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Abstract: Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which
may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic
inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number
and function of satellite cells seem to be the key points for the induction of muscle wasting,
contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal,
and environmental factors has been reported to contribute to the onset of sarcopenia, dietary
interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle
mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus
providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding
RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs,
named myomiRNAs, are involved in many physiological processes, such as growth, development,
and maintenance of muscle mass and function. This review aims to present and to discuss some of the
most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides,
we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function
associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This
review will provide important information to better understand sarcopenia and, thus, to facilitate
research and therapeutic strategies to counteract the pathophysiological effect of ageing.

Keywords: ageing; autophagy; fructose; hormesis; inflammation; nutrition; oxidative stress; skeletal
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1. Introduction

It is generally accepted that the progressive age-related reduction in skeletal muscle mass and
strength, a condition known as sarcopenia [1], is implicated in an increased incidence of falls, disability,
and loss of independence [2–4]. Moreover, decreased muscle strength is also highly predictive of
adverse outcomes and may cause mortality in older persons [5]. The mechanisms that underlie
sarcopenia are not yet completely elucidated, but it is likely that sarcopenia is the result of multifactorial
events, such as a reduction in number and activity of satellite cells [6], mitochondrial dysfunction [7,8],
elevated level of inflammation [9], increased ROS production [10] and imbalance between protein
synthesis and breakdown [11–14] (Figure 1). Indeed, in the elderly, the proteolytic processes are
not accompanied by an adequate protein synthesis within the physiological turnover, and muscle
cells lose progressively the sensitivity to anabolic stimuli, thus manifesting the so-called “anabolic
resistance” [15,16]. Protein balance is regulated by different factors, each susceptible to alterations
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during ageing; among them are changes in hormone levels [17,18], a decreased physical activity, and
inadequate food intake [19,20]. Food intake falls by around 25% between 40 and 70 years of age [21],
and there is growing evidence that correlates poor nutrition and adverse effects on muscle in the
elderly, suggesting that the maintenance of adequate nutritional intake could be an effective strategy
for preventing or treating sarcopenia [22].

Antioxidants 2020, 9, x 2 of 23 

“anabolic resistance” [15,16]. Protein balance is regulated by different factors, each susceptible to 
alterations during ageing; among them are changes in hormone levels [17,18], a decreased physical 
activity, and inadequate food intake [19,20]. Food intake falls by around 25% between 40 and 70 years 
of age [21], and there is growing evidence that correlates poor nutrition and adverse effects on muscle 
in the elderly, suggesting that the maintenance of adequate nutritional intake could be an effective 
strategy for preventing or treating sarcopenia [22]. 

MicroRNAs (miRNAs) are endogenous small non-coding RNAs, containing approximately 22 
nucleotides, which control gene expression by targeting mRNAs and triggering either the translation 
repression or RNA degradation [23,24]. MiRNAs are required for many biological processes, such as 
intercellular communication, differentiation, and proliferation [25,26]. In skeletal muscle, a range of 
miRNAs, named myomiRNAs, has been identified, and includes miRNA-1, miRNA-133a, miRNA-
133b, miRNA-206, miRNA-208b, miRNA-486, miRNA-499 [27–29]. MyomiRNAs regulate multiple 
aspects of skeletal muscle, since they are involved in many physiological processes, such as growth, 
development, and maintenance of muscle mass and function [30–32]. Consequently, alterations of 
miRNAs expression may occur during ageing, and can be associated with pathological conditions 
[30,33–36]. 

This review aims to present and to discuss some of the most relevant molecular mechanisms 
related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a 
possible way to counteract the loss of muscle mass and function associated with ageing, lading a 
special focus on nutrient-dependent miRNAs regulation, which represents an important component 
to fight sarcopenia. This review will provide essential information in a general attempt to better 
understand sarcopenia and, thus, facilitate research and therapeutic strategies in the future. 

 
Figure 1. Schematic representation of cellular processes involved in the onset of sarcopenia during 
ageing. During ageing multifactorial events such as protein synthesis/degradation imbalance, satellite 

Figure 1. Schematic representation of cellular processes involved in the onset of sarcopenia during
ageing. During ageing multifactorial events such as protein synthesis/degradation imbalance, satellite
cell number/activity impairment, chronic inflammation, mitochondrial dysfunction, and fat infiltration
increase contributing to the onset of sarcopenia.

MicroRNAs (miRNAs) are endogenous small non-coding RNAs, containing approximately 22
nucleotides, which control gene expression by targeting mRNAs and triggering either the translation
repression or RNA degradation [23,24]. MiRNAs are required for many biological processes, such as
intercellular communication, differentiation, and proliferation [25,26]. In skeletal muscle, a range of
miRNAs, named myomiRNAs, has been identified, and includes miRNA-1, miRNA-133a, miRNA-133b,
miRNA-206, miRNA-208b, miRNA-486, miRNA-499 [27–29]. MyomiRNAs regulate multiple aspects of
skeletal muscle, since they are involved in many physiological processes, such as growth, development,
and maintenance of muscle mass and function [30–32]. Consequently, alterations of miRNAs expression
may occur during ageing, and can be associated with pathological conditions [30,33–36].

