlier phases of COVID-19
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infection assuming a pivotal role in the COVID-19 myocardial damage and coronary microcirculation
involvement. In this field, there are many studies on the ACE-2 role and its relationship with COVID-19
infection, in the microvascular dysfunction determination [182]. In this case, heart pericytes have a
high expression of ACE-2, leading to the hypotheses that the virus mediated myocardial injury could
associate with microvascular impairment [183,186–188]. The role of ACE-2 has been analyzed also
in relation to its virus mediated down-regulation, which may contribute to the COVID-19 related
inflammatory reaction [183,186–188]. Several hypotheses about treatment against cardiovascular
involvement in COVID-19 are now ongoing. Alpha-1 adrenergic receptor antagonist assumption
is associated with reduced mortality and necessity of ventilation in patients with ARDS. Alpha
blockade contrasts the cytokines storm and the ARDS, through the reduction of the catecholamines’
effects [169,170,189]. According to the beneficial and protective effects of statins on endothelial
function, they may contrast vascular damage, in COVID-19 patients. Moreover, protective effects on
endothelial function and against pro-inflammatory and pro-thrombotic state in influenza have been
described [169,170,190,191]. Angiotensin receptor blockers, monoclonal antibodies, which bind ACE2,
synthetic ACE2 and Angiotensin 1–7 peptides [169,170,192,193], were proposed to contrast the RAAS
imbalance, while dexamethasone to contrast the cytokine storm [169,170,194].

Microvascular involvement has been observed in other pathological conditions, such as acute
stress-induced cardiomyopathy. Acute stress-induced cardiomyopathy, also known as Takotsubo
cardiomyopathy, defines a syndrome in which the presentation may mimic ACS. Patients with
Takotsubo cardiomyopathy have experienced intense psychological and/or physical stress, during the
period prior to the onset of the symptoms. Acute stress-induced cardiomyopathy may be characterized
by severe, but reversible, left ventricular function depression with several patterns of impaired
myocardial contractility, according to myocardial adrenoceptors distribution and the disease’s
anatomic substrate [195]. The absence of epicardial obstructive CAD is a typical feature of Takotsubo
cardiomyopathy, but CAD presence does not exclude this syndrome. From the pathophysiological
point of view, several mechanisms are involved in the myocardial damage due to Takotsubo
cardiomyopathy. Sub-occlusive epicardial vessel’s spasm, as well as spontaneous coronary dissection
have been observed [195,196]. However, in Takotsubo cardiomyopathy, CMD has been described
as a central pathophysiological mechanism [195,197], as demonstrated by the detection of an
increased microvascular resistance index (IMR), which has been also identified during the acute
phase of myocardial infarction [195,198]. Although Takotsubo cardiomyopathy is excluded from
the definition of MINOCA diagnosis, STEMI and NSTEMI may promote the onset of Takotsubo
cardiomyopathy [199,200]. According to the role of CMD in the Takotsubo cardiomyopathy
pathophysiology, endothelial dysfunction may represent the mediator between myocardial injury and
stressors. Endothelial dysfunction is involved in the microvascular and epicardial arteries spasm,
which leads to transient ischemia and myocardial stunning. Post-menopausal women are particularly
struck by Takotsubo cardiomyopathy. In this population, endothelial dysfunction may be enhanced by
estrogen deficiency, with a resulting imbalance in vasomotor tone regulation. Endothelial dysfunction
is also sustained by the presence of cardiovascular risk factors, such as diabetes, arterial hypertension
and dyslipidemia, which often affect Takotsubo cardiomyopathy patients. However, in Takotsubo
cardiomyopathy, the main pathogenetic mechanism is the sympathetic activation, which leads to
circulating catecholamines and stress-associated neuropeptides increase. Moreover, an increase of
norepinephrine release, by cardiac nerve pre-synaptic ends, as well as the reduction of its re-uptake, have
been identified [201,202]. These mechanisms determine the continuous and massive cardiomyocyte
exposition to catecholamines. Catecholamines storm causes an imbalance of cardiomyocyte metabolic
state, through a mismatch between oxygen demand and supply ratio, an increase in ROS production, the
depletion of antioxidant systems and the intracellular calcium overload. The latter condition causes the
contraction band necrosis, a typical histopathological finding of diseases characterized by catecholamine
excess. Moreover, catecholamines storm hits coronary microcirculation, the main site of coronary
resistance regulation. At microcirculation, α1 and α2 adrenoceptors mediate catecholamine induced
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vasoconstriction, leading to coronary blood flow regulation impairment and, therefore, myocardial
ischemia [195,201]. Also, inflammation plays a role in Takotsubo cardiomyopathy. The presence of
a macrophage infiltration in the myocardium driven by CXCL1 and interleukin-8 (IL-8) has been
demonstrated. In particular, a decrease in CD14+CD16++ monocytes sub-population involved in
the tissue repair has been observed, as well as for the intermediate monocytes sub-population
CD14++CD16+. Conversely, an increase of the classical sub-population CD14++ CD16− has been
demonstrated. Moreover, the intermediate sub-population CD14++CD16+ showed a slow turnover,
after the acute phase of the disease. This appears in contrast with monocytes activation, which occurs
during myocardial infarction. In the Takotsubo cardiomyopathy, the slow evolution of the inflammatory
response determines a typical low grade, chronic myocardial inflammation [203].

