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Pancreatic cancer is one of the most difficult cancers to cure due to the

lack of early diagnostic tools and effective therapeutic agents. In this study,

we aimed to isolate new bioactive compounds that effectively kill pancre-

atic ductal adenocarcinoma (PDAC) cells, but not untransformed, human

pancreatic ductal epithelial (HPDE) cells. To this end, we established four

primary PDAC cell lines and screened 4141 compounds from four bioac-

tive-compound libraries. Initial screening yielded 113 primary hit com-

pounds that caused over a 50% viability reduction in all tested PDAC

cells. Subsequent triplicate, dose-dependent analysis revealed three com-

pounds with a tumor cell-specific cytotoxic effect. We found that these

three compounds fall into a single category of thiopurine biogenesis.

Among them, 6-thioguanine (6-TG) showed an IC50 of 0.39–1.13 lM
toward PDAC cells but had no effect on HPDE cells. We propose that this

cancer selectivity is due to differences in thiopurine methyltransferase

(TPMT) expression between normal and cancer cells. This enzyme is

responsible for methylation of thiopurine, which reduces its cytotoxicity.

We found that TPMT levels were lower in all four PDAC cell lines than in

HPDE or Panc1 cells, and that knockdown of TPMT in HPDE or Panc1

cells sensitized them to 6-TG. Lastly, we used a patient-derived xenograft

model to confirm that 6-TG has a significant antitumor effect in combina-

tion with gemcitabine. Overall, our study presents 6-TG as a strong candi-

date for use as a therapeutic agent against PDAC with low levels of

TPMT.
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1. Introduction

Despite the recent advances in surgical techniques

and other treatment strategies, pancreatic cancer

remains a cancer type with the lowest 5-year survival

rate (He and Yuan, 2014; Kim, 2008). The reasons

for such poor prognosis include late diagnosis, which

makes only 20–25% of the cases operable (Jutric

and Melstrom, 2017), as well as fewer options for

chemotherapy owing to the refractoriness of pancre-

atic ductal adenocarcinoma (PDAC) cells toward

anticancer drugs (Rajabpour et al., 2017). Moreover,

there is a desmoplastic reaction, which means

accumulation of the extracellular matrix along with

activated (fibrotic) stellate cells (Bahrami et al.,

2017), resulting in a barrier to drug delivery

(Lunardi et al., 2014). Despite these challenges, there

are newly developed therapeutic options, including

FOLFIRINOX and Paclitaxel-Nab, that have shown

progress in chemotherapy (Sohal et al., 2016). Yet,

there is a desperate need for an effective therapeutic

agent to extend the survival of more patients with

PDAC.

Drug-repositioning screening has been increasingly

performed to identify therapeutic agents for complex

diseases (Li and Jones, 2012) because of the high cost

and long time required for the development of novel

therapeutic agents. For pancreatic cancer, ritonavir,

an HIV inhibitor, was identified as an antitumor

agent inhibiting cell cycle progression (Batchu et al.,

2014). Recently, bazedoxifene, which is approved as

an estrogen modulator, was revealed as an anti-

GP130 signaling agent that can inhibit pancreatic

cancer cell growth (Wu et al., 2016). Although these

findings reveal novel therapeutic agents based on the

cytotoxicity to PDAC cells, often these drugs exert

toxicity toward normal cells. Moreover, these novel

candidates have usually been screened on human

PDAC cell lines such as BxPC-3, MIA PaCa-2, and

PANC-1. Considering the heterogeneity of PDAC

(Iovanna and Dusetti, 2017), there is a need to apply

drug repositioning to other PDAC cell lines including

primary cells.

Here, we describe a drug-repositioning screening

involving four primary PDAC cell lines and human

pancreatic ductal epithelial (HPDE) cells as a normal

cell control. We aimed to find a candidate that exerts

superior cytotoxicity toward cancer cells than toward

healthy cells. As a result, we suggest thiopurine ana-

logs as such candidates. 6-TG seems to be a PDAC-

specific antitumor agent, and we confirmed its efficacy

in a patient-derived xenograft model.