This review aims to present and to discuss some of the most relevant molecular mechanisms
related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a
possible way to counteract the loss of muscle mass and function associated with ageing, lading a special
focus on nutrient-dependent miRNAs regulation, which represents an important component to fight
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sarcopenia. This review will provide essential information in a general attempt to better understand
sarcopenia and, thus, facilitate research and therapeutic strategies in the future.

2. Nutrition-Dependent microRNA Regulation of Skeletal Muscle Regeneration

Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to
regenerate in response to injury. Muscle regeneration is a highly coordinated process that leads to
a morpho-functional recovery of injured tissue through the activation and differentiation of muscle
stem cells, maturation of newly formed muscle fibers, and remodeling of extracellular matrix [37,38].
The decrease of skeletal muscle regenerative capacity has been observed in both human and mice
sarcopenic muscle, and it seems to be the primary consequence of satellite cells ageing [39,40].
The severe alteration in the functionality of satellite cells in senescent muscle can be caused by either
extrinsic factors or intrinsic events, including defects in self-renewing mechanisms, exhaustion by
forced differentiation, as well as apoptosis and alteration of muscle environment [41,42].

An elegant study by Conboy et al. demonstrated the rejuvenation of aged progenitor cells by
exposure to a young systemic environment, supporting the heterochronic transplantation experiments,
in which satellite cells, in aged mice that had been paired with young mice, showed marked
improvements in functionality [43]. Similarly, specific nutrients may also promote a more rejuvenating
systemic milieu enhancing satellite cell function and favoring healthy aging both in in vivo and in vitro
experimental models [44]. Likewise, satellite cells in young mice that had been paired with old mice
showed a decline in functionality [43,45,46]. These data suggest that there is a strong contribution of the
environment to the satellite cell ageing phenotype, including the dysregulation of signals from either
the myofibers or the circulatory system. Nevertheless, additional experimental evidence revealed
that ageing induces intrinsic alterations in muscle stem-cell regenerative functions, which cannot be
rejuvenated by a young host environment [39]. This is due to the modulation of the transcriptional
and epigenetic network that regulates distinct fates of stem-cell progeny during ageing.

Among other factors, miRNAs play an important role in the modulation of stem cell function and
activity, muscle homeostasis, and have been involved in different neuromuscular diseases. In particular,
Chuang et al. elegantly demonstrated that the ablation of miRNAs in satellite cells leads to a reduced
number of these cells, mild atrophy with ageing, and an impaired regenerative capability of muscle
fibers upon injury [47]. Recently, several studies demonstrated that miR-1, miR-206, miR-133, miR-188,
and miR-27 are potential regulators of the muscle regeneration process. In particular, miR-1, miR-133,
and miR-206 are induced upon satellite cell commitment and differentiation, and their increased
expression promotes the differentiation of these cells [48,49]. Besides, the local injection of a cocktail
of miRNAs, including miR-1, miR-133, and miR-206, in rat skeletal muscle injury model, enhanced
regeneration, and prevented fibrosis [50]. Moreover, in regenerating muscle, miR-27 plays a crucial role
in downregulating Pax3 expression in order to stimulate myogenesis, while its inhibition in injured
muscle delays muscle regeneration [51].

It has been well established that several nutrients such as amino acids and glucose may alter the
expression of miRNAs [12,52–55]. Leucine has been shown to induce the proliferation of satellite cells
and to increase the size and strength of regenerating fibers [56,57]. Moreover, Drummond et al. (2009)
showed that acute essential amino acids (EAAs) ingestion elicited robust increases in miR-1, miR-23a,
miR-208b, and miR-499 expression, with an accompanying increase in MyoD1 and Follistatin Like
1 mRNA expression, and a decrease in myostatin and MEF2C mRNA expression in human skeletal
muscle [52]. It has been also reported by Iannone et al. [58] that miR-133a/b and miR-206 appear to be
directly or indirectly regulated by the mammalian target of rapamycin (mTOR) [59], the main mediator
of cellular nutrient sensing, and a key regulator of skeletal muscle growth and hypertrophy [60].
According to these studies, Zhang and al. [36] proposed a model for nutrient—mTOR-myomiR
signaling, where mTOR may affect the expression of miR-133a/b and miR-206, through the regulation
of MyoD transcription factor. In agreement with this model, under low nutrient conditions such
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as amino acid and glucose starvation, mTOR is inactive and, consequently, unable to induce MyoD
resulting in the downregulation of miR-133a/b and miR206 (Figure 2).
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Figure 2. Schematic representation of nutrient-dependent-miRNA signaling in skeletal myogenesis.
Nutrients such as essential amino acids (EAAs) may affect the expression of miR-133a/b and miR-206
through mTOR-dependent regulation of MyoD mRNA levels. On the other hand, EAAs may elicit
robust increases in miR-1, miR-23a, miR-208b, and miR-499 expression, with an accompanying increase
in MyoD and follistatin mRNA and decrease in myostatin and MEF2C mRNA expression, regulating
skeletal muscle growth and differentiation.

