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Abstract

Background: One of the challenges in Synthetic Biology is to design circuits with increasing levels of complexity.
While circuits in Biology are complex and subject to natural tradeoffs, most synthetic circuits are simple in terms of the
number of regulatory regions, and have been designed to meet a single design criterion.

Results: In this contribution we introduce a multiobjective formulation for the design of biocircuits. We set up the
basis for an advanced optimization tool for the modular and systematic design of biocircuits capable of handling high
levels of complexity and multiple design criteria. Our methodology combines the efficiency of global Mixed Integer
Nonlinear Programming solvers with multiobjective optimization techniques. Through a number of examples we
show the capability of the method to generate non intuitive designs with a desired functionality setting up a priori
the desired level of complexity.

Conclusions: The methodology presented here can be used for biocircuit design and also to explore and identify
different design principles for synthetic gene circuits. The presence of more than one competing objective provides a
realistic design setting where every solution represents an optimal trade-off between different criteria.

Keywords: Multiobjective optimization, Global optimization, Synthetic biology, Gene circuit

Background
A hallmark of Synthetic Biology is, quoting Arkin, the
ambition to formalize the process of designing cellular sys-
tems in the way that traditional engineering disciplines
have formalized design and manufacture, so that complex
behaviours can be achieved for practical ends [1]. In for-
malizing the design process, as it is the case in more tra-
ditional engineering disciplines, mathematical modeling
and optimization play a central role.

Over the past ten years, many advances have been
achieved in the field, from the first bacterial toggle
switches [2] and biological oscillators [3], to the recent
mammalian cell to cell communication devices [4]. In a so
called first wave of Synthetic Biology basic elements and
small biological modules were successfully implemented
and characterized. One of the challenges of the second
wave in progress is the integration of modules to create
circuits of increasing complexity [5]. However, as reported
by Purnick and Weiss [5], the level of complexity achieved
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in synthetic circuits, measured by the number of regula-
tory regions, is relatively low. While circuits in Biology are
complex, subject to natural tradeoffs and playing multiple
roles [6], most synthetic designs are simple and perform
a single task. Reported reasons for the current limited
complexity in synthetic circuits include too simplistic
engineering design principles [5], difficulty to indepen-
dently control multiple cellular processes in parallel [7]
and increasing problems to construct and test circuits as
they get larger [8]. Efforts are necessary to overcome these
difficulties and, quoting Lu et al. [9], advancing Synthetic
Biology to the realm of higher-order networks with pro-
grammable functionality and real world applicability. In
parallel, new computational tools need to be developed to
support these efforts [10].

In this contribution, our goal is to set up the basis of an
advanced optimization tool for the modular and system-
atic design of biocircuits capable of handling high levels of
complexity and multiple design criteria.

Modular design requires the previous definition of stan-
dardized functional objects and interfaces [11]. From the
foundations of Synthetic Biology, efforts have been held in
order to characterize standard biological parts, i.e. DNA
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sequences encoding a function that can be assembled with
other standard parts. The abstraction hierarchy proposed
by Endy [12] classifies standard parts in three different
layers: parts, which are defined as sequences with basic
biological functions (like for example DNA-binding pro-
teins), devices which are combinations of parts with a
particular function and systems which are combinations of
devices. An emerging catalogue of standard parts is avail-
able at the registry supported by the BioBricks Foundation
[13].

Systematic design relies on mathematical models
describing the circuit dynamics. In this regard, modular
modeling tools are advancing to facilitate the mathemat-
ical representation of biological parts and their combi-
nations [14], providing the description of the reactions
taking place inside the different parts and the interfaces
to connect them. Inspired by the BioBrick registry of
standard parts, Marchisio and Stelling [15] developed a
formal modeling framework based on the ordinary differ-
ential equations (ODE) formalism which permits modular
model composition and has been recently extended for the
modeling of more complex eukaryotic systems [14]. Some
remarkable advances have been also achieved regarding
synthetic biology computer aided design tools [16]. The
systematic design of circuits combining components or
parts from a list or library can be formulated as an opti-
mization problem [16-18] where the circuit model struc-
ture is manipulable through decision variables, and the
desired behaviour of the circuit is encoded in the objec-
tive function to optimize. This results in Mixed Integer
Nonlinear Problems (MINLP) whose solution is challeng-
ing due to the simultaneous presence of binary variables
and constraints in form of ODEs. Dasika and Maranas
[17] developed an optimization framework for the design
of biocircuits, based on the circuit modeling formulation
by Hasty [19] and a multistart local outer approxima-
tion method for the optimization. A number of design
problems were successfully solved within this frame-
work including a circuit with inducer specific response, a
genetic decoder and a concentration band detector.