2. Materials and methods

2.1. Cell culture and transfection

Human pancreatic cancer cell lines (Panc1, Mia-Paca2,

and BxPC3) were obtained from ATCC. They were

maintained in DMEM containing 10% of FBS and

1% of a penicillin/streptomycin solution (Hyclone,

Logan, UT, USA). Pancreatic cancer primary cells

were cultured in RPMI with 5% FBS, 1% of the peni-

cillin/streptomycin solution, 20 ng�mL�1 EGF,

4 lg�mL�1 hydrocortisone, and 4 lg�mL�1 transferrin.

HPDE cells were cultured in a keratinocyte serum-free

medium supplemented with EGF and bovine pituitary

extract (Invitrogen, Thermo Fisher Scientific, Missis-

sauga, ON, Canada). All the cells were cultured at

37 °C and 5% CO2 in a humidified incubator. All cell

lines were authenticated using short tandem repeat

(STR) analysis as described in 2012 in ANSI Standard

(ASN-0002) by the ATCC Standards Development

Organization. For transient expression of thiopurine

methyltransferase (TPMT) or methylthioadenosine

phosphorylase (MTAP), cells were transfected via

Lipofectamine� 2000 (Invitrogen) for 3 h, and the cells

then assayed 48 h after the transfection.

2.2. Derivation of primary culture

Primary cancer cells were isolated from a tumor of a

patient and were used to set up a xenograft model. The

experiments were undertaken with the understanding

and written consent of each subject. The study method-

ologies conformed to the standards set by the Declara-

tion of Helsinki and were approved by the ethics

committee in AsanMedical Center, Seoul, South Korea.

Fresh tumor tissue was minced into 1- to 2-mm pieces

using sterile scissors, a scalpel, and forceps. For tissue

digestion, the tissue pieces were placed in a 15-mL conical

tube with 3–5 mL of RPMI 1640 medium (PAN Biotech,

Aidenbach, Bavaria, Germany) containing 5% FBS

(PAN Biotech), 1% of the penicillin/streptomycin solu-

tion (Hyclone), 20 lg�mL�1 collagenase Type III (Sigma-

Aldrich, Oakville, ON, Canada), and 840 ng�mL�1 Fun-

gizoneTM (Gibco, Thermo Fisher Scientific). Tissues were

kept for 2 h in a 37 °C shaking incubator. After incuba-

tion, the digested tissue pieces were washed with the

RPMI 1640 medium and centrifuged at 800 r.p.m. for

3 min, three times. The tissue was placed in a T25 flask

coated with collagen and cultured in theRPMI 1640med-

ium containing 5% FBS, 1% of the penicillin/strepto-

mycin solution, 20 ng�mL�1 hEGF (Gibco), 4 lg�mL�1

hydrocortisone (Sigma-Aldrich), 4 lg�mL�1 transferrin
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(Sigma-Aldrich), and 840 ng�mL�1 FungizoneTM at

37 °C with 5% CO2. After 2–4 days, cells started to

become attached to the T25 flask.

2.3. Protein extraction and Western blotting

Cells were harvested in RIPA buffer containing

protease and phosphatase inhibitors. The lysates

were centrifuged at 21 000 g for 15 min, and the

supernatant was collected. Proteins were separated

by SDS polyacrylamide gel electrophoresis.

Immunoblotting was performed with antibodies to

MTAP (Cell Signaling Technology, Danvers, MA,

USA), TPMT (Invitrogen) and b-Actin (Santa

Cruz Biotechnology, Dallas, TX, USA), p-BRAF

(Cell Signaling Technology), p-MEK (Cell Signal-

ing Technology), p-ERK (Cell Signaling Technol-

ogy), Caspase-7 (Cell Signaling Technology), and

PARP (Cell Signaling Technology).

2.4. RNA preparation and real-time PCR

RNA extraction was performed by means of TRIzol

(Invitrogen). RNA (1 lg) was subjected to cDNA syn-

thesis (PrimeScript RT reagent kit, Takara Bio, Shiga,

Japan). Real-time PCR was performed with SYBR

Green (Enzo Life Sciences, Farmingdale, NY, USA), a

Bio-Rad real-time PCR detection system.