Although further experiments are needed to elucidate the molecular mechanisms that regulate
the effect of specific nutritional compounds on miRNAs expression in skeletal muscle regeneration,
these findings demonstrate a significant miRNAs response to essential amino acid supplementation,
and suggest a key role for these molecules in regulating the homeostasis of muscle tissue.

3. Nutrition-Dependent microRNA Regulation of Inflammageing

Ageing is associated with a chronic low-grade inflammatory state known as “inflammageing”,
characterized by a 2- to 3-fold elevation in circulating inflammatory mediators [61]. Pro-inflammatory
cytokines, such as TNF, IL-6, and C-reactive protein (CRP), are key components in this chronic
inflammatory condition. Recently, experimental evidence demonstrates that the above mentioned
pro-inflammatory cytokines significantly increase ageing in skeletal muscle cells, and play a key
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role in the complex network that connects inflammatory signals with ageing-related disability and
mortality [62–64].

In particular, elevated serum levels of IL-6 and TNF are markers of functional frailty and predictors
of poor prognosis in the elderly [65], and increased levels of cellular IL-6 production are a significant
predictor of sarcopenia [66]. Besides, elevated levels of CRP predict mortality and functional decline in
older subjects [67]. Notably, the chronic inflammatory ageing process depends not only on the increased
concentration of pro-inflammatory cytokines, but also on a reduction in the levels of anti-inflammatory
cytokines [68].

Although the molecular signaling involved in the interaction between inflammageing and muscle
loss is not yet completely understood, recent in vivo studies demonstrate that the increased low-grade
inflammation may result in the activation of catabolic pathways favoring protein breakdown and
inhibiting protein synthesis, ultimately leading to age-related muscle wasting [69–72].

In muscle, pro-inflammatory cytokines such as TNF regulate sarcopenia through the activation
of the nuclear factor kappa B (NF-κB) transcription factor which, in turn, may activate the
ubiquitin-proteasome system [73]. NF-kB is maintained in the inactive state by the binding with a
family of inhibitory proteins called IκB. The increase in the TNF level induces activation of an IκB
kinase (IKK) complex that phosphorylates IκB, which, in turn, leads to its degradation mediated
by the proteasome system. This degradation of IκB allows for NF-κB to translocate to the nucleus
and to activate the transcription of several κB-dependent genes [74]. In particular, under conditions
of chronic inflammation, high levels of NF-κB expression activate the ubiquitin-proteasome system
which involves an enzymatic cascade that begins with the ubiquitination of protein substrates and
terminates with the hydrolysis of targeted protein to small peptides or amino acids, resulting in protein
degradation and muscle wasting [71,75].

As mentioned previously, specific miRNAs, named myomiRNAs, are known to be associated
with the skeletal muscle [27,29,76], where they play a crucial role, by targeting genes involved in
different processes such as development, differentiation, and regeneration [77]. Experimental evidence
demonstrated that the expression of these myomiRNAs can be dysregulated during ageing and
contribute to the resistance of older muscles to anabolic stimuli [78]. It has been reported that the
cytokine named TNF-weak-inducer of apoptosis can induce muscle wasting through the regulation
of miRNAs including miRNA-1, miRNA-133a, and miRNA133b, involved in the growth of mouse
skeletal muscle [79]. Besides, a down-regulation of miRNA-133b and miRNA-206 was observed by
Georgantas et al. in the muscle of patients with inflammatory myopathy [80], and the expression of
these miRNAs has been correlated by Iannone et al. with the nutritional status, revealing a mediating
effect of nutrition on the relationship between sarcopenia and myomiRNAs [58].

In addition to the myomiRNAs, other miRNAs are critical regulators for both pro-inflammatory
cytokines and skeletal muscle function [81,82]. For instance, miRNA-155 significantly increases upon
muscle injury and in mdx mice, the mouse model of Duchenne muscular dystrophy. By a genetic
approach, M. Nie et al. demonstrated that the ablation of miRNA-155 expression severely compromised
skeletal muscle regeneration, largely owing to aberrant macrophage activation and disrupted balance
between the expression of pro- and anti-inflammatory cytokines [83].

A recent RNA sequencing study performed by Mercken et al. (2013) revealed the differential
expression of miRNAs in the skeletal muscles of old and young rhesus monkeys [84]. Besides, Xie et al.
(2013) observed that the expression of miR-181a was downregulated in old muscle and its reduction
resulted in an increased expression of the cytokines TNF, IL-6, IL-1b in skeletal muscle during the
ageing process [85].

