
RESEARCH ARTICLE

Observation and quantification of the

morphological effect of trypan blue rupturing

dead or dying cells

Leo Li-Ying ChanID*, William L. Rice, Jean Qiu

Department of Advanced Technology R&D, Nexcelom Bioscience LLC., Lawrence, Massachusetts, United

States of America

* lchan@nexcelom.com

Abstract

Trypan blue has long been the gold standard for staining dead cell to determine cell viability.

The dye is excluded from membrane-intact live cells, but can enter and concentrate in mem-

brane-compromised dead cells, rendering the cells dark blue. Over the years, there has

been an understanding that trypan blue is inaccurate for cell viability under 80% without sci-

entific support. We previously showed that trypan blue can alter the morphology of dead

cells to a diffuse shape, which can lead to over-estimation of viability. Here, we investigate

the origin of the dim and diffuse objects after trypan blue staining. Utilizing image and video

acquisition, we show real-time transformation of cells into diffuse objects when stained with

trypan blue. The same phenomenon was not observed when staining cells with propidium

iodide. We also demonstrate the co-localization of trypan blue and propidium iodide, con-

firming these diffuse objects as cells that contain nuclei. The videos clearly show immediate

cell rupturing after trypan blue contact. The formation of these diffuse objects was monitored

and counted over time as cells die outside of the incubator. We hypothesize and demon-

strate that rapid water influx may have caused the cells to rupture and disappear. Since

some dead cells disappear after trypan blue staining, the total can be under-counted, lead-

ing to over-estimation of cell viability. This inaccuracy could affect the outcomes of cellular

therapies, which require accurate measurements of immune cells that will be infused back

into patients.

Introduction

Cell viability measurement is one of the most important characterizations for cellular therapy.

It is critical to accurately measure the viability for immune cell samples that will be re-intro-

duced into patients. Inaccurate cell viability measurement may lead to inefficacy or induce

unwanted autoimmune responses in patients undergoing therapeutic treatments [1–3]. The U.

S. Congress has also recognized the importance of cell counting and cell viability measurement

standards in the 21st Century Cure Act for cell and gene therapy. Cell counting and viability

measurement assurance were identified as opportunity for standards development in the
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workshop, “Synergizing Efforts in Standards Development for Cellular Therapies and Regen-

erative Medicine Products”, held by the U.S. Food and Drug Administration (FDA). Under

the consultation of National Institute of Standards and Technology (NIST) and other stake-

holders, various cell counting and cell viability measurement assurance tools were investigated

for improving the quality of cell therapy products [4].

For cell viability measurement, the trypan blue (TB) dye has been used for over a century

[5,6]. Although many issues have been documented, such as protein aggregation [7–9], a lim-

ited counting time window [10], and inaccurate measurement when viability is less than 80%

[11–13], TB remains the go-to viability dye. TB is an azo dye that has a molecular weight of

960 Da [6,14]; it can concentrate in membrane-compromised dead cells, but is excluded from

membrane-impermeable live cells [15,16]. We previously demonstrated that TB can cause

morphological changes in dead or dying cell populations (forming dim and diffuse objects),

and we quantitatively showed that TB assays over-estimate viability when experimental sam-

ples fall below 80% viability [13].

Our previous study mused on the identity of the diffuse objects in a TB-stained cell sample

[13]. Live (bright) and dead (dark, tight) cells are typically counted manually using a hemacy-

tometer or automatically using a bright field cell counter. However, the diffuse TB-positive

objects are only faintly visible under a light microscope (S1 Fig) and are therefore often not

counted, potentially leading to inaccurate viability measurements. There is often a 10 to 15%

viability difference between TB and nuclear fluorescent viability stains, with the latter method

yielding lower viability measurements.

In this work, we investigate the formation of these dim and diffuse objects in TB-stained

Jurkat cell samples in videos capturing the staining process in real time. Utilizing propidium

iodide (PI), a fluorescent viability dye that stains the nuclei of membrane-compromised dead

cells, we show that these diffuse objects are PI-positive, confirming that these are dead cells.

The videos show morphological changes occur in dead cells immediately after contact with

TB. Specifically, TB-positive cells expand and rupture, leading to the diffuse morphology. In

contrast, PI staining neither induces morphological changes nor ruptures the cell body. In

addition, as the cells die in an unfavorable environment, the diffuse objects increase over time.