The primers for qRT-PCR were as follows:MTAP, 50-
AGGGACCTCGTTTTAGCTCC-30 and 50-GAAACT

GCTTCCTCGTGCTC-30; TPMT, 50-ACGGCAAGAC

TGCTTTTCAT-30 and 50-CACTGATTTCCACACCA

ACTACA-30; GAPDH, 50-ACCCAGAAGACTGTGG

ATGG-30 and 50-TCTAGACGGCAGGTCAGGTC-30.

2.5. Plasmids and siRNA treatment

Complete coding sequence of human MTAP and TPMT

was inserted into pFlag-CMV. Sequences of human

MTAP and TPMT were amplified from cDNAs by

KOD plus polymerase (TOYOBO, Osaka, Japan).

Cells were transfected with negative control, MTAP

siRNA, and TPMT siRNAs via Lipofectamine� 2000

(Invitrogen). Human siRNA was designed by Genolu-

tion Inc. (Seoul, Korea) using the following sequences:

MTAP, 50-GUCAACUACCAGGCGAACAUCUU-30;
TPMT-1, GCGGUUGAGAUGAAAUGGUUUUU;

TPMT-2, CUGUGUGUUCUUUCUUAUGAUUU.

2.6. 1st drug screening

Cells were recovered from cultures using trypsin and

re-plated in 96-well plates at 4 9 103 cells per well in

195 lL of culture medium, and the plates were

returned to the humidified atmosphere and incubated

there overnight. Using an automated liquid handler

(Janus; Perkin Elmer, Waltham, MA, USA), 5 lL of

test library compounds in 10% DMSO was added to

wells to achieve a final concentration of 5 lM. After

48 h of incubation, cell viability was assessed by an

intracellular ATP content assay (CellTiter Glo, Pro-

mega, Fitchburg, WI, USA). The plates were read on

a Victor3 (Perkin Elmer) label reader in luminescent

mode. Raw values from each plate were transferred

and analyzed in PRISM software (GraphPad Software,

La Jolla, CA, USA) to evaluate survival rates.

2.7. 2nd confirmation screening

The primary hit compounds selected from primary

screen were retested at 1- and 5-lM concentrations.

Every step used for evaluation of survival rates was

performed as per the primary screening protocol.

2.8. Determination of IC50 values

Cell viability was evaluated using Ezcytox. The data

were defined as (mean 6-TG-treated A450 � blank)/

(mean untreated control A450 � blank) 9 100 and

analyzed. The IC50 values were determined with the

PRISM software.

2.9. In vivo drug efficacy test

The animal experiments were performed in accordance

with the Korean Ministry of Food and Drug Safety

(KMFDS) guidelines. Protocols for animal experiments

were reviewed and approved by the Institutional Animal

Care and Use Committees (IACUC) of Asan Institute

for Life Sciences (Project Number: 2016-12-051). All

mice were maintained in the specific pathogen-free

(SPF) facility of the Laboratory of Animal Research in

the Asan Medical Center. To prepare a patient-derived

xenograft model, all the animals were anesthetized with

15 mg�kg�1 Zoletil� (Virbac, Fort Worth, TX, USA)

and 2.5 mg�kg�1 Rompun� (Bayer Korea Ltd, Seoul,

South Korea) i.p. Tumor tissue was sliced into one to

two 2-mm3 fragments and implanted into mice subcuta-

neously. When the tumor volume reached approxi-

mately 100 mm3, drugs were administered i.p. twice a

week (6-TG, 25 mg�kg�1; gemcitabine, 100 mg�kg�1).

Length (L) and width (W) of a tumor were measured

using calipers, and tumor size was calculated as follows:

Tumor size ðmm3Þ ¼ L�W2

2
:
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2.10. Annexin V/propidium iodide staining and

FACS analysis

Pancreatic cancer primary cells were seeded in six-well

plates at 50–60% confluence and harvested following

treatment with 6-TG (1 lM) for 48 h. After 48 h, cells

were harvested and stained according to the protocol

of the FITC-Annexin V Apoptosis Detection kit (BD

Biosciences, Franklin Lakes, NJ, USA). The percent-

age of apoptotic cell population was detected by

Accuri Flow Cytometry (BD Biosciences) and calcu-

lated using the CFLOW software (National Institutes of

Health, Bethesda, MD, USA).