In this work, we advance the optimization-based design
of biocircuits with two contributions: increasing the com-
putation efficiency in order to handle higher levels of
complexity and introducing multiple criteria in the design.
To this purpose, we first introduce a set of global MINLP
solvers that reduce drastically the computation time for
the monoobjective design problem in comparison with
other published methods. Then we formulate a general
multiobjective optimization framework that combines the
efficiency of the global MINLP solvers with the ability
to tackle multiple design criteria. The inducer specific
response circuit design by Dasika and Maranas [17] is
used to illustrate the efficiency of the MINLP methods
presented and further reformulated with additional design

criteria to discuss the advantages of a multiobjective for-
mulation in the design of genetic circuits.

Methods
Global stochastic MINLP solvers for biocircuit design
Optimization based design of biocircuits requires the
integration of tools for modular modeling, simulation
and optimization. As reported in the Background section,
modular tools for modeling in Synthetic Biology are
advancing fast as well as repositories of biological parts.
Searching for a generic optimization framework, the
methods presented next do not bound to a specific mod-
eling tool, but accommodate to any ODE based modeling
framework such that the circuit’s model structure can be
obtained from the starting list of parts by giving values to
a set of integer variables.

The design problem consists of finding the best solu-
tion or solutions among the set of all possible alterna-
tives according to a number of criteria. In this first part,
we focus on problems with one unique design objective.
Under these assumptions, the design of biocircuits can
be formulated as a Mixed Integer Nonlinear Program-
ming Problem [17,18], where the model structure can be
encoded by integer variables and the constraints are the
dynamics of the system in form of ODEs. Tunable kinetic
parameters are real decision variables in the optimization
model. For a complete formulation we refer to [17], where
the single objective MINLP problem is formalized for a
particular modeling framework [19]. Next, our focus is
on the computational challenges of the resultant MINLP,
since some features inherent to biological circuit models
make it particularly difficult to solve.

In first instance, the dynamics of biocircuits are highly
nonlinear, and the resultant optimization problem is non
convex and multi-modal. In this type of problems, local
methods lead to suboptimal solutions (unless we start
close to the global optimum). A number of approaches
have been proposed in previous works to find the global
optimum in monoobjective biocircuit design. Dasika
and Maranas [17] implemented a multistart local outer
approximation algorithm where a convergence sequence
of upper and lower bounds to the original problem is
generated and a local optimum solution is identified at
each iteration. In this way, a local deterministic search
is performed from several points. Rodrigo et al. [18] use
a stochastic metaheuristic based on simulated annealing
[20,21] and Huynh et al. [22] apply a global determinis-
tic optimization method to a linear approximation of the
model around a steady state.

On the other hand, the design of gene circuits involves
in general large search spaces that combine a high num-
ber of integer variables with the presence of real variables.
Our first goal is to provide global optimization meth-
ods that efficiently solve monoobjective design problems
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of medium/high complexity. Global deterministic meth-
ods ensure convergence to the global optimum within a
desired tolerance, but the computational burden is in gen-
eral very high for non convex systems with large search
spaces. Therefore, we have decided to employ global
stochastic methods, which offer no guarantee of con-
vergence to the global minimum in a finite number of
iterations but showed excellent results solving complex
process optimization problems in reasonable computa-
tion time [23].