The visual evidence recorded in the experiments reveal that TB can induce the formation of

these diffuse objects and ultimately leads to over-estimation of viability, which may have sig-

nificant effects for downstream cellular therapy assays.

Materials and methods

Cell culture and reagent preparation

The Jurkat cell line (TIB-152, ATCC, Manassas, VA) was cultured in RPMI 1640 (Gibco, Gai-

thersburg, MD) supplemented with 10% FBS (Gibco) and 1% penicillin/streptomycin (Sigma-

Aldrich, St. Louis, MO). The Jurkat cell culture was maintained in an incubator at 37˚C with

5% CO2. TB was purchased from BioVision (San Francisco, CA) and used at 0.4%, 0.2%, and

0.1% working concentration. PI was obtained from Nexcelom Bioscience (Lawrence, MA) and

used directly from the bottle.

Cellometer image cytometry instruments and disposable counting chamber

The Cellometer image cytometry instruments (AutoT4, AutoM10, Vision 5X/10X) were

employed to capture images and videos of the morphological effects of TB and PI on dead cells

[13]. Cellometer AutoT4 and AutoM10 are bright field-only automated cell counters with 4

and 10X optical objectives and a color camera for imaging and video acquisition. Cellometer

Vision are bright field and fluorescent image cytometers with a 5X or 10X objective. They use
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a monochromatic camera with two fluorescent channels: green (EX: 475 nm, EM: 527 nm)

and red (EX: 540 nm, EM: 660 nm). The red channel was used to detect PI fluorescence.

The Nexcelom counting slide (CHT4-SD100) contains two chambers that each holds 20 μL.

Each chamber has two small circular holes on the top, allowing injection of cells through one

and air escape out the other. After filling the chambers with cell sample, the slide is inserted

into the Cellometer system for image acquisition and analysis.

Initial visual observation of TB- or PI-stained Jurkat cells

A sample of Jurkat cells (10 mL) was collected from cell culture and stored at 4˚C for 2 days to

allow the cells to naturally die. After 2 days, a 20-μL aliquot was retrieved and stained 1:1 with

0.4% TB or PI. Half of the stained cell sample was pipetted into a counting chamber and

imaged using the Cellometer AutoT4 and AutoM10 in bright field. The captured images were

qualitatively assessed for cell morphology and population to differentiate between TB- and PI-

stained Jurkat cells. The initial visual observation was conducted three times.

Fluorescent image acquisition of TB and PI dual-stained Jurkat cells

The Cellometer Vision 10X was used to capture bright field and fluorescent images of TB- and

PI-stained Jurkat cells. First, a 20-μL aliquot of a cell sample stored at 4˚C for 1 day was stained

1:1 with PI (20 μL) and then pipetted into a counting chamber. It was imaged in both bright

field and fluorescence to determine the proper exposure time (3000 ms) for dead cells. A sam-

ple stained with 0.4% TB was also imaged to check for auto-fluorescence. Finally, a sample

(10 μL) was first stained with PI (10 μL) and then immediately stained with 0.4% TB (10 μL).

The dual-stained sample was imaged under bright field and fluorescence to confirm the pres-

ence of nuclei in the diffuse objects. Observation of dual-stained Jurkat cells with TB and PI

was conducted two times.

Video acquisition of TB and PI staining dead or dying cells

Both Cellometer AutoT4 and AutoM10 instruments were physically opened to allow access to

the stage that holds the counting slide. Jurkat cells (stored at 4˚C for 1 day) were pipetted into

a counting chamber, and a small piece of Scotch tape was used to block one of the two holes

on the chamber. Next, the counting chamber was placed directly under the objective lens for

video acquisition. The Camtasia software suite (TechSmith, Okemos, MI) was set up to capture

the imaging screen. Subsequently, ~10 μL of 0.4% TB was pipetted onto the top of the open

hole in the filled counting chamber, which allowed slow diffusion of TB into the cell sample.

The counting slide setup is shown in Fig 1. The slide was recorded for 1–10 min to show the

effects of TB on dead Jurkat cells. The same process was repeated for PI. The videos were sped

up with Adobe After Effect software (San Jose, CA). Video recording was conducted two times

for TB and PI staining Jurkat cells.