It has been well established that malnutrition and sarcopenia are closely correlated with
inflammation [9]. Nutrients such as glucose and amino acids can modulate the expression of
miRNAs [52–55], and caloric restriction can revert the level of miR-181a, suggesting a significant role
of nutrition in the modulation of the inflammatory pathway.
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Importantly, significant positive or negative correlations were found between miR-133b and
miR-206 levels and albumin and ferritin, respectively [80], where decreased albumin and elevated ferritin
levels are characteristic features of inflammation, besides being markers of nutritional status [86–88].

Although so far there is only a restricted number of studies regarding the molecular mechanisms
involved in the interconnection between miRNAs, nutrition, and sarcopenia, it is reasonable to assume
that dietary interventions may represent an efficient strategy to help prevent or counteract the loss of
muscle mass and functionality that occurs in ageing.

4. Nutrition-Dependent microRNA Regulation of Mitochondrial Dysfunction

4.1. Autophagy

Autophagy is a highly evolutionarily conserved catabolic process through which misfolded
proteins and dysfunctional organelles are degraded and recycled by autophagosomes that are then
delivered to the lysosomal machinery to prevent waste accumulation [89,90]. While the basal level of
autophagy is essential for the physiological turnover of old or damaged organelles, the dysregulation of
autophagy signaling may cause cellular stress and death as a result of cellular atrophy or, alternatively,
of apoptotic program induction [91].

Several findings indicate that autophagy becomes progressively dysfunctional during ageing, and
this effect seems to be related to the accumulation of damaged cellular components such as defective
mitochondria, which in turn may induce increased levels of reactive oxygen species (ROS) and trigger
apoptotic events [92,93]. In particular, it has been demonstrated that in aged muscles, both excessive
and defective autophagy may result in the onset of sarcopenia [94]. Indeed, the deficiency of basal
autophagy can result in the abnormal aggregation of misfolded proteins, while excessive autophagy
can also cause cellular stress and induce the loss of skeletal muscle mass due to increased protein
degradation [95].

One of the most important proteins involved in the regulation of skeletal muscle autophagy
is mTOR, a highly conserved serine/threonine kinase required for numerous aspects of cellular
homeostasis [96]. MTOR phosphorylates several transcription factors involved in the autophagy
process, thereby preventing their translocation to the nucleus [97]. An example is represented by
the helix-loop-helix transcription factor TFEB, a member of the MITF (microphthalmia-associated
transcription factor) family [98–103], that has been demonstrated to have a role in all the stages
of autophagy process, from lysosomal biogenesis to autophagosome formation [102]. Under
nutrition-rich conditions, mTOR phosphorylates TFEB that consequently is retained in the cytosol and
is unable to stimulate autophagy gene expression [98,100,101]. Conversely, in response to nutrient
deprivation, TEFB translocates to the nucleus to activate transcriptional targets leading to autophagy
stimulation [104]. As reported by Lapierre LR et al., there is a TFEB homolog in C. elegans, named
HLH-30, that plays a role similar to TFEB in the modulation of autophagy process [105]. HLH-30
translocates to the nucleus as a response of mTOR inhibition or nutrient deprivation, and it can regulate
several genes involved in the autophagy process, supporting the concept that increased autophagic flux
is likely critical to ensure a long lifespan [105,106]. Since mTOR-dependent regulation of TFEB activity
is an evolutionarily conserved mechanism of the autophagic flux, there is an attempt to speculate that
this process could provide a vital source of metabolites during periods of nutrient deprivation.

Another family of transcriptional factors involved in the regulation of the autophagy process,
with a conserved role in ageing, is the Forkhead transcription factors (FoxO), which play a crucial
role in the activation of the ubiquitin-proteasome system, but they are also involved in the activation
of the autophagic/lysosomal pathway [107]. In particular, it has been demonstrated that several
nutrient-signaling pathways can modulate FoxO activity [108]. Indeed, reduced INS-IGF1 signaling
activates FoxO-dependent expression of genes involved in autophagy and proteostasis in several
species [109,110] and extends longevity [108]. In 2015, Brown et al. demonstrated that FoxO3 might be
post-transcriptionally regulated by miR-182, with a consequent modulation of genes involved in the
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autophagy/lysosome system. Moreover, they showed a critical role for miR-182 in the control of fuel
usage and glucose homeostasis in skeletal muscle [111].