In this work, we use three different global stochastic
methods: mixed-integer tabu search (MITS) [24], mixed-
integer ant colony optimization (ACOmi) [25] and the
enhanced scatter search eSS described in [23]. The three
methods are actually hybrid, since the stochastic global
search is combined with the local mixed-integer sequen-
tial quadratic programming (MISQP) developed by [26].
These methods have been shown to be efficient meta-
heuristics in solving complex-process optimization prob-
lems from different fields, providing a good compromise
between diversification (exploration by global search) and
intensification (local search).
MITS uses a combinatorial component, based on Tabu

Search [27], to guide the search into promising areas,
where the local solver is activated to precisely approxi-
mate local minima. Exler et al. [24] made use of MITS
to solve complex integrated design problems where other
state of the art solvers failed, including a wastewater
plant for nitrogen removal and the well known Tennessee
Eastman Process. ACOmi extends ant colony optimiza-
tion meta-heuristic [28] to handle mixed integer search
domains. Schlueter et al. [25] showed the efficiency of this
method for a number of engineering benchmark prob-
lems with high levels of non-convexity. Finally, eSS is an
enhanced version of the scatter search for mixed integer
search domain. Egea et al. [23] proved the efficiency of
the method for solving complex-process models through
a set of engineering benchmarks, where eSS performed
well even in cases in which standard local search methods
failed to locate the global solution.

In this contribution, we evaluate the efficiency of these
methods in the context of Synthetic Biology and in par-
ticular for the systematic design of genetic circuits. For
illustrative purposes we chose a representative design
example from Ref. [17], with one single design objective.

Starting from a list of components, the goal is to build
a circuit with a specific response upon stimulation by two
different inducers. There are eight different promoter ele-
ments (denoted by P1 . . . P8): Plac1, Plac2, Plac3, Plac4,
Pλ, Ptet1, Ptet2 Para and four transcripts (denoted by
R1 . . . R4): tetR, lacI, cI, and araC. The inducers of interest
are IPTG and aTc. The dynamic model of the overall reac-
tion network is constituted by a set of ordinary differential
equations of the form:

dzj

dt
(t) = Ej(t) + Vj(t) − Kjdecayzj(t) ∀j (1)

where Ej is the expression term for the transcripts,
Kjdecayzj is the degradation rate and Vj is the produc-
tion/consumption rate of zj due to other reactions. The
expression rates for the transcripts are known and they
read:

Ej(t) =
∑

i
Yijvji(t) (2)

where vji is the rate of production of Rj from Pi, and Yij is
a binary variable such that:{

Yij = 1, if the production of protein Rj from promoter Pi is turned on,
Yij = 0, otherwise.

The structure of the model is given by a 8 × 4 super-
structure matrix Y containing the 32 binary variables of
the model. We define the vector of binary variables y as
the vector obtained by converting the matrix Y to a vec-
tor by columns. The tunable parameters are contained in
a vector of real variables denoted by x.

As mentioned, the goal is to achieve a specific response
upon induction. Namely, the steady state level of LacI
must be high upon aTc and low upon IPTG induction
whereas the steady state level of tetR must be low upon
aTc and high upon IPTG induction. This design goal
is encoded in the following objective function Z to be
maximized:

Z =
(

[lacI]ss
aTc − [lacI]ss

IPTG
[lacI]ss

aTc
+ [tetR]ss

IPTG − [tetR]ss
aTc

[tetR]ss
IPTG

)
/2

(3)

where the maximum value Z = 1 is achieved for
[lacI]ss

IPTG = [tetR]ss
aTc = 0.

The design problem is formulated as a MINLP where
the decision variables are contained in the vectors y and
x and the objective function to maximize is Z in (3), sub-
ject to the system’s dynamics (1). The following constraint
on the maximum number of active pairs (Mmax) is also
imposed:∑

i

∑
j

Yij ≤ Mmax. (4)

thus limiting the complexity of the circuit.
First we use the original formulation of the problem

by Dasika and Maranas [17] with a maximum of two
promoter-transcript pairs, and compare the performance
of the methods with the published results. Afterwards,
we gradually increase the network complexity to evalu-
ate how the methods proposed scale with the increasing
problem size. The results obtained are included in the
Results and discussion section.
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Multiobjective framework for automatic biocircuit design
In traditional engineering disciplines design problems are
often multicriteria, where a number of design objectives
are conflicting (typically production and cost) since we
cannot increase one without decreasing the other. Prob-
lems with multiple and conflicting design criteria do not
have a unique optimal solution, but a trade-off front
between the competing objectives, also known as Pareto
optimal front of solutions.