2.11. Species-specific PCR

The genomic DNA (gDNA) was extracted from the

tumor tissue using the phenol-chloroform method. DNA

concentrations were measured on a NanoDrop. Expres-

sion level was analyzed by PCR using human- and

mouse-specific primer pairs (Alcoser et al., 2011). PCR

products were separated by agarose gel electrophoresis,

and relative expression was quantified using IMAGEJ

(National Institutes of Health, Bethesda, MD, USA).

2.12. TCGA data analysis

Public RNA-seq data for informatic analysis were

downloaded from Broad GDAC Firehouse (https://

gdac.broadinstitute.org). Average TPMT level for each

type of tumor was calculated using RSEM value and

visualized as a bar chart format. For PDAC, the dis-

tribution of TPMT expression is obtained from 180

samples and displayed as a dot graph, by ascending

order.

2.13. Statistics

Data were analyzed by two-way ANOVA or Student’s

t-test and expressed as means � standard deviation

(SD).

3. Results

3.1. Derivation and characterization of primary

PDAC culture from a fresh tumor specimen

To establish a primary culture for drug screening, we

obtained a freshly dissected tumor (from Asan Medical

Center, IRB No. S2013-0744-0009). Of 21 specimens

tested, we were able to culture four primary cell lines.

The pictures of primary cells are shown in Fig. 1A. As

a normal cell control, we used HPDE cells (Fig. 1B).

In contrast, Panc1, which is reported to be a drug-

resistant cell line (Anderson et al., 2002; Nguyen et al.,

2003), was added to the screening (Fig. 1B). The geno-

mic characteristics of the tumor specimen were

described previously (Jung et al., 2016), and other clin-

ical features are summarized in Table S1. Of the four

primary cell clones, the 34 629 cell line showed distinct

cellular morphology and molecular features, as

depicted in Fig. 1C. Western blot analysis of SMAD4

and P53 (which is frequently mutated in PDAC), as

well as vimentin and SMA (myoepithelial cell marker;

Mace et al., 2013), revealed that the 34 629-cell line

has a stellate cell-like molecular phenotype but is not

exactly the same (as shown in vimentin, Fig. 1C). This

finding was confirmed by RT-PCR analysis of matrix

gene expression (Fig. S1). The doubling times of four

primary cells selected for drug screening were compa-

rable, measured from its growth curve (Fig. 1D).

3.2. Primary screening identified 113 compounds

of four drug libraries, effective against PDAC

cells

Initial screening was performed on the four primary

PDAC cells, Panc1 cell line, and HPDE. The overall

scheme of the repositioning is presented in Fig. 1E,

and assay procedures are summarized in Fig. 1F. Four

compound libraries including the Selleckchem inhibitor

library (1159 items), Prestwick chemical library (1200

items), LOPAC-1280 active compound library, and the

ENZO natural product library (502 items) were sub-

jected to the screening. We identified 113 compounds

that showed cytotoxicity (see Methods) towards at

least three cancer cells at 5 lM, and 68 of them showed

no or weaker cytotoxic effect toward HPDE cells

(group A, Fig. 2A for the raw data, Table 1 for the

list). The remaining 45 compounds that showed cyto-

toxicity toward both HPDE and cancer cells (group B,

Fig. 2B for the raw data, Table 1 for the list).

3.3. Confirmation of the first hit reveals that

purine analogs selectively kill PDAC cells

As a confirmation of the initial screening, we tested

the 113 compounds at 1 and 5 lM in triplicate. We

sought compounds that showed significant cytotoxicity

at least toward three cancer cell lines at either 1 or

5 lM, but not toward HPDE cells (Figs S2–S4 for raw

data on group A, obtained from three different chemi-

cal libraries). As a result, we selected three compounds

(azathioprine, mercaptopurine, and 6-thioguanine) that

meet these conditions and all of them were identified

as purine analogs. As shown in Fig. 2C, all three
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Fig. 1. Characteristics of primary PDAC cells and overall workflow of the repositioning screening. (A) Representative pictures of four

primary PDAC cells used in the screening. Scale bar: 200 lm. (B) Pictures of Panc1 and HPDE cell lines that served as control cells. (C)

Western blot results of Smad4, p53, vimentin, and smooth muscle actin (SMA), which were used as markers of PDAC or stellate cells.