Among miRNAs involved in the regulation of the autophagy process in different species, miR-34
is up-regulated during ageing and may contribute to ageing process, by directly modulating the
expression of autophagy-related proteins [112–114]. Recently, Yan Li et al. reported that miR-378
promotes autophagy through targeting PDK1, which is crucial in the activation of the PI3K/Akt
signaling, but it also inhibits mitochondria-mediated intrinsic apoptosis by targeting Caspase 9. Since
miR-378 is highly expressed in skeletal muscle, it is possible to speculate that failure to maintain the
high levels of miR-378 in skeletal muscle would lead to increased vulnerability to cell death observed
in muscle dystrophy or in sarcopenia. Notably, under metabolic stress conditions such as nutrient
deprivation, miR-378 dramatically increases, suggesting its significant role in the cellular adaptation to
dwindling nutrient resources [115].

4.2. ROS Imbalance

Mitochondria are important cellular organelles, with key regulatory functions in energy production,
reactive oxygen species (ROS) balance, and in the control of cell death [116,117]. Mitochondrial
function may be affected by cumulative damage to mitochondrial DNA, which occurs during ageing.
The damaged mitochondrial DNA leads to an impairment of key electron transport enzymes and
subsequent ROS generation, thus causing a decrease in energy production [118]. Although adequate
levels of ROS play an important role in the maintenance of tissue homeostasis [119], age-related ROS
overproduction has been proposed as one of the major contributors of the skeletal muscle decline that
occurs with ageing [120,121]. Indeed, it not only generates oxidative damage of muscle, but it is also
involved in regulating intracellular signal transduction pathways that play, directly or indirectly, a
role in the impairment of skeletal muscle strength and functionality [62,72,122–124]. The opposite
effects exerted by different concentrations of ROS can be justified considering the concept of hormesis,
which is a process characterized by a biphasic response to environmental agent with a low-dose
stimulation and high-dose inhibition [125]. Thus, skeletal muscle benefits from low doses of free
radicals, whereas excessive free radicals concentration can impair its functions. Hence, efficient
mechanisms of antioxidant defense have to be developed, especially in those tissues like skeletal
muscle highly exposed to the oxidation process.

Antioxidants are present in different forms; some of them include enzymes such as superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), which converts free radicals
into nontoxic forms, and others, represented by vitamins, carotenoids, and polyphenols, are introduced
by the diet [10,126,127].

Vitamin C is a water-soluble antioxidant introduced in humans by dietary intake. Elevated levels of
vitamin C are associated with a lower risk of hypertension, heart disease, and stroke [128]. This vitamin
also promotes the regeneration of fat-soluble vitamin E in the cell membrane [129]. A protective effect
of vitamin C supplementation against exercise-induced muscle damage was demonstrated by Jakeman
and Maxwell. They also reported that vitamin E exerts antioxidant properties by scavenging ROS and
boosting cellular anti-oxidative capacity to reduce oxidative damage [130]. Similarly, vitamin C and E
supplementation has been shown to reduce muscle damage by Shafat and colleagues [131]. In a mouse
model of muscle atrophy, the MLC/SOD1 G93A mice, characterized by progressive muscle atrophy
associated with a significant reduction of muscle strength, alteration in the contractile apparatus,
and mitochondrial dysfunction, the treatment with a derivate of vitamin E significantly reduced the
toxic effect of ROS, partially rescuing muscle phenotype and muscle performance [132]. Moreover,
a mixture of antioxidants, including vitamin E, vitamin A, zinc, and selenium has been shown to
increase the anabolic response of all the muscles to leucine and the leucine-induced inhibition of
protein degradation in rats [133].

Recently, particular attention has been paid to the polyphenols. These molecules, which
are produced as secondary metabolites by the plants for protection against bacteria, fungi, and
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insects, display remarkable antioxidant properties [134]. Experimental studies performed in animal
models showed that the dietary administration of polyphenols, such as resveratrol, in combination
with treadmill exercise, exert beneficial effects which improve mitochondrial function, and reduce
age-related decline in physical performance [135]. Similarly, the supplementation of another polyphenol
represented by curcumin ameliorates exercise performance in rats [136]. Moreover, the Geny group
demonstrated that intake of polyphenols starting at a young age restored muscle maximal mitochondrial
oxidative capacity, normalized production of ROS, and enhanced antioxidant defense, therefore
protecting aged muscle [137].

However, controversial data have been published regarding the relationship between antioxidant
supplementation and muscle performance. In fact, human trials did not confirm the positive
results obtained in animals. It has been shown that undesirable effects, such as the disruption of
the endogenous antioxidant levels, may result from prolonged antioxidant supplementation, thus
failing to counteract exercise-induced oxidative stress, and interfering with muscle adaptation to
exercise [138–140]. Moreover, the long-term administration of vitamin C has been observed to prevent
mitochondrial biogenesis, decreasing the expression of endogenous antioxidant enzymes [141].

Several reasons can be responsible for these contradictory results. In particular, it has been
demonstrated that ROS are required for cellular adaptation to exercise and for the insulin-sensitizing
capabilities of physical exercise in healthy humans. Besides, the health-promoting effects of physical
exercise are abrogated by antioxidants such as vitamin C and E, and polyphenols. A potentially
health-promoting process may be derived from transiently increased levels of oxidative stress, whereas
an uncontrolled accumulation of oxidative stress may have pathological implications.

