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Abstract: Today, the introduction of metabolomics, like other omics sciences, into clinical practice
as a personal omics test that realizes the perfect analytical capabilities of this science has become
an important subject. The assembled data show that the metabolome of biosamples is a collection
of highly informative and accurate signatures of virtually all diseases that are widespread in the
population. However, we have not seen the emergence of personalized metabolomics in clinical
practice. This article analyzes the causes of this problem. The complexity of personal metabolic data
analysis and its incompatibility with widely accepted data treatment in metabolomics are shown.
As a result, the impossibility of translating metabolic signatures accumulated in databases into a
personal test is revealed. Problem-solving strategies that may radically change the situation and
realize the analytical capabilities of metabolomics in medical laboratory practice are discussed.

Keywords: metabolomics; personal analysis; laboratory-developed test; challenges; mass spectrometry;
p-value; disease signature

1. Introduction

Following genomics and proteomics, the results of metabolomics testing for medical
purposes are promising [1,2]. The Metabolomics Society has noted that the study of
metabolism at the global or ‘omics’ level is a rapidly growing field that can profoundly
impact medical practice. Today, doctors use only a tiny fraction of the information in the
metabolome. They usually measure only a narrow subset of substances in the blood to
assess health and disease. The Metabolomics Society has declared that “the narrow range
of chemical analyses in current use by the medical community today will be replaced in the
future by analyses that reveal a far more comprehensive metabolic signature. This signature
is expected to describe global biochemical aberrations that reflect patterns of variance in
states of wellness, more accurately describe specific diseases and their progression, and
greatly aid in differential diagnosis” [3].

The metabolic data accumulated over the last decades make it possible to create a
holistic test through panoramic measurement of metabolites in a biomaterial. Metabo-
lite databases contain comprehensive information about disease signatures, metabolic
pathways, abnormal concentrations of metabolites associated with different conditions,
and descriptions of metabolite locations in organs, tissues, and even their subcellular
localization (Table 1). Thus, the introduction of personal metabolomics, i.e., the use of high-
throughput measurements of large sets of low-molecular-weight substances in biosamples
with the subsequent use of the metabolic data available today for diagnostic purposes of a
particular person, has long been actual [4–9].

The success of the implementation of metabolomics in laboratory diagnostics has
become even more intriguing because metabolomics tests can be implemented in a direct-
to-customer format. Mass spectrometry of metabolites, widespread in metabolomics, is

Metabolites 2021, 11, 715. https://doi.org/10.3390/metabo11110715 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0002-0730-1725
https://orcid.org/0000-0002-5803-2529
https://orcid.org/0000-0003-3003-7595
https://orcid.org/0000-0002-5314-5727
https://doi.org/10.3390/metabo11110715
https://doi.org/10.3390/metabo11110715
https://doi.org/10.3390/metabo11110715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11110715
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11110715?type=check_update&version=3


Metabolites 2021, 11, 715 2 of 9

compatible with dry blood spot (DBS) samples [10], allowing the collection of capillary
blood unaided at home. Subsequent transportation of DBS samples to the laboratory by
mail or specialized courier service can make metabolomic tests convenient for customers
and available almost everywhere. The capabilities of bioinformatics data treatment can pro-
duce the metabolomics analysis results in a user-friendly format, making them acceptable
to a wide range of clients.

Table 1. Data presented in metabolite databases.

Metabolite Database 1 Metabolic Data

Human Metabolome Database [11]

631 disease signatures
808 human metabolic pathways

abnormal concentrations of metabolites for 352 conditions
110 sets based on organ, tissue, and subcellular localization

MetaboAnalyst [12]

Disease signatures:
344 metabolite sets for human blood
384 metabolite sets for human urine

166 metabolite sets for human cerebral spinal fluid
44 metabolite sets for human feces

Pathways:
99 metabolite sets based on normal human metabolic pathways

84 human metabolic pathways
461 metabolite sets based on drug pathways

Other types:
4598 metabolite sets based on their associations with single

nucleotide polymorphism loci
912 metabolic sets predicted to change in the case of

dysfunctional enzymes
73 metabolite sets based on organ, tissue, and

subcellular localization

Small Molecule Pathway Database [13,14]

351 pathways (total number)
113 disease pathways

70 normal metabolic pathways
168 drug action pathways

1 Data are presented for only three metabolite databases to show the amount of metabolomic data available for laboratory diagnosis—an
overview of all databases is outside the scope of this article.