3.3. Microvascular–Myocardial Interaction in the Regulation of Coronary Blood Flow

In normal conditions, the heart spends much more oxygen (10 mL O2/min/100 at rest) compared to
other organs, because of its continuous work. Myocardial oxygen extraction amounts up to ∼75% in the
left ventricle, thus oxygen delivery can increase only by increasing coronary blood flow. To maintain
an adequate oxygen and energetic substrate amount to every cardiomyocyte, coronary vessels show
a highly developed vascular network with highly organized flow regulatory mechanisms [204–210].
Along the coronary tree, the distal vessels, arterioles and capillaries, with a diameter of 50–100 µm,
constitute approximately 40–50% of total coronary resistance. Small arteries, ranging from nearly 100
to 200–250 µm, offer a small fraction of resistance (15–20%). Instead, large epicardial arteries provide
just a minuscule fraction of resistance to coronary blood flow, as they are capacitance vessels. It is not
just a diameter issue. Different studies demonstrate that the heterogeneous heart perfusion is strictly
related to the structural terminal vasculature heterogeneity. This implies that also the metabolism
heterogeneity may result from the tissue function adaptation to oxygen availability [211–214]. It is
unknown what microvascular heterogeneity degree contributes to pathological conditions and how
microvascular heterogeneity is influenced by changes in upstream coronary function [213].