In biological systems, trade-offs between robustness,
fragility, performance, and resource demands have been
conjectured [6,29-32]. We know that living organisms
allocate limited resources to various competing traits, and
arising tradeoffs are central to evolutionary biology. Fur-
thermore molecular pathways have been shown in many
cases to play diverse and complex roles. However, de
novo engineered circuits have been designed to perform
a single task, and optimization based designs in Synthetic
Biology have been formulated as problems with a single
objective.

In this contribution we propose a multiobjective opti-
mization framework for the design of biocircuits. In first
instance, the design is formulated as a multicriteria opti-
mization problem with a number of conflicting objectives
and then a multiobjective optimization strategy is imple-
mented to find the Pareto optimal set of solutions.

In order to mathematically define the multiobjective
design problem, let us first introduce the following vec-
tors: z ∈ R

n is the vector of state variables coding for
the levels of all the species involved in the circuit (we will
denote its time derivative by ż); x ∈ R

r is the vector of
continuous variables containing a set of tunable parame-
ters; y ∈ Z

b is the vector of integer variables determining
the circuit model structure; k ∈ R

k is the vector of fixed
parameters and Ji(ż, z, x, y, k) for i = 1, . . . , s is the set
of conflicting objectives, where one subset of objectives
encodes aspects related to the performance of the circuit
and a second subset encodes aspects related to robustness
and/or cost.

The design of a biocircuit can be formulated as finding
a vector x ∈ R

r of continuous variables and a vector y ∈
Z

b of integer variables which minimize the vector J of s
objective functions:

min
x,y

J1(ż, z, x, y, k), J2(ż, z, x, y, p), . . . , Js(ż, z, x, y, k)

(5a)

subject to:

i) the circuit dynamics in the form of ODEs or
differential algebraic equations (DAEs) with the state
variables z and additional parameters k :

f (ż, z, x, y, k) = 0, z(t0) = z0, (5b)

ii) additional requirements in the form of equality and
inequality constraints:

h(z, k, x, y) = 0, (5c)

g(z, k, x, y) ≤ 0, (5d)

iii) upper and lower bounds for the real and integer
decision variables:

xL ≤ x ≤ xU , (5e)

yL ≤ y ≤ yU . (5f)

In order to evaluate the solutions of the multiobjective
optimization problem, we need to introduce the notion of
Pareto optimality [33]. Given two pairs (x∗, y∗), (x∗∗, y∗∗),
we say that the vector J(x∗, y∗) dominates J(x∗∗, y∗∗) if
J(x∗, y∗) ≤ J(x∗∗, y∗∗) for all i = 1, . . . , s with at least one
strict inequality. A feasible circuit defined by (x∗, y∗) is a
Pareto optimal solution of the multiobjective optimization
problem if it is not dominated by other feasible circuits.
The set of all Pareto optimal solutions is known as Pareto
front.

Computing the Pareto optimal set is a very challenging
task in the context of complex biocircuit design. On the
one hand, as indicated previously, high complexity imply
large search spaces, and on the other hand the expected
Pareto front is discrete and possibly non-convex, due to
the high nonlinearity of the biocircuits dynamics and the
existence of discrete decision variables.

There are a number of approaches to solve multiob-
jective optimization problems (MOPs) [34]. Evolutionary
approaches [35] allow to compute an approximation of the
entire Pareto front in one single run, but require large pop-
ulation sizes and consequently a high computational effort
for the systems with the complexity we want to tackle.
Scalar approaches consist in transforming the MOP into
one or more single objective problems, and include
among others the well known weighted sum approach,
Normal Boundary Intersection (NBI) and ε-constraint
methods [33].

In the weighted sum approach, weights must be changed
in order to generate different solutions in the Pareto front
and the performance depends on the choice of the weight-
ing coefficients, which is in general not straightforward.
This method cannot find solutions in concave parts of the
Pareto front.

NBI first builds a plane in the objective space which
contains all convex combinations of the individual min-
ima, denoted as convex hull of individual minima (CHIM)
and then constructs normal lines to this plane. The MOP
is reformulated as to maximize the distance from a point
on the CHIM along the normal through this point. When
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dealing with integer variables, there may not exist a fea-
sible solution on the selected normal to the CHIM, and
therefore NBI at least in its original formulation has lim-
ited applicability for discrete Pareto fronts.