The concept of multiple measurements from a small sample of blood is a long-standing
and exciting idea for BioTech that has attracted colossal funding. For example, a startup
company that claimed to develop a rapid analytical technique for a small amount of blood
was valued at $10 billion before it collapsed [15]. In conjunction with the simplified regu-
latory rules for omics tests, for example, a laboratory-developed test (LDT) [16], in some
cases, only a Clinical Laboratory Improvement Amendments (CLIA) laboratory is required;
therefore, it is difficult to find a more attractive new direction in laboratory diagnostics.
However, despite the evident potential, the only company that has made metabolomic tests
available is Metabolon, Inc (Morrisville, NC, USA). In 2018, they announced the availability
of the Meta UDx™ test for the diagnosis of rare and undiagnosed diseases in children and
adults; this test has been analytically validated under the CLIA as an LDT [17].

What is the problem? Why is a relatively quick and comprehensive metabolomic
analytical test not widespread in clinical practice (Figure 1)? The main aim of this paper
is to highlight these problems, i.e., to show global challenges that prevent the entry of
personal metabolomics into practical medicine inherent to metabolomics analytical and
bioinformatic performance.
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eters of a personal test. Therefore, advances in this direction are also important for the 
introduction of personal metabolomics. Nevertheless, since these limitations are crucial 
for personal metabolomics, they are already well described [18] and not considered fur-
ther in this article. 
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It should also be noted that there are different technological platforms in metabolom-
ics with their own advantages. The detection of large numbers of metabolites with high 
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ducibility problems can be better addressed by nuclear magnetic resonance spectroscopy. 
However, the problems described below are independent of the analytical platform used, 
i.e., they are general to all personal metabolomics. 

  

Figure 1. The mystery of translating metabolomics into personalized analysis.

One of the reasons is the problem of standardization that occurs with multiple mea-
surements. However, such difficulties in standardization are incomparable with the po-
tential benefits of metabolomics-based diagnostics. In addition, there are already many
standardization methods that can be implemented in high-tech laboratories, where blood
samples, including those collected at home, can be sent from anywhere by mail as a
DBS [10]. The next problem is the identification of metabolites, which is the bottleneck
of all metabolomic studies. Metabolite identification is the most laborious and expensive
part of the metabolomics analysis, which usually does not fit within the time and cost
parameters of a personal test. Therefore, advances in this direction are also important for
the introduction of personal metabolomics. Nevertheless, since these limitations are crucial
for personal metabolomics, they are already well described [18] and not considered further
in this article.

So, the boom in the introduction of such an attractive direction as personalized
metabolomics is being held back by other more pronounced problems. Mass spectrom-
etry laboratories that successfully work in metabolomics studies encounter them when
switching to the analysis of a particular person. We also met a similar phenomenon in our
practice. Our work in metabolomics research has been going on for many years. It has
recently focused on personal data, which allowed us to see and describe the problems of
personalized metabolomics.

It should also be noted that there are different technological platforms in metabolomics
with their own advantages. The detection of large numbers of metabolites with high sensi-
tivity is a significant advantage of mass spectrometry-based methods. Some reproducibility
problems can be better addressed by nuclear magnetic resonance spectroscopy. However,
the problems described below are independent of the analytical platform used, i.e., they
are general to all personal metabolomics.



Metabolites 2021, 11, 715 4 of 9

2. Main Challenges of Personal Metabolomics
2.1. First Challenge

The main problem is that metabolomic data are usually obtained from case–control
studies. The design of such studies is very common in science. The group of control samples
is compared with the experimental group (disease). In this case, all individual features that
are not reproduced in the group are not statistically significant and thus are filtered out, and
only statistically significant group-specific features are detected. For these types of studies,
the t-test or the nonparametric Mann–Whitney–Wilcoxon test is usually used (Table 2).
Such group-specific data are collected in the metabolite databases. Potential biomarkers are
those metabolites whose levels in the sample demonstrate significant divergence from the
norm (i.e., typically exhibit a high area under the receiver operating characteristic curve)
and can be used in clinical laboratory tests. However, the emergence of new biomarkers of
diseases today is a rare event. Specifically, the metabolites in the databases mainly provide
biological insights and, due to weak diagnostic capacity, they may be used for diagnostics
only together (as sets, molecular assemblies, signatures, footprints, molecular barcodes,
etc.), summarizing their diagnostic potential. Unfortunately, this leads to the fact that
the accumulated metabolomic data are not translated into a personal analysis, since the
detection of metabolic signatures in personal data is challenging.

Table 2. Comparison of data processing in metabolomics case–control studies and personal
metabolomics analysis.