Time-course analysis of naturally-dying Jurkat cell populations

A naturally-dying Jurkat cell sample was produced by transferring 5 mL of cells (~4 x 106 cells/

mL) in one T25 flask, and placed into a bench-top drawer. The flask was kept in the drawer at

room temperature for the remainder of the experiment. A small aliquot (200 μL) of cells was

removed from the flask under sterile conditions at t = 0, 6, 12, 24, 48, 72, 96, and 168 h, stained

1:1 with 0.4% TB (Sigma-Aldrich, St. Louis, MO), and then analyzed using the AutoT4 at

n = 4. The software was used to determine the concentration and population percentages of
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the dead/dying cell population at different range of sizes (5–8, 8–12, and 12–30 μm). The

experiment was conducted three times.

Time-course analysis of naturally-dying mouse bulk splenocyte

populations

Fresh mouse bulk splenocyte sample was a kind donation from Christina A. Kuksin at the Uni-

versity of Massachusetts Amherst. Lysing protocol was first performed to lyse the red blood

cells in the splenocyte sample. Cells were spun down and re-suspended in 1 mL of ACK lysing

buffer (Life Technologies, Carlsbad, CA). After 5 min of incubation the cells were again spun

down and re-suspended in RPMI. The splenocytes were stored in room temperature and col-

lected at 0, 33, and 50 h. The cells were stained 1:1 with 0.1% TB and analyzed on the Vision

5X at n = 4. Similarly, the software was used to determine the concentration and population

percentages of the dead/dying cell population at different range of sizes (2–5, 5–9, and

9–30 μm). The experiment was conducted one time due to the availability of mouse

splenocytes.

Time-course analysis of naturally-dying PBMC populations

Frozen PBMCs were purchased from Stemcell Technologies (Vancouver, Canada). The

PBMCs were thawed and washed following manufacturer instructions. After washing, the

PBMCs were resuspended in 4 mL of RPMI media in a T25 flask and incubated overnight at

37˚C with 5% CO2. Approximately 1 mL of the PBMCs was removed and pipetted into a sterile

T25 flask and stored at room temperature and collected at 0, 24, 48, and 72 h. The PBMCs

were stained 1:1 with 0.2% TB and analyzed on the AutoT4 at n = 4. Similarly, the software

was used to determine the concentration and population percentages of the dead/dying cell

population at different range of sizes (3–9, 9–13, and 13–30 μm). The experiment was con-

ducted one time.

Fig 1. Counting chamber setup for video acquisition. (a) A Nexcelom counting chamber is first filled with 20 μL of Jurkat cells. (b) A small piece of

Scotch tape is then placed over the air escape hole to inhibit flow of liquid in the chamber. (c) Next, a 10 μL aliquot of trypan blue is pipetted into the

inlet hole to allow diffusion into the chamber. (d) The red square indicates the location were the interaction between Jurkat cells and trypan blue is

recorded.

https://doi.org/10.1371/journal.pone.0227950.g001
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In addition, the AutoM10 was used to record the formation of the diffuse objects described

previously. The slide was recorded for 10 min to show the effects of TB on dead PBMCs. The

video was sped up similarly.

Effects of buffer concentration on the cell rupturing phenomenon with TB

To investigate the potential cause of cell rupturing, we resuspended the Jurkat cells in different

concentrations of phosphate-buffered saline (PBS) to examine the effects of water influx. One-

day-old Jurkat cells were collected and separated into seven 15-mL centrifuge tubes at 2 mL/

tube. The samples were centrifuged and resuspended in 0.25, 1, 2, 4, 6, 8, or 10X concentrated

PBS, as well as a control with media only. Next, each sample was stained 1:1 with 0.2% TB, and

images were immediately captured using AutoM10. The difference of light intensity of TB-

stained Jurkat cells and background (ΔIntensity = IntensityBackground − IntensityCell) were mea-

sured using ImageJ from the captured images.

The experiment was repeated by resuspending Jurkat cells in different concentrations of

sucrose. Two-day-old Jurkat cells were collected and separated into eight micro-centrifuge

tubes at 400 μL/tube. The samples were centrifuged and resuspended in 9.4, 18.8, 37.5, 75.0,

150.0, 300.0, 1500.0, or 3000 μM of sucrose. Next, each sample was stained 1:1 with 0.2% TB,

and images were immediately captured using AutoT4. The light intensity of TB-stained Jurkat

cells were measured using ImageJ from the captured images. Both PBS and sucrose experi-

ments were conducted two times.