In the ε-constraint strategy [33], the MOP is reduced to
a number of MINLP, where each MINLP is obtained by
minimising one of the objectives and converting the rest of
criteria to inequality constraints. Different solutions can
be obtained by changing the upper bounds on the objec-
tives not minimised. This methodology has two impor-
tant advantages for the design of complex biocircuits:
the methodology works well for discrete and non-convex
Pareto fronts and, in addition, it allows exploiting the
MINLP solvers introduced in the previous section, which
solve efficiently the resultant MINLPs at a reasonable cost.

Next, we describe the ε-constraint strategy imple-
mented in this work. The proposed optimization process
is composed of the following steps (for simplicity and
without loss of generality we have considered two objec-
tive functions J1 and J2):

1. Search for the optima of each of the individual
objectives, i.e.:(

x∗
1, y∗

1
)

,
(
x∗

2, y∗
2
)

.

2. Compute the individual objective bounds as:

J1 = J1
(
x∗

1, y∗
1
)

, J1 = J1
(
x∗

2, y∗
2
)

,

J2 = J2
(
x∗

2, y∗
2
)

, J2 = J2
(
x∗

1, y∗
1
)

.
where low and upper bars denote lower and upper
bounds respectively.

3. Select the objective function to be minimized,
denoted in what follows as the primary objective
(without loss of generality let us take J1 as the
primary objective).

4. For the non-minimized objective J2, generate a vector

ε = [ε1, . . . , εi, . . . , εm]

such that ε1 ≤ J2, εm ≥ J2 and ε1 < ε2 < . . . < εm.
5. Solve the MINLP:

min
x,y

J1(ż, z, x, y, k)

subject to:

εk ≤ J2(ż, z, x, y, k) < εk+1

for k = 1, . . . , m − 1 by means of one of the MINLP
solvers introduced in the previous section.

6. Evaluate the solutions obtained and construct the
Pareto front with the non dominated optimal ones.

Continuing with the example introduced in the previ-
ous section where the goal was to find a circuit with a
specific response upon induction, we introduce now an
additional design criterion. As mentioned, in the original

formulation the design objective was unique and given by
Eq. (3). Here we consider the protein production cost as
an additional objective to minimize, competing with the
circuit performance. This criterion has been suggested as
a design principle by several authors [6,36]. The cost of
protein production C is encoded in an objective function
that, considering the mass balance equations (1) takes the
form:

C =
∑

j

∫ T

0
Ejdt (6)

where T is the final time.
We apply the constraint strategy combined with the

MINLP solvers to obtain the Pareto front for different
degrees of circuit complexity. First, we set the maximum
number of pairs to Mmax = 2, and then we increase the
maximum number of pairs to evaluate how the Pareto
boundary evolves, and how the methodology proposed
scales with the systems size. The results obtained are
included in Results and discussion section.

One interesting application of the methodology pre-
sented is to explore new topologies of medium or high
order that perform a desired (complex) functionality. To
illustrate this we make use of the same library of compo-
nents of the previous example, but in this case searching
for a circuit topology with the capability to perform adap-
tation, setting a priori the desired level of complexity.

Adaptation is defined as the ability of the circuit to reset
itself after responding to a stimulus [37]. Here, we evalu-
ate the levels of LacI (output) in response to a sustained
stimulus of aTc (input). Ma et al. [37] assessed the ability
of a circuit to adapt after a given stimulus by measur-
ing two functional quantities encoded in two competing
objectives related to the sensitivity and the precision of the
system’s response. On the one hand, in order to maximize
adaptation after a given stimulus we need to maximize the
circuit’s sensitivity:

S = Opeak − Ot=0 (7)

where Opeak is the level of the output (in this case LacI) at
its maximum upon induction and Ot=0 is the level of the
output at the steady state before induction. On the other
hand, in order to maximize adaptation we need to maxi-
mize the circuit’s precision, i.e. we need to minimize the
following function:

P = Ot=T − Ot=0 (8)

where Ot=T is the level of the output at steady state
reached upon induction. The search for an adaptive cir-
cuit can be formulated then as a multiobjective optimiza-
tion problem where the constraints are imposed by the
circuit’s dynamics. In this way, it is possible to elucidate
whether is it possible to construct a circuit with capac-
ity for adaptation from the available set of components.
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The maximum and minimum number of allowed compo-
nents can be adjusted by means of inequality constraints.
The details and results of the corresponding multiobjec-
tive optimization problem are included in Results and
discussion section.