Feature Metabolomics Study Personal Metabolomics
Analysis

Design of study Case-control type (group
vs. group) Sample vs. control set

Typical statistics
T-test (for normal

distribution); Wilcoxon
rank-sum test 2

Z-score; p-value 1

Detection of
group-specific features Yes No

Biological insights
are revealed

Yes (a vast amount of
information related to disease,

pathways, etc. is retrieved;
these data fill the metabolic

databases)

Impossible (the main
challenge for personal

metabolomics analysis)

Methods to reveal
biological insights

Yes (e.g., metabolite set
enrichment analysis) None

Detection of biomarkers Yes, but too rare

Impossible for detection new
biomarkers, and easy

for already
discovered biomarkers

Detection of
individual features

Yes, but considered as a noise
useless for study purposes

Only prominent features
or biomarkers

Medical application Extremely difficult

Yes, but only to detect
statistically significant

features (e.g.,
metabolite biomarkers)

1 Z-score values can be converted into p-values in the case of a normal distribution. 2 The Wilcoxon
rank-sum test (also called the Mann–Whitney–Wilcoxon, Mann–Whitney U test, or Wilcoxon–Mann–
Whitney test) is a nonparametric test.

To understand this, let us look at the t-test. The t-test is a type of inferential statistic
used to determine a significant difference between the means of two groups, which may
be related to certain features. This implies that there are no prerequisites that a particular
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metabolite (i.e., not the mean of the group) in the signature should go beyond the norm.
Rather, a significant part of the signature will be within the normal range. Figure 2
demonstrates this phenomenon for one metabolite with a p-value < 0.05 measured by
the t-test (cases vs. control). Such a p-value is considered as a statistically significant
difference between groups in biological science. However, in this example, only 12.5% of
samples in the case group have a concentration of this metabolite outside of the norm. This
indicates that metabolic signatures compiled by such metabolites should almost always
give false-negative results for personal measurements.
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Figure 2. p-value-dependent challenge of personal metabolomics. A metabolite detected in a
case–control metabolomic study as case-associated (p < 0.05) is not considered out of the norm in
a personal metabolomics study. Case–control studies compare group characteristics. Individual
(personal) p-values will overwhelmingly fit within the normal values (e.g., at p < 0.05, only 12.5% of
cases will be outside of the normal range).

It turns out that the generally accepted methods of data processing in metabolomics
and the knowledge collected in the databases are not directly applicable in personal
metabolomic tests because, in personal analysis, they most likely must correspond to the
parameters of the norm. This is the crucial reason why the accumulated data of thousands
of metabolomics studies and the technological excellence of measuring technology did not
result in a revolution in laboratory diagnostics.

2.2. Second Challenge

The second problem lies in the fact that the metabolic data that fill the databases were
obtained in various studies with different workflows (e.g., equipment and protocols). As
illustrated in Figure 3, the set of metabolites measured in each case was specific for each
study. Often, individual groups of metabolites are studied using targeted metabolomics,
using highly sensitive detection of metabolites of a particular group (for example, using
triple quadrupole mass spectrometers). Thus, the use of one personal test cannot cover the



Metabolites 2021, 11, 715 6 of 9

entire metabolite sets that were accumulated from a wide variety of metabolomics studies.
Tuning for a particular set of metabolites to cover as much as possible inevitably leads
to the deterioration of the detection of other sets. As a result, most metabolic signatures
may only be fragmentarily detected in the personal analysis. Based on our experience,
the coverage range for disease signatures is from 0% to about 30%. In terms of personal
metabolomics, this looks like a very questionable result. Basically, for this reason, a
panoramic metabolomics lab test, which is expected to have a high diagnostic coverage,
quietly produces an array of false-negative results.
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Figure 3. The workflow-dependent challenge of personal metabolomics. The sets of metabolites (including metabolic
signatures of diseases) presented in the databases correspond to the protocols used for the metabolomic studies, which
are diverse. Personal metabolic analysis is done according to its own protocol and cannot match all of the signatures
obtained in various metabolomic studies and presented in the metabolite databases. Kyoto Encyclopedia of Genes and
Genomes identifiers are shown for the metabolites. LC-MS, liquid chromatography-mass spectrometry; DIMS, direct-
injection mass spectrometry; ESI, electrospray ionization; qToF, quadrupole time of flight; CE-MS, capillary electrophoresis-
mass spectrometry.

2.3. Third Challenge

The third challenge in itself may not be fatal; however, together with the other two
challenges, it acquires an ominous character. As indicated earlier in classical metabolomics
studies, group comparison allows the identification of metabolites associated with the
disease under investigation. Such group-specific data, filtered out from individual ‘noise’,
become statistically significant, can be projected onto relevant disease metabolic pathways,
and can be successfully treated by metabolite set enrichment analysis [19,20]. In personal
analysis, such extremely effective filtering is not possible. The entire set of metabolites
supposedly different from the norm is associated with various diseases, pathological
conditions, individual characteristics, etc., and is subject to interpretation. The database
search of such a medley of fragmented signatures does not give a statistically significant
result, since there are no complimentary sets in the databases (Figure 4).



Metabolites 2021, 11, 715 7 of 9
Metabolites 2021, 11, 715 7 of 9 
 

 

 
Figure 4. The problem of personal data searching against a metabolic database. The medley of fragmented signatures in 
personal data is searched against disease or other signatures in the database, leading to no matched signatures. Kyoto 
Encyclopedia of Genes and Genomes identifiers are shown for the metabolites. 