Video and image acquisition of TB effects on heat-killed Jurkat cells

Video and image acquisition on the AutoM10 were performed for a heat-killed sample to

observe differences with naturally dying cells. A fresh Jurkat cell sample was aliquoted (10 mL)

into a 50-mL tube and then placed into boiling water on a hot plate for 10 min. Next, 1 mL of

the heat-killed cells were mixed with 1 mL of fresh Jurkat cells. The sample was pipetted into a

counting chamber as described above. Subsequently, ~10 μL of 0.4% TB was pipetted on to the

open hole, and the slide was recorded for 10 min. The final video was sped up similarly. Still

images were acquired for the mixed Jurkat cells stained with TB for a final comparison. Cell-

ometer Vision 10X was also used to capture the mixed Jurkat cells double-stained with PI and

TB. Video recording was conducted two times for TB staining heat-killed Jurkat cells.

Results

Visual analysis of TB-stained Jurkat cell morphologies

The bright field images of 2-day-old Jurkat cells captured with the AutoT4 and AutoM10

immediately after TB staining showed three distinct morphological populations (Fig 2). Cells

that were bright, round, and plump were live cells not stained by TB. Cells that were blue,

dark, and compact are dead and stained by TB. Large, dim, and diffuse objects were potentially

dead or dying cells that were affected by TB, as previously described [13]. Jurkat cells stained

with PI did not exhibit the same morphological changes. Round cells with thick membranes

and bright centers were most likely alive, while smaller cells with low bright field contrast were

potentially dead. The imaging results confirm the morphological effects of TB on cell samples

and the lack of effects with PI. The AutoT4 at 4X magnification was initially utilized to capture

images and videos of ruptured cells (Fig 2a). The AutoM10 at 10X magnification was used to

enhance the resolution and identify more detailed features of the ruptured cells (Fig 2b). The

10X magnification showed some bright material surrounding the diffuse objects, which resem-

bled the ruptured cell membrane. The bright field images acquired by AutoT4 and AutoM10

Observation and quantification of the morphological effect of trypan blue rupturing dead or dying cells
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showed different background light intensity, which was dependent on the magnification of the

system, and did not interfere with image analysis. It is important to note that the initial visual

and quantification experiments utilized Jurkat cells (immortalized T lymphocytes) as a cell

model for our experiments because these cells better mimic the cells used in cellular therapy.

Visual proof that diffuse TB-positive objects are dead cells

To prove that dim and diffuse objects are dead cells, a test was conducted to determine if these

objects contain nuclear DNA. First, we showed that PI-stained dead cells fluoresce brightly at

the set exposure time of 3000 ms, and then showed that TB-stained objects did not auto-fluo-

resce in the red channel at the same exposure time, eliminating the uncertainty of fluorescent

signals when cells are dual-stained with TB and PI (S2 Fig). Finally, dual TB and PI staining

showed an overlap between the PI fluorescent signal and TB-positive objects, indicating that

the diffuse TB-stained objects were in fact dead cells (Fig 3a). Merged bright field and red fluo-

rescence images show that PI-positive cells retained a compact appearance and did not appear

to exhibit the diffuse morphology of TB-positive cells (Fig 3b), which suggests that PI does not

have the same morphological effects as TB.

Fig 2. Bright field images of 2-day-old Jurkat cells stained with trypan blue or propidium iodide. The cells were imaged using the Cellometer AutoT4

(top) or AutoM10 (bottom). Trypan blue-stained Jurkat cells were classified into three groups: live (white arrow), dead (black arrow), and diffuse (gray

arrow). The diffuse objects at 10X magnification showed bright materials surrounding them, resembling ruptured cell membrane. Cells stained with

propidium iodide did not exhibit the same diffuse morphology as trypan blue-stained cells.

https://doi.org/10.1371/journal.pone.0227950.g002
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Video evidence of TB rupturing dead or dying Jurkat cells