Recent studies revealed that the direct antioxidant properties of polyphenols are not the major
mechanism of their action [142,143]. In fact, there is a poor bioavailability and very low concentrations
of active polyphenols in target tissues. It seems likely that the antioxidant effects of polyphenols
are mediated via the activation of various transcription factors, signaling pathways, and vitagenes.
Vitagenes encode components of the heat shock protein (HSP), thioredoxin, and sirtuin protein systems,
that show antioxidant and antiapoptotic activities [144–148]. In particular, the effects of polyphenols in
the vitagene network can be demonstrated using silymarin (SM), a plant extract containing polyphenols.
In fact, as reported by Surai et al., SM was shown to improve antioxidant defenses by upregulating
heme oxygenase-1 (HO-1). In addition, SM consumption has been shown to be associated with
decreased HSP70 expression in stressed cells, which indicates an improvement in anti-oxidant defenses.
Finally, SM-related activation or the prevention of inhibition of sirtuins in stress conditions might
be an essential adaptive mechanism responsible for maintaining the redox-regulated homeostasis in
the cell and the whole body [149]. SIRT1 has been identified as a link between caloric restriction and
longevity, and its overexpression is linked to increased lifespans for several organism models [150].
SIRT1 activation inhibits NF-κB signaling and increases oxidative metabolism, favoring the resolution
of inflammation. SIRT1 exerts this effect directly by deacetylating the p65 subunit of NF-κB complex.
SIRT1 activates AMPK, PPARα, and PGC-1α stimulating oxidative energy production; these factors
inhibit NF-κB signaling and suppress inflammation. On the other hand, the expression of miR-34a,
IFNγ, and ROS, induced by NF-κB signaling, down-regulates SIRT1 activity. The inhibition of SIRT1
disrupts oxidative energy metabolism and stimulates the NF-κB-induced inflammatory responses
present in many chronic metabolic and age-related diseases [151].

Several miRNAs play a crucial role in the regulation of mitochondrial gene expression. For example,
miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria, where
it stimulates the translation of specific mitochondrial genome-encoded transcripts. Moreover, miR-696
negatively affects fatty acid oxidation and mitochondrial function by targeting the transcription
factor peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a master regulator of
mitochondrial biogenesis and ROS removal [152].

In a recent study of the Nie group, it has been demonstrated that the deficiency of miR-133a in mice
leads to low levels of PGC-1α and nuclear respiratory factor-1(Nrf1), and lower mitochondrial mass
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and exercise tolerance [83]. Since this phenotype is similar to the sarcopenia phenotype, the authors
speculate that miR-133a might have a significant role in maintaining skeletal muscle mitochondrial
functionality. Other miRNAs, such as miR-340-5p and miR-206, have also been shown to regulate ROS
generation in skeletal muscle via Nrf2, which is a key factor in regulating redox homeostasis, although
the molecular mechanisms involved in its effect in the onset of sarcopenia are still unknown [153,154].

Since it has been widely demonstrated that nutrients may influence the expression of endogenous
miRNAs involved in different cellular processes, the manipulation of miRNAs profiles through dietary
modifications and supplements can be proposed as a potential future therapeutic intervention or
prevention strategy against sarcopenia.

5. High Fructose Diet Modulation of miRNAs Expression in Sarcopenia

Among the nutritional factors that have been reported to play a crucial role to increase
inflammation [155], mitochondrial dysfunction and ROS production in skeletal muscle is fructose [156–
159]. Fructose is one of the major constituents of the modern diet, since it is highly expressed in fruits
and vegetables [160] and it is also used as a sweetener for food and drinks, and as an excipient in
pharmaceutical preparations, syrups, and solutions [161].

Although low doses of fructose have beneficial effects on glycemic control without increasing
cardiometabolic risk [162] and blood pressure [163], several studies demonstrated that a high level of
fructose can stimulate ROS production in the mitochondria in a variety of tissues including kidney, liver,
small intestine and skeletal muscle [164–169]. Fructose can exert these effects in different ways, including
increased blood uric acid (UA) concentration [170,171], with a consequent upregulation of TGF-β1
expression and NOX4 activation [172] and through the induction of de novo lipogenesis [173–176].