Human pancreatic stellate cells (hPSC). Actin and GAPDH served as a loading control. (D) A graph of doubling time for the four primary

PDAC cells. (E) A schematic diagram showing steps of drug repositioning. The 1st screening was done at 5 mM as a single point. The

subsequent confirmation step was performed at 1 and 5 mM, in triplicate. The last step is to measure IC50 of each drug, with an 8-point

serial dilution. (F) An overall scheme of the screening. PDAC and HPDE cells were seeded in a 96-well plate, and a compound library was

added and incubated for 48–72 h. After that, the cell viability was measured with CellTiter-Glo in a luminometer.
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compounds manifested cancer cell-specific toxicity

except for azathioprine at 1 mM. This compound is an

immunosuppressive medication that has been used for

the treatment of multiple sclerosis (Confavreux and

Moreau, 1996) or inflammatory bowel disease includ-

ing Crohn’s disease (Lamers et al., 1999). On the other

hand, 6-mercaptopurine is an anticancer agent (Skip-

per et al., 1954) that has been used against acute lym-

phocytic leukemia (ALL), chronic myeloid leukemia

(CML), and Crohn’s disease (Present, 1989). Similarly,

6-thioguanine is also used against acute myeloid leuke-

mia (AML), ALL, and CML (Ruutu and Elonen,

1991). These three compounds are in the same meta-

bolic pathway previously described (Cara et al., 2004),

suggesting that PDAC-specific antitumor activity is

closely related to purine biosynthesis. We next

measured the IC50 values of the three compounds

(Fig. 2D). In line with the previous screening results,

we could not see death among HPDE cells at up to

10 lM 6-TG treatment, whereas the primary PDAC

cells showed IC50 ranging from 0.387 to 1.131 lM
(Table 2). Mercaptopurine also exerted a selective can-

cer cell-killing effect with one exception (cell clone

34629). Based on these results, we focused on 6-TG

for further analysis.

3.4. Natural product drug candidates showed

high cytotoxicity but failed to show cancer cell

specificity

During the screening of a natural product library, the

initial screening of 502 compounds yielded 32 hits

A

Compound number

B

489711-cnaPEDPH

9264342291 36473

C

D

Fig. 2. Identification of thiopurine compounds as PDAC-specific drug candidates. (A) A graph showing cell viability after the treatment with

68 drug candidates (group A) of 4141 compounds from four libraries (see Methods). (B) A graph showing cell viability upon the treatment

with 45 drug candidates (group B). The concentrations of compounds were 5 mM as a single point. (C) Two-dose (1 and 5 mM) viability

assay results on azathioprine (left), mercaptopurine (middle), and thioguanine (right). (D) IC50 curves of 6-thioguanine for HPDE, Panc1, and

four PDAC cells. Error bars indicate SEM.
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(Table 1), and we examined 26 of them at 1- and 5-

lM doses (Fig. S5 for raw data). Notably, many of

the candidates showed high toxicity at 1 lM, leading

to dramatic cell death regardless of cell type. There-

fore, we measured IC50 for 10 candidates showing

high cytotoxicity, expecting some of them to exert a

Table 1. List of the compounds selected from the 1st screening.

Chemical library

Natural productGroup A Group B

3-Amino-1-propanesulfonic acid

sodium

Paroxetine hydrochloride AMG-073 HCl (Cinacalcet HCl) (–)-Ouabain

Abitrexate (methotrexate) Perhexiline maleate AST-1306 (b,b-Dimethylacryl)

Shikonin

Alexidine dihydrochloride Perphenazine Auranofin Antibiotic A-23187

APO866 (FK866) Podophyllotoxin BAY 11-7082 (BAY 11-7821) Bufalin

Auranofin Quinacrine dihydrochloride CCT137690 C6 Ceramide

Azathioprine Quinacrine dihydrochloride

dihydrate

Celastrol Celastrol

Azathioprine Rottlerin CI-1033 (Canertinib) Chelerythrine

AZD4547 S-(+)-Fluoxetine hydrochloride Clomifene citrate (Serophene) Cinobufagin

Bay 11-7082 SB 242084 dihydrochloride hydrate Daunorubicin hydrochloride Citreoviridin