After confirming that the TB-positive diffuse objects were all PI-positive, we recorded the mor-

phological transformation of 1-day old Jurkat cells during TB staining. S1 Video (~30 s corre-

sponding to 90 s in real time) showed TB diffusing across the screen from bottom to top,

which changed the cells to large diffuse objects (from ~8 to 26 μm) within 45 s after interacting

with TB. S2 Video (~6 s at normal speed) showed TB diffusing from top to bottom, which

illustrated cell rupturing within ~2 s and disappearing toward the end. S3 Video (~30 s corre-

sponding to 10 min in real time) showed TB-induced morphological changes in dead Jurkat

cells at ~7 min. Visually, some dead cells were rendered dark and compact, while others were

dim and diffuse. Finally, PI-staining of Jurkat cells is shown in S4 Video (~30 s corresponding

to 10 min in real-time), resulting in no observable morphological changes.

Formation of diffuse TB-stained Jurkat cell population over time

The morphological changes of TB-stained Jurkat cells were monitored over 168 hours to quan-

tify the change in the diffuse dead/dying cell concentration and population percentages. The

time-dependent bright field images of TB-stained Jurkat cells are shown in Fig 4a, which dis-

played the change in the number of diffuse cells over time. The average cell size results with

standard deviation (Fig 4b) of TB-stained Jurkat cells showed increase in the diffuse popula-

tion (12–30 μm) in the first 24 hours, and gradually decreased over time (n = 4 cell samples).

On the other hand, the cells typically counted (8–12 μm) showed slight increase over time.

Finally, a small size population (5–8 μm) showed significant increase over time that repre-

sented cell fragments and debris. Correspondingly, the TB-stained Jurkat cell concentrations

increased over the 168 hours (Fig 4c). Approximately 100–500 cells were counted to generate

the cell size graphs.

Fig 3. Bright field and fluorescent overlay images of 1-day-old Jurkat cells stained with propidium iodide with or without trypan blue. The cells were

imaged using the Cellometer Vision 10X. (a) Co-localization of propidium iodide and trypan blue confirmed that dim and diffuse objects were dead cells. (b)

Jurkat cells stained with propidium iodide retained cell membrane morphology.

https://doi.org/10.1371/journal.pone.0227950.g003
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Formation of diffuse TB-stained mouse splenocyte population over time

The morphological changes of TB-stained mouse splenocytes were monitored over 50 hours

to quantify the change in the diffuse dead/dying cell concentration and population percent-

ages. The time-dependent bright field images of TB-stained mouse splenocytes are shown in

Fig 5a, which displayed the change in the number of diffuse cells over time. The average cell

size results with standard deviation (Fig 5b) of TB-stained mouse splenocytes showed decrease

in the diffuse population (9–30 μm) over 50 hours (n = 4 cell samples). On the other hand, the

cells typically counted (5–9 μm) and fragmented cells (2–5 μm) showed increase over time.

Correspondingly, the TB-stained mouse splenocyte concentrations increased slightly over the

50 hours (Fig 5c). Approximately 100–500 cells were counted to generate the cell size graphs.

Formation of diffuse TB-stained PBMC population over time

The morphological changes of TB-stained PBMCs were monitored over 72 hours to quantify

the change in the diffuse dead/dying cell concentration and population percentages. The time-

dependent bright field images of TB-stained PBMCs are shown in Fig 6a, which displayed the

change in the number of diffuse cells over time. The average cell size results with standard

deviation (Fig 6b) of TB-stained PBMCs showed slight decrease in the normal and diffuse pop-

ulations (9–30 μm) over 72 hours (n = 4 cell samples). On the other hand, the fragmented cells

(3–9 μm) showed high starting percentages and decreased over time. Correspondingly, the

TB-stained PBMC concentrations increased significantly over the 72 hours (Fig 6c). S5 Video

showed the morphological changes to the PBMC during TB staining. Approximately 100–200

cells were counted to generate the cell size graphs.