Results and discussion
Single objective global optimization design of a circuit
with inducer specific response
In this subsection we present the results obtained for the
monoobjective problem described in Methods section.
Starting from the indicated library of transcripts and pro-
moters (the corresponding generic circuit equations are
included in the Additional file 1) we search for the circuit
with best performance by maximizing Z defined in Eq. (3).
We use the MINLP solvers MITS, ACOmi and eSS with
the goal of minimizing J = −Z. We solve the optimiza-
tion problem for increasing levels of complexity, i.e. for an
increasing upper bound in the maximum number of pairs
(Mmax). Note that, for a library with p different pairs, the
number of possible circuits containing exactly M active
pairs is:

nC(p, M) = p!
(p − M)! M!

. (9)

According to this formula, the number of combinations
nC increases with p and also with the maximum number
of pairs Mmax as illustrated in the Additional file 2: Figure
S1 and S2. In what follows we do not modify the original

library of transcripts and promoters (p = 32) and evalu-
ate the performance of the methods for different values of
Mmax.

For Mmax = 2, the three MINLP solvers, MITS, ACOmi
and eSS, reached the same solution, the circuit with
active pairs (Plac1, tetR) and (Ptet2, LacI). In Figure 1, we
illustrate the best circuit found together with the corre-
sponding superstructure matrix, coefficients of the model
and active pairs. The value of the objective function for
the optimal circuit is J = −0.99998. This solution coin-
cides with the one obtained by Dasika and Maranas using
the outer approximation method [17].

The three global MINLP methods achieve the solu-
tion in substantially less computation time than the outer
approximation method and in particular MITS showed
the best performance for this example. Whereas the time
reported to find the optimum with the outer approxima-
tion method was of 200 minutes in an Intel 3.4 GHz Xeon
processor [17], MITS arrived to the same solution in less
than 200 seconds using an Intel 2.8 GHz Xeon, thus reduc-
ing the computational cost at least by a factor of 60. To
test the algorithm, we have used as starting guess the zero
vector 0 ∈ Z

32, since the objective function value is very
far from the optimum and the constraint is fulfilled. We
repeat the analysis starting from different initial guesses
fulfilling the constraint and the solver reaches the same
solution in similar time. The corresponding convergence
curves are illustrated in Additional file 2: Figure S3.

Here it is worthy of note that for the monoobjective
problem there exist a number of different circuits with

Figure 1 Optimum of the single objective design problem from [17] with the corresponding active pairs, superestructure matrix and
dynamic model equations. The full model equations can be found in the Additional file 1.
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similar performance. In Figure 2 we include four different
solutions (circuits 2 to 5) showing very good performance,
with values of J below −0.95 (note that by definition the
minimum value that J can reach is -1). In absence of
additional design criteria, and taking into account that dif-
ferent sources of error limit the precision of biocircuit
implementations, the selection of the best design among
a set of candidates with close objective function values is
rather arbitrary.

For Mmax = 3, the best solution found is the circuit 6
in Figure 2, with J = −0.999999. Again, MITS showed
the best performance, achieving the solution in less than
300 seconds, as it is shown in the convergence curves
illustrated in Additional file 2: Figure S4.

For Mmax = 32, i.e. increasing the maximum level of
complexity to 32 pairs (note that this is equivalent to the
problem with no constraint on the number of maximum

pairs), the best solution found is the circuit 7 in Figure 3
with 14 active pairs. It is important to remark that for
increasing levels of complexity the number of solutions
with similar values of the objective function (and conse-
quently similar performance) also increases. As an exam-
ple, we show the circuits 8 to 11 in Figure 3 with similar
level of performance and rather different topologies (for
space reasons we depict only the superstructure matrix for
all circuits except from 7). Note also that in terms of per-
formance, circuit 7 in Figure 3 is equivalent to circuit 6
in Figure 2. This fact leads to arbitrariness when it comes
to select the best solution, and suggest the convenience
of introducing additional competing criteria in order to
provide more realistic design settings.