In normal coronary microcirculation, some regulators act at specific functional sites modulating
blood-flow according to myocardial work. They are the endothelium, the nervous system,
the auto-regulation mechanism and the myocardial metabolism. Endothelial dysfunction plays
an important role in the IHD development through the vascular tone, platelet activity, leukocyte
adhesion and coagulation regulation. It is a predictor of IHD in patients with and without obstructive
CAD. Impaired endothelium-dependent dilation, which has traditionally been considered a precursor
of atherosclerosis, is now accepted as an independent predictor of IHD in women with no or minimal
epicardial stenosis and suspected ischemia. Results from the Women’s Ischemia Syndrome Evaluation
(WISE) suggest that nearly 30% of women presenting with symptoms/signs of IHD in the absence
of epicardial coronary disease have coronary microvascular dysfunction [214–218]. It is necessary
to consider multifactorial aspects of IHD, in particular focusing on the microvasculature, which can
be a leading cause of myocardial ischemia. Vascular oxygen sensing has intrigued and puzzled
physiologists for more than 50 years. Despite some controversies, significant progress has been made
in identifying candidate sensor, mediator, and effector systems in different vascular beds. There is a
general agreement that oxygen sensors typically reside in the cardiac myocytes and, in minor part,
in the VSMCs. They respond to oxygen tension changes, inducing redox signals/mediators that, in turn,
regulate critical cellular effector systems. Under hypoxia, endothelium releases vasoactive substances
that modulate vascular tone. However, the basis for the different oxygen sensing systems within the
vascular system remains not fully understood. When completely understood, hoping in the near future,
the basis for this critical difference will shed more light on the molecular basis of vascular oxygen
sensing [219–221]. Hydrogen peroxide (H2O2), a product of mitochondrial electron transfer, is produced
during mitochondrial electron flux and oxygen consumption. It is produced during myocardial work
and it is a metabolic dilator. The H2O2 production results from an “error” in electron transfer: electrons
leak from the mitochondrial complexes; these leaked electrons reduce oxygen to form the superoxide
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anion (O2¯). In mitochondria, superoxide anions are quickly mutated in H2O2. Catabolism of H2O2 by
catalase and the blockade of the ionic mechanism, by which H2O2 produces dilation, attenuate coronary
metabolic dilation. In the coronary circulation, H2O2-induced dilation appears to be mediated by
thiol dependent voltage-dependent K+ channel (Kv) channel activation [222–224] (Figure 1). Another
important aspect to consider is the “receptors” that react with H2O2, as well as other vasoactive
metabolites. Ion channels, mainly expressed in the microcirculation, are the end effectors of all the
coronary blood flow regulation mechanisms. They have an important role in the regulation of coronary
resistances. For this reason, they are crucial for the adaptation of coronary blood flow to cardiomyocytes’
metabolic demand. A change in their activity, such as their loss or gain of function, may be genetically
determined, but also associated with cardiovascular risk factors exposition. It may occur in the
pathophysiology of coronary microvascular dysfunction and myocardial ischemia [12,134,160,161,225]
(Figure 2). In fact, a way to decipher critical elements of the pathway for coronary metabolic dilation
consists in determining genetic associations in genes encoding for coronary blood flow regulators
(i.e., ion channels, nitric oxide synthase, and sarco/endoplasmic reticulum Ca2+-ATPase) with the
susceptibility for microvascular dysfunction and IHD [160,161,224,225]. Recently it has been reported
that in vascular smooth muscle, Kv1.5 channels play a critical role in coupling myocardial blood
flow to cardiac metabolism [224]. Moreover, the prevalence of SNPs in genes encoding coronary ion
channels has been studied among patients with CAD or microvascular dysfunction and those with
both anatomically and functionally normal coronary arteries [226]. In this case, associations among
SNPs and IHD, in terms of CAD and microvascular dysfunction, are possible. In fact, a genotype for a
KATP channels subunit (i.e., rs5215_GG for Kir6.2 subunit) appears to be an independent protective
factor against the development of IHD [226], illustrating a potentially important implication of genetic
polymorphisms in the susceptibility to IHD. However, the precise manners through which specific
genetic polymorphisms affect ion channel function and expression have to be clarified. Absence
of coronary ion channels may compromise association between metabolism and flow, resulting
in cardiac pump dysfunction and tissue hypoxia, when metabolic demand is increased, during a
norepinephrine stress test. Physiologic coronary blood flow regulation depends on several ion channels,
not only voltage-gated potassium (Kv) channels, but also ATP-sensitive potassium (KATP) channels,
voltage-gated sodium (Nav) channels, to name just a few of them (Figure 1). In this regard, several
drugs such as Nicorandil and Levosimendan, which may be used in angina and heart failure treatments
respectively, determine coronary vasodilation, inducing KATP opening [227]. Ion channels play an
important role in calcium regulation and concentration of both coronary smooth muscle and endothelial
cells. They respectively modulate the contractile tone degree, in vascular smooth muscle, and the
amount of NO, produced by the endothelium. In this context, they contribute to the coronary arterioles
response to myocardial metabolic demands [12,134,160,161]. For this reason, they are involved in the
IHD pathophysiology and other conditions in which IHD may be associated, such as heart failure,
the pathophysiology of which is also multifaceted and complex [228–234].
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Figure 2. Mechanisms involved in ischemic heart disease pathophysiology and coronary ion channels
role. Ischemic heart disease hides a multifaceted and complex pathophysiological paradigm. Several
pathways are involved in the ischemic heart disease pathophysiology (i.e., micro and macrovascular
dysfunction, atherosclerotic plaque rupture, inflammation, endothelium dependent and independent
dysfunction, ion channels and nervous system impairment). In particular, coronary ion channels,
represented in the central part of the figure, are the final effectors of coronary blood flow regulation
mechanisms, playing a pivotal role in the coupling between myocardial metabolism and coronary
circulation. Their activity dysregulation may occur during coronary microvascular dysfunction and
other pathological conditions. It causes the impairment in the cross talk between myocardial energy
state and coronary blood flow, leading to ischemic heart disease.

4. Conclusions

IHD occurs as the result of multiple altered regulating vascular pathways that include severe
atherosclerosis just in some cases. IHD pathophysiology is complex and multifaceted and a panoramic
overview about its current paradigms is shown in Figure 1. A large percentage of patients with IHD
have minimal or no epicardial coronary vascular disease. In fact, the atherosclerotic point of view
has been revised by a number of trials and studies. They suggest that microvascular disease plays an
important role in the etiology of IHD, by regulating blood flow and oxygen and energetic substrates
delivery, in the microcirculation–myocardium interaction. Our current understanding about this
process involves the feedforward production of H2O2 that cause vasodilation during increased cardiac
work. However, there are other key metabolites over H2O2, and many proteins, such as Kv1.5 channels,
Nav channels, KATP channels, that represent the final effectors of coronary blood flow regulation
mechanisms. They contribute in different ways to the regulation of intracellular calcium, the degree
of contractile tone, and ultimately, coronary blood flow. In our viewpoint, myocardial ischemia is
directly dependent on an impairment of the cross talk between myocardial energy state and coronary
blood flow. Coronary macrovascular and microvascular disease may represent just a portion of the
multifaceted pathophysiology of myocardial ischemia. More bodies of evidence are needed in order to
provide a deeper understanding of IHD underlying mechanisms, almost occurring in the most distal
and microscopic segments of the coronary tree.
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