TB-based cell rupturing is caused by water influx

We hypothesized that cell rupturing may be due to higher osmotic pressure causing rapid

influx of water. Different PBS concentrations had obvious effects on TB staining (Fig 7a). The

Fig 4. Time-course morphological analysis of TB-stained Jurkat cells. (a) Bright field images of TB-stained Jurkat cells acquired by the AutoT4 showing

diffuse objects. (b) Time-dependent size populations over 168 h, showing increase in diffuse objects. (c) Concentration changes for different size

populations over time.

https://doi.org/10.1371/journal.pone.0227950.g004
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Fig 5. Time-course morphological analysis of TB-stained mouse splenocytes. (a) Bright field images of TB-stained mouse splenocytes acquired by the

Vision 5X showing diffuse objects. (b) Time-dependent size populations over 50 h, showing increase in diffuse objects. (c) Concentration changes for different

size populations over time.

https://doi.org/10.1371/journal.pone.0227950.g005

Fig 6. Time-course morphological analysis of TB-stained PBMCs. (a) Bright field images of TB-stained PBMCs acquired by the AutoT4 showing diffuse

objects. (b) Time-dependent size populations over 72 h, showing increase in diffuse objects. (c) Concentration changes for different size populations over

time.

https://doi.org/10.1371/journal.pone.0227950.g006
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Fig 7. Bright field images and trypan blue intensity analysis of aged Jurkat cells resuspended in different buffer concentrations. (a)

Jurkat cells were resuspended in 0.25, 1, 2, 4, 6, 8, or 10X concentrated PBS, and imaged using the AutoM10. The white arrows

indicated the change from diffuse to dark objects as PBS concentration increased, (b) which was also validated with ImageJ intensity

measurement of the TB-stained cells. A significant precipitation formed when exposed to high salt concentrations with trypan blue. (c)

Jurkat cells were resuspended in 9.4, 18.8, 37.5, 75.0, 150.0, 300.0, 1500.0, or 3000 μM of sucrose, and imaged using the AutoT4.

Similarly, the bright field images showed increase in TB darkness as sucrose concentration increased, (d) which again was validated by

the ImageJ intensity analysis.

https://doi.org/10.1371/journal.pone.0227950.g007
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use of 0.25X PBS led to increases in the number and size of ruptured cells. Similar to cells in

medium, those incubated in 1X to 6X PBS had similar diffuse morphology but with increasing

darkness. The 8X and 10X PBS formed precipitates, presumably due to high salt concentration

[17], but reduced the number and size of ruptured cells, with a significant increase in darkness.

The PBS concentration-dependent darkness is shown in Fig 7b, which showed the reduction

in light intensity as the PBS concentration increased. These results strongly indicate that cells

ruptured due to water influx during TB staining.

Similarly, when Jurkat cells were resuspended in various concentrations of sucrose, we

observed the reduction in light intensity as the sucrose concentration increased (Fig 7c and

7d), indicating increasing TB molecules in the dead/dying cells. However, the light intensity

reduction decreased at the two highest sucrose concentrations, which could be due to the den-

sity of solution preventing proper mixing with TB.

Heat-killed dead cells present different TB staining behaviors

We previously showed that heat-killed Jurkat cells stained with TB did not exhibit diffused

morphology [13,18]. Similarly, these cells showed a very different staining pattern than natu-

rally dying cells. In S6 Video, TB appeared to enter the dead cells and increase the darkness

without rupturing the membranes (10X, ~30 s corresponding to 10 min in real time). Cell size

analysis revealed that the change was less than 1 μm. The final still images showed no expan-

sion of TB-stained cells (Fig 8a), and PI fluorescence was emitted by dual-stained samples (Fig

8b). It is important to note that we utilized the mixture of live and heat-killed Jurkat cells to

demonstrate morphological distinction compared to naturally dying cells when stained with

trypan blue.

Discussion

Cellular therapies have become important cancer treatments due to their efficacy and the 2017

approval of two chimeric antigen receptor (CAR) T cell therapies by the FDA [19]. CAR T cell

therapy requires gene editing of T cells from patients, expanding the culture, and infusing the

final products back into the patients. Accurate cell counting is needed to ensure proper dos-

ages are administered. More critically, cell products must have acceptable viability to minimize

the risk of an autoimmune response [1,2], where the FDA recommends greater than 70% via-

bility for cellular therapy products [20]. We hypothesize that transferring a large amount of

nonviable cells to the patients may pose some potential serious side effects such as cytokine

release syndrome [21].