Thus, there is incomplete detection of metabolic signatures in personal analysis. 
Meanwhile, their detection is not informative, since they most likely lie within the statis-
tical norm. In addition, those metabolites that are outside of the norm cannot be analyzed, 
since they are a medley of incomplete signatures. Based on these described challenges, the 
current status of personal metabolomics may be summarized in the following points: 
1. The accumulated scientific data show that metabolomic profiles contain comprehen-

sive information about the organism state, which is supported by a wide variety of 
metabolic case–control studies. Metabolic profiles show high specificity and selectiv-
ity in classifying samples from healthy and sick patients (often exceeding 95%). 

2. Today, there is no methodology (workflow) capable of personalized metabolomics. 
In fact, personalized metabolomics does not exist today. Measuring a limited number 
of metabolites is not relevant here, since it does not realize the essence of metabolom-
ics—measuring an enormous number of metabolites for a panoramic study of bio-
logical samples. 

3. The lack of personalized metabolomics is an algorithmic problem. Since metabolic 
profiles contain all of the necessary information for diagnosis (see point 1), there is 
only a need to extract it; however, there is no algorithm capable of doing this yet. 

Figure 4. The problem of personal data searching against a metabolic database. The medley of fragmented signatures in
personal data is searched against disease or other signatures in the database, leading to no matched signatures. Kyoto
Encyclopedia of Genes and Genomes identifiers are shown for the metabolites.

Thus, there is incomplete detection of metabolic signatures in personal analysis.
Meanwhile, their detection is not informative, since they most likely lie within the statistical
norm. In addition, those metabolites that are outside of the norm cannot be analyzed,
since they are a medley of incomplete signatures. Based on these described challenges, the
current status of personal metabolomics may be summarized in the following points:

1. The accumulated scientific data show that metabolomic profiles contain comprehen-
sive information about the organism state, which is supported by a wide variety of
metabolic case–control studies. Metabolic profiles show high specificity and selectivity
in classifying samples from healthy and sick patients (often exceeding 95%).

2. Today, there is no methodology (workflow) capable of personalized metabolomics. In
fact, personalized metabolomics does not exist today. Measuring a limited number of
metabolites is not relevant here, since it does not realize the essence of metabolomics—
measuring an enormous number of metabolites for a panoramic study of biologi-
cal samples.

3. The lack of personalized metabolomics is an algorithmic problem. Since metabolic
profiles contain all of the necessary information for diagnosis (see point 1), there is
only a need to extract it; however, there is no algorithm capable of doing this yet.
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4. The creation of such an algorithm would revolutionize laboratory diagnostics. Hun-
dreds of metabolic disease signatures would become measurable from a single drop
of blood.

Therefore, it can be said that the accumulated data on metabolomics over the decades
are useless for diagnostic purposes. It smacks of alarmism and repetition of history
with other basic omics sciences. Genomic tests give results with a very low probability
of assessed risks for most diseases, which essentially prevents them from leaving the
field of wellness, thus entertaining gerontology and other pseudo-scientific applications.
Moreover, it seemed that everything in the genome is written down and predetermined,
but events significant for health are realized with a certain and, as a rule, very negligible
probability (monogenic diseases are not considered here—genomic tests are not needed
for their detection). The field of proteomics that followed genomics was also promising.
As Friedrich Engels said, “Life is the mode of existence of protein bodies”. The high-
throughput measurement of proteins could probably characterize the state of the life in
the organism in detail. However, the euphoria passed; the “mountain has brought forth
a mouse”. Proteomics is successfully used in scientific research, but there is practically
no applied application in which its analytical ability to measure vast sets of proteins is
realized. Metabolomics is the last of the basic omics sciences that thoroughly determines
the molecular phenotype, and success in its applied application is most expected today.
However, much more research is needed.

3. Conclusions

This article is not meant to be alarmist. A clear understanding of the problem is the
first step in solving it. This article is intended to raise a discussion in this area, bring
the problem to people, and consolidate scientists working in this area. Additionally, we
are constantly faced with misunderstandings of scientists from related fields, doctors,
managers of different levels, civil scientists, and even ordinary people related to why it is
not possible to carry out a panoramic personal analysis using a modern mass spectrometer,
powerful software, and databases with metabolic data describing the majority of diseases.
Altogether, this prompted the writing of this article, which provides an answer to this
question. The lack of personalized metabolomics is an algorithmic problem. Metabolic
profiles contain all the necessary information for the diagnosis; there is only a need to
extract it. However, there is no algorithm capable of doing this yet. The creation of such
algorithms would solve this problem and revolutionize laboratory diagnostics. Hundreds
of metabolic disease signatures would become measurable from a single drop of blood.
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