Regarding solvers performance we observe that, at least
for short computation times, the solution found depends
on the initial guess (this dependency increases with

tetR lacIlacI
Plac1 Ptet 1

Circuit 2 (J=-0.979936):

tetR

lacI

lacI
Plac1

Circuit 3 (J=-0.979725):

Pλ 

tetR

lacI

lacI
Plac1

Circuit 4 (J=-0.979725):

tetR

lacI

lacI
Plac1

Circuit 5 (J=-0.959793):

Para Plac4

R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4 R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4

R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4 R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4

tetR

araC

Para Plac1

Circuit 6 (J=-0.999999):

R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4

LacI

Plac1
araC

lacI

cI

araC

Figure 2 Alternative circuit configurations with a maximum of 2 active pairs and similar levels of performance. For every circuit we include
the configuration, the superstructure matrix and the objective function value.
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Circuit 7 (J=-0.999999):
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Circuit 9 (J=-0.999998):
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Circuit 10 (J=-0.999996):
R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P
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Ptet 1
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   cI

   cI

   cI

   cI

   cI

   cI

   cI
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Circuit 8 (J=-0.999998):

R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4

Circuit 11 (J=-0.999994):

R1 R2 R3

P1

P2

P3

P4

P5

P6

P7

P8

R4

Circuit 7 

Figure 3 Circuits found with a maximum of 32 active pairs and similar levels of performance. The superstructure matrix is depicted for every
circuit and the value of the objective function J is indicated. The circuit structure shown corresponds to the best circuit found (circuit 7).

complexity) and therefore we test every method start-
ing from different initial guesses. Additional file 2: Figure
S5 illustrates the convergence curves of MITS starting
from different initial guesses. Concerning the best circuits
found, circuits 7, 9 and 11 in Figure 3 were obtained by
MITS in less than 1500 s, circuit 8 was found by ACOmi in
less than 3 hours and circuit 10 was found by eSS in less
than 300 seconds.

Remarkably, the three methods MITS, ACOmi and Ess
provided solutions with objective function values below
J = −0.9999 in less than 300 seconds, for all the initial
guesses tested.

Multiobjective global optimization design of a circuit with
inducer specific response.
Next, we introduce the protein production cost as an
additional criterion to the design problem. Our primary
objective is now the performance function J1 = −Z where
Z is given by Eq. (3) and the secondary objective is the cost
J2 = C, where C has been defined in Eq. (6). The problem
is solved for increasing levels of complexity, applying the
ε-constraint strategy.

For Mmax = 2 we know the solution y∗
1 from the pre-

vious monoobjective analysis, and the value of the cost
at this optimum is J2

(
y∗

1
) = 2432.3518. We search now

the individual optimum y∗
2 for the secondary objective,

finding the circuit with active pairs (Plac1, LacI) and
(Plac1, tetR). Solutions with values of J1 > 0 are discarded.
The value of the cost at the optimum is J2

(
y∗

2
) = 1129.09.

Taking into account that the upper and lower bounds
for the secondary objective function are precisely J2

(
y∗

1
)

and J2
(
y∗

2
)
, and with a step size of 50, we obtain six non

dominated points P1 . . . P6 corresponding to six circuits
with different topologies. The Pareto front is illustrated
in Figure 4. The three MINLP solvers have been used in
order to compare the results, and an exhaustive search
was also implemented, arriving to the same Pareto optimal
front. Let us remind that the exhaustive search is possible
only for low levels of complexity, since the computation
time increases exponentially as the number of maximum
pairs increases, as deduced from Eq. 9.

Following the same strategy, we compute the Pareto
front for Mmax = 3. The front obtained is shown in
Figure 5, and consists of four different points, labeled
Q1 . . . Q4 (note that Q2 = P1).

It is of relevance that the solution Q4 is significantly bet-
ter in terms of cost than any other and at the same time it
shows a very good performance (J1 < −0.95). The mul-
tiobjective formulation allowed in this case to find a non
intuitive topology which is a very good candidate for a
successful laboratory implementation. It can be deduced
also from Figure 5 how a small increase in complexity
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Figure 4 Pareto front for a maximum of 2 active pairs. The circuit configuration and the superstructure matrix are shown for every point of the
Pareto front.

from Mmax = 2 to Mmax = 3 leaded to significant
improvement in the Pareto front, where Q3 and Q4 are
non dominated by any of the circuits with two active pairs
(P1 . . . P6).