Since 2012, we have scientifically identified and published two articles related to cell count-

ing issues with TB staining. The first revealed that bright field counting with TB can over-

count live peripheral blood mononuclear cells [22]. The second publication quantitatively

showed that TB can cause morphological changes in dead or dying cells, transforming them to

dim and diffuse shapes for Jurkat cells and primary mouse splenocytes [13]. The origin and

identity of these objects have been since unanswered. In this work, we present visual evidence

of their formation, as well as a potential explanation of why they form in the presence of TB.

Biologists typically stain cells 1:1 with TB at concentrations ranging from 0.05% to 1% [23],

which may cause inconsistencies in the identification of dead or dying cells as we previously

reported [13]. Stained cells are observed under bright field when the diffused objects have

already formed and/or disappeared, thus they are not included in the dead cell count. Tradi-

tionally, diffuse objects were difficult to see in microscopy images, causing researchers to

under-count dead cells and over-estimate viability. In contrast, the optical components in
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Cellometer instruments were able to clearly image the dim and diffuse objects at various try-

pan blue concentrations and instruments.

We were able to set up the cell counting chamber and allow TB to diffuse in, so the interac-

tion between cells and dye could be observed and recorded. The videos clearly showed that

some cells stained with TB immediately ruptured and formed the diffuse objects (S1 and S2

Videos), while PI (S4 Video) did not induce the same morphological changes (S3 Fig). In

Video 1–3, cells ruptured over different time frames; some ruptured immediately after contact-

ing TB, some were affected in less than 20 s, and some ruptured more than 5 min later. This

could be due to the TB diffusion rate in the counting chamber. PI staining showed that the dif-

fuse objects contained DNA, confirming they were cells. The live cell appearance was not

affected by TB or PI, thus both methods yielded comparable live cell counts as previously

reported [13].

Fig 8. Bright field and fluorescent images of a 1:1 mixture of fresh and heat-killed Jurkat cells stained with trypan blue with or without propidium iodide.

The cells were imaged using both AutoM10 and Vision 10X. (a) Unlike naturally dying cells, no membrane rupturing was observed, and heat-killed Jurkat cell

morphology remained tight and dark when stained with trypan blue. (b) Co-localization of trypan blue and propidium iodide in heat-killed Jurkat cells.

https://doi.org/10.1371/journal.pone.0227950.g008
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The diffuse objects were quantified over time to demonstrate that as cells become

unhealthy, they become more fragile which allowed the TB to induce the formation of more

diffuse cells. The Jurkat cells were initially at high viability, and in the first 24 hours, the diffuse

objects increased from 30–50%, which corresponded to the images. However, although the dif-

fuse TB-stained cell concentration increased, the percentages did not continue to increase,

which could be due to the lack of whole intact cells in the samples readily affected by TB. On

the other hand, the initial condition of the primary mouse splenocytes was already showing

large amount of diffuse objects potentially due to the preparation procedure and viability.

Finally, primary human PBMCs initially showed large amount of fragmented cells and debris,

which may require more washing steps. We were able to observe the formation of large diffuse

objects (S5 Video) over time. It is important to note that Jurkat cells, primary mouse spleno-

cytes, and PBMCs were selected as the representation of immune cells typically used in the dis-

covery phase of cell therapy.

Cell rupturing can be mainly attributed to rapid water influx of water. We investigated

whether osmotic pressure played a critical role in cell rupturing in the presence of TB by resus-

pending cells in hypertonic, isotonic, and hypotonic buffers. We hypothesized that binding

with TB rapidly increased the number negatively charged residues on cytoplasmic proteins

[16,24], which attracted more positively charged ions such as sodium, and this led to high

water influx due to osmotic pressure that ruptured the already fragile cell membrane and cyto-

skeleton [3,25–27]. We observed increase in darkness in dead/dying Jurkat cells as PBS con-

centration increased, which indicated improvement in TB staining caused by high salt content

in the buffer. In addition, the experiment was performed with various concentrations of

sucrose, which is another method of changing the osmotic pressure of the buffer solution. The

results again showed increased darkness in TB-stained Jurkat cells as sucrose concentration

increased. However, the effects were not as dramatic as with a salt solution, which indicated

that the rupturing may be affected more by the ionic strength of the media or buffer. Interest-

ingly, the heat-killed cells did not rupture by TB (S6 Video), which may be caused by the dena-

turing of membrane proteins during boiling, resulting in cell membrane hardening that can

withstand the influx of TB and water [28,29]. Therefore, in order to generate cell conditions

that can form diffuse objects after TB staining, we allowed the cells to die in an unfavorable

environment. We observed that the diffuse objects typically form at lower cell viabilities for

immune cells. In contrast, we did not observe the similar morphological changes for typical

cancer cell cultures at high viabilities.