In recent years, a gradual increment in blood UA concentration has been demonstrated, especially
in people of Western countries, where the increased consumption of fructose has been revealed [177,178].
Excessive fructose consumption has also been associated with hepatic steatosis, cellular stress, and
inflammation [179]. This is responsible for the release by the liver of lipids, methyglyoxal, UA, and
hepatokines leading to alterations in the communication between the liver and the gut, muscles, and
adipose tissue. Fructose and muscle/liver axis has been reported in several studies that showed how
a high-fructose diet is associated with modifications in muscle function [180] in humans [181] and
rodents [182]. In particular, mechanisms involved in diet-induced sarcopenia may be (i) a decrease in
the mechanistic target of rapamycine complex (mTORC) 1 activity and thereafter in protein synthesis;
and (ii) inflammation. Moreover, recent studies in fructose-fed rats have shown an association between
nonalcoholic-fatty liver disease and sarcopenia [183]. This is a key factor involved in disease progression
to NASH (nonalcoholic steatohepatitis), as the muscle heavily contributes to energy homeostasis [184].

In the inter-organs crosstalk caused by excessive fructose intake, it is absorbed primarily in the
gut, and then metabolized in the liver, where it stimulates UA production [185,186]. The increased
levels of intracellular UA are followed by an acute rise in circulating levels of UA, which is likely
due to its release from the liver [170,171]. Besides, fructose may stimulate UA synthesis from amino
acid precursors such as glycine [187], and it has been reported that long-term fructose administration
suppresses the renal excretion of UA, resulting in elevated serum UA levels [188]. Interestingly, Kaneko
and colleagues found that a single administration of fructose affects the excretion of UA to the intestinal
lumen, inducing the reactive oxygen species (ROS)-derived production of dinucleotide phosphate
(NADPH) oxidase activation [189].

Besides, experimental evidence shows that fructose-dependent UA production stimulates the
upregulation of TGFβ-1, leading to NOX4 activation and ROS generation in mitochondria in skeletal
muscle [172,190] (Figure 3).
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Figure 3. Schematic representation of fructose metabolism and uric acid effect on skeletal muscle. In the
liver, fructose is phosphorylated into fructose 1-phosphate by fructokinase in a reaction that decreases
the levels of intracellular phosphate and ATP. Subsequently, the enzyme fructose-1-phosphate aldolase
gives rise to dihydroxyacetone phosphate (DHAP) and glyceraldehyde. When fructose 1-phosphate
accumulates, intracellular phosphate decreases, stimulating AMP deaminase, which catalyzes the
degradation of AMP to inosine monophosphate (IMP). IMP is metabolized to inosine, which is further
degraded to xanthine and hypoxanthine by xanthine oxidase, ultimately generating uric acid (UA). UA
can induce ROS production in the liver and other tissues, such as skeletal muscle via TGFβ-1-NOX4
signaling. Alternatively, fructose can stimulate de novo lipogenesis in the liver with increased release
of lipids and lipoproteins in the bloodstream that are then uptaken by different tissues including
skeletal muscle, with consequent cytokines and ROS production. Besides, high levels of fructose can
modulate the expression of miRNAs that may affect skeletal muscle cell proliferation, differentiation,
and insulin signaling.

As mentioned above, fructose consumption increases de novo lipogenesis in the liver, that
is accompanied by an increased release of lipids in the bloodstream, which are then uptaken by
different tissues, such as skeletal muscle [173–176]. In skeletal muscle, intracellular lipids accumulation
increases the production of ROS and reactive nitrogen species [191–193]. Furthermore, the excessive
production of lipoproteins induces an inflammatory response and, consequently, an elevation in
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circulating fatty acids and inflammatory cytokines, that may cause insulin resistance in peripheral
tissues, leading to whole-body insulin resistance [194–196] (Figure 3). In a recent paper, Tamrakar
group reported that, in myogenic cells, the fructose-dependent ROS production results in the activation
of the stress/inflammation markers c-Jun N terminal kinase (JNK) and extracellular signal-regulated
kinase 1/2 (ERK1/2), and the degradation of inhibitor of NFκB (IκBα), leading to impaired insulin
signaling and attenuated glucose utilization in skeletal muscle cells [156].

Although the role of fructose in causing energy alterations and metabolic disorders has been
well documented, the molecular mechanisms that regulate these effects have not yet been elucidated.
In recent years, a growing interest has been directed to the role of miRNAs, since they are known
to be dysregulated in several metabolic disorders and sarcopenia, and can be controlled by dietary
factors [197,198]. A study of Su group demonstrated that a set of miRNAs are altered by high fructose
diet; among them, miRNA-101a, miRNA-30a, and miRNA-582 have been reported to be involved
in other cellular processes than energy metabolic signaling [199]. For example, fructose induces the
expression of miRNA-101 involved in skeletal muscle cell proliferation and differentiation [200], and
of miR-30a, which belongs to a miRNAs family, that promotes skeletal muscle differentiation. Both
miRNAs are down-regulated in in vivo models of muscle injury and muscle disuse atrophy [201].

Besides, a high fructose diet may regulate a set of miRNAs involved in the hepatic insulin signaling.
Among them, miR-128a can regulate insulin receptor substrate 1 (IRS1), ultimately affecting glucose and
lipid metabolism [202]. Interestingly, the modulation of IRS1 by miR-128a has been reported in skeletal
muscle, where it regulates myoblast proliferation and myotube hypertrophy and provides a novel
mechanism, through which IRS1-dependent insulin signaling is regulated in skeletal muscle [199].