Finally, we compute the Pareto front for Mmax = 32.
The circuit Q1 (circuit 6 in Figure 2) obtained for Mmax =
3 is also the best solution found for the unconstrained
problem (together with the circuit 7 in Figure 3). By con-
straining also the minimum level of complexity by setting
Mmax > 3 we obtain the set of non-dominated solutions
depicted in Figure 6, together with the corresponding
superstructure matrices. In this figure it can be seen that
the multiobjective strategy employed allowed us to find
points in non-convex regions of the Pareto front, as it is
the case of the circuit R5.

Adaptive biocircuit with predefined complexity
Now, starting from the same library of components of the
previous example we search for a circuit configuration
with the ability for adaptation. We assume that one of

the parameters can be manipulated, in this case a kinetic
parameter related to the Ptet promoter αtet (see Additional
file 1). As indicated in Methods section the adaptive
capacity of the circuit is evaluated by the levels of the
output protein LacI in response to a sustained stimu-
lus of aTc, in particular by the levels at its maximum
upon induction Opeak , at the steady state before induc-
tion Ot=0 and at the steady state upon induction Ot=T .
Two competing objective functions are considered, the
circuit’s sensitivity defined by Eq. (7) and the circuit’s
precision measured through the formula in Eq. (8). The
multiobjective MINLP problem with 32 integer and 1 real
decision variables is solved with the ε-constraint strategy
proposed, maximizing as a primary objective the sensitiv-
ity, i.e. minimizing −S with S defined in Eq. (7) and setting
the precision as a constraint. In Figure 7A, we depict
one of the solutions of the Pareto front, where P < 20
with P defined in Eq. (8). As it is shown in Figure 7B,
the circuit is able to adapt upon a sustained stimulus
of aTc. The optimal value for the kinetic constant is
also indicated.
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Figure 5 Pareto front for a maximum of 3 active pairs (Q1, Q2 = P1, Q3, Q4). The Pareto front for a maximum of 2 active pairs is also shown.
Blue dots represent circuits with 2 active pairs and red dots represent circuits with 3 active pairs.

Figure 6 Pareto front for a minimum of 3 active pairs and a maximum of 32 active pairs. The superstructure matrix is shown for every point of
the Pareto front.
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Figure 7 Adaptive circuit found by multiobjective optimization. A) Topology and superstructure matrix. B) Circuit’s response upon aTc stimulus.

Conclusions
In this work we have introduced a multiobjective for-
mulation for the design of biocircuits. The presence of
more than one competing objective provides more real-
istic design settings where the solution is not unique
and every solution represents trade-off between different
criteria.

The multiobjective optimization in the context of
genetic circuit design posed a number of challenges
mainly due to the inherent nonlinear nature of the gene
circuit’s dynamics and the large search spaces involved
combining the presence of integer and real variables,
which makes the expected Pareto front discrete and pos-
sibly non-convex.

In order to overcome these difficulties we made use of
global optimization algorithms, showing their efficiency
for the MINLP problem resultant of the monoobjective
formulation of the design. Then, we provided a multiob-
jective optimization framework for the design of biocir-
cuits that combines the efficiency of the global MINLP
solvers with the capacity to handle multiple design
criteria.

Looking for further extensions the method presented
is flexible, accommodating to any ODE based model-
ing framework such that the circuit’s model structure is
obtained from the starting list of parts by giving values to
a set of binary variables.

The advantages of this multiobjective formulation were
shown through the design of a biocircuit with specific
response upon induction. Due to the efficiency of the
global solvers it was possible to obtain in reasonable
times the Pareto fronts for different levels of complexity
including circuits belonging to non-convex regions of the
optimal set of solutions. The capacity to handle circuits
with higher number of regulatory regions implies more
opportunities for parameter tuning.

Through an illustrative example, we have demonstrated
how using this framework we can obtain non intuitive

designs to perform a desired functionality setting up a
priori the desired level of complexity. This can be useful
in future contributions to explore and identify different
design principles for synthetic gene circuits.
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