It is important for biologists to select the most accurate cell counting method that is fit-for-

purpose, especially for cellular therapy products such as CAR T, where cell number and viabil-

ity significantly affect treatment efficacy. Cells that rupture during TB staining are difficult to

see under bright field imaging and can be under-counted, leading to an over-estimation of cell

viability. We suggest using fluorescent nuclear staining methods that may estimate cell viability

more accurately [13,18,22,30–32]. Future work will involve in developing a method to validate

cell viability measurement, as well as identifying different cell populations relating to the dying

process [33] to further improve the characterization of cell fitness and death.

Supporting information

S1 Video. Bright field video captured with AutoT4 (4X, ~30-s time lapse corresponding to

90 s in real time) of staining Jurkat cells with trypan blue. The Jurkat cell in the red circle

immediately became diffuse after interacting with trypan blue. Numerous dead Jurkat cells

were stained with trypan blue and transformed into diffuse objects.

(MP4)
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S2 Video. Bright field video captured with AutoM10 (10X, ~8 s in real time) of staining

Jurkat cells with trypan blue. Resolution was improved at 10X magnification. The Jurkat cells

in the red circle immediately ruptured after contact with trypan blue. Many other cells clearly

developed large and diffuse morphology.

(MP4)

S3 Video. Bright field video captured with AutoM10 (10X, ~30-s time lapse corresponding

to 10 min in real time) of staining Jurkat cells with trypan blue. The Jurkat cells in the red

circle again showed staining and morphological transformation after contact with trypan blue.

The cells clearly expanded into large and diffuse shape.

(MP4)

S4 Video. Bright field video captured with AutoM10 (10X, ~30-s time lapse corresponding

to 10 min in real time) of Jurkat cells staining with propidium iodide. Unlike trypan blue,

the video showed no morphological changes to cells staining with propidium iodide within 10

min shown in the red circle.

(MP4)

S5 Video. Bright field video captured with AutoM10 (10X, ~25-s time lapse corresponding

to 2 min in real time) of staining PBMCs with trypan blue. The PBMCs in the red circle

immediately ruptured after contact with trypan blue.

(MP4)

S6 Video. Bright field video captured with AutoM10 (10X, ~30-s time lapse corresponding

to 10 min in real time) of staining heat-killed Jurkat cells with trypan blue. The red circle in

the video indicates dead heat-killed Jurkat cells stained with trypan blue without rupturing the

cell membrane.

(MP4)

S1 Fig. Digitally captured bright field image from a light microscope using the 10X objec-

tive. The zoomed image shows three populations: bright, round, and plump (white arrow, live

cell); blue, dark, and tight (black arrow, dead cell); and large, dim, and diffuse (gray arrow,

ruptured dead cell).

(TIF)

S2 Fig. Bright field and fluorescent images of 1-day-old Jurkat cells stained with trypan

blue or propidium iodide and imaged using the Vision 10X. (a) Dead Jurkat cells stained

with propidium iodide exhibited bright red fluorescence. (b) Dead Jurkat cells stained with try-

pan blue showed no background signal.

(TIF)

S3 Fig. Time-course bright field images cropped from the videos. The progression of the

images show the morphological changes to the cells staining with TB or PI.

(TIF)

S1 Data. Measurement and analysis of morphological changes for TB-stained Jurkat cells.

(XLSX)

S2 Data. Measurement and analysis of morphological changes for TB-stained mouse sple-

nocytes.

(XLSX)
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S3 Data. Measurement and analysis of morphological changes for TB-stained human

PBMCs.

(XLSX)

S4 Data. Measurement and analysis of the light intensity of TB-stained Jurkat cells in vari-

ous concentrations of PBS.

(XLSX)

S5 Data. Measurement and analysis of the light intensity of TB-stained Jurkat cells in vari-

ous concentrations of sucrose.

(XLSX)
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