In summary, these data demonstrate that a high fructose diet can induce metabolic dysfunctions
and modulate several processes, including oxidative stress and inflammation, that are also characteristic
of sarcopenic muscles. In this contest, a crucial role is played by miRNAs, that can be altered by a high
fructose diet, providing novel insights to counteract the physio-pathological effect of aging in different
tissues (Figure 3).

6. Circulating miRNAs

Circulating miRNAs (c-miRNAs) represent a category of non-coding RNAs detectable in different
bio-fluids, such as saliva, breast milk, urine, plasma, and serum [203,204]. Several mechanisms
have been demonstrated for c-miRNAs packing and secretion, avoiding their degradation by serum
ribonuclease. These include exosomes [205,206], high-density lipoprotein [207], RNA-binding
proteins [208,209], and apoptotic bodies [210]. C-miRNAs can actively participate in cell-cell
communication in different organs and tissues and, since it has been reported that their expression can
be altered in pathological conditions and ageing, they have been suggested as potential biomarkers for
the diagnosis and treatment of several diseases [211–216].

In particular, several papers in the last years have demonstrated a differential expression of
c-miRNAs in sarcopenic compared to non-sarcopenic patients [58,217]. Besides, a correlation between
nutrition, c-miRNAs, and sarcopenia has been recently revealed [58,218], highlighting a new role for
the c-miRNAs as potential noninvasive biomarkers for the diagnosis of sarcopenia and the involvement
of nutrition in this contest.

A number of studies have shown that miRNAs can be derived not exclusively from endogenous
synthesis, but might also be obtained from dietary sources such as plants and animal origin food.
These miRNAs are known as xeno-miRNAs [219–222]. Recently, it has been revealed by Zhang et
al. that an exogenous plant-derived miRNA, miR168a, is one of the most highly enriched exogenous
plant miRNA found in the serum of Chinese subjects. By using both in vivo and in vitro experimental
models, they demonstrated that miR168a, packaged into microvesicles (MVs), can pass through the
mouse gastrointestinal tract and might be released in the circulatory system, decreasing the plasma
level of low-density lipoprotein [219]. In the same years, further research has shown that about 100
miRNAs are present in bovine milk that are resistant and stable to both industrial procedures and harsh
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conditions (low pH and RNase treatment). These miRNAs, encapsulated into MVs, can be diffused
among animal species by dietary means, and are able to regulate a variety of metabolic pathways in
humans and rats [223,224].

These data suggest that xeno-miRNAs may contribute to the circulating miRNAs population
and, thanks to their effect in the modulation of target gene expression and the maintenance of tissue
homeostasis, can represent novel biomarkers of age-related muscle mass and functionality.

7. Conclusions

Since sarcopenia dramatically affects the quality of life of older adults, therapeutic strategies are
needed to prevent and/or counteract the progressive age-related reduction in skeletal muscle mass
and functionality. Accumulating evidence suggests that nutrients such as amino acids, vitamins,
and antioxidants represent key tools to elicit anabolic signaling and protein turnover, favoring the
maintenance of muscle function. Dietary compounds have been shown to influence miRNAs levels in
skeletal muscle and, given the importance of miRNAs as crucial regulators of skeletal muscle mass,
composition and function, they may represent diagnostic or prognostic biomarkers of age-related
muscle dysfunctions (Table 1).

Table 1. Dietary compounds that have been shown to influence miRNAs levels in skeletal muscle.

Nutraceuticals ↑

Positive
MyomiRs

Modulation
↓

Negative
MyomiRs

Modulation
Final Effect References

EAAs
miR-1, miR-23a,

miR-208b, miR-499,
miR-27a

Skeletal muscle regeneration,
proliferation and

differentiation
[52,55]

Serum iron miR-133b Skeletal muscle differentiation [58]

Albumin miR-133b, miR-206 Skeletal muscle regeneration
and differentiation [58]

Ferritin miR-133b, miR-206
Downregulation of skeletal

muscle regeneration and
differentiation

[58]

Insulin
miR-1, miR-133a,

miR-206,
miR-29a, miR-29c

Downregulation of skeletal
muscle regeneration,

differentiation and insulin
resistance

[225]

Resveratrol miR-21, miR-27b miR-133b, miR-20b,
miR-149

Modulation of skeletal muscle
differentiation [198,226,227]

Palmitic Acid miR-29a Insulin resistance and diabetes [228]

Vitamin D miR-26a Skeletal muscle regeneration
and differentiation [229]

Fructose miR-101, miR-30a miR-128a
Skeletal muscle proliferation
and differentiation, insulin
signaling, insulin resistance

[199]
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