Benzethonium chloride Sertraline hydrochloride Digitoxigenin Dehydrocostus lactone

beta-Lapachone SIB 1757 Digoxigenin Deoxyshikonin

BIX 01294 trihydrochloride hydrate Simvastatin Digoxin Digitoxin

Carprofen Tamoxifen citrate Dioscin (Collettiside III) Ellipticine

Carvedilol Terfenadine Doxorubicin hydrochloride Gambogic acid

Chicago sky blue 6B Thiethylperazine dimalate Fingolimod (FTY720) Gliotoxin

CHM-1 hydrate Thimerosal Foretinib (GSK1363089,

XL880)

Mitomycin C

cis-(Z)-Flupenthixol dihydrochloride Thioguanine Idarubicin HCl Oridonin

Clomipramine HCl (Anafranil) Thioguanosine IKK-16 Parthenolide

Cycloheximide Thioridazine hydrochloride Ispinesib (SB-715992) Patulin

Dihydroouabain Thioridazine hydrochloride JTC-801 Peruvoside

Duloxetine HCl (Cymbalta) Trifluoperazine dihydrochloride Lanatoside C Plumbagin

Fiduxosin hydrochloride Triflupromazine hydrochloride LDN193189 Puromycin

Fluconazole Vardenafil LY2608204 Shikonin

Fluoxetine hydrochloride Neratinib (HKI-272) Strophantidin

Fluphenazine dihydrochloride NSC 95397 Thymoquinone

Fluspirilene NSC348884 hydrate Tubericidin

Fluvastatin sodium salt NVP-BGT226 Cimicifagoside

GR 127935 hydrochloride hydrate OSU-03012 (AR-12) Daidzein

GSK1070916 PHA-665752 Oleanolic acid

Hexahydro-sila-difenidol hydrochloride Ponatinib (AP24534) Scopolin

Indatraline hydrochloride PQ 401 Stigmasterol

L-703,606 oxalate salt hydrate Proscillaridin A b-chamigrenic acid

Maprotiline hydrochloride Prothionamide

Mercaptopurine Sanguinarine chloride

Mercaptopurine SB 743921

Methiothepin mesylate Sertraline HCl

Methylbenzethonium chloride SRT1720

Mibefradil dihydrochloride Stattic

MK-2206 2HCl Staurosporine

MRS 2159 Thonzonium bromide

NNC 55-0396 Vortioxetine hydrobromide

Nortriptyline hydrochloride WP1066

NS8593 hydrochloride WP1130

Palmitoyl-DL-Carnitine chloride YM155

Parbendazole Zinc pyrithione
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tumor-specific killing effect. In contrast, as Fig. S6

shows, we could not find any compound that has

superior cytotoxicity toward cancer cells (Table S2 for

IC50 values).

3.5. TPMT, but not MTAP-dependent 6-TG

susceptibility, explains cancer-specific

cytotoxicity

As our drug-repositioning results strongly suggested

thiopurines inhibit primary PDAC cell growth more

efficiently compared with normal HPDE, we ques-

tioned how 6-TG, a thiopurine, implements its tumor

cell-specific killing effect. One report showed that

MTAP abrogates phosphoribosylation conversion of

6-TG to a toxic derivative (Munshi et al., 2014). Inter-

estingly, another report revealed that the p16 gene is

often lost along with the MTAP gene in pancreatic

cancer (Lubin and Lubin, 2009; Munshi et al., 2014).

RT-PCR and Western blot analysis indicated that

MTAP was expressed in HPDE and 34 629 cells

(which showed the highest IC50 among four PDAC cell

lines; Fig. 3A,B). Therefore, we first tested whether the

expression of MTAP can confer resistance to 6-TG-

induced toxicity. The transfection of MTAP small

interfering RNA (siRNA) into HPDE cells showed an

effective knockdown of MTAP (Fig. 3C) but did not

affect sensitivity to 6-TG (Fig. 3C, P = 0.668, two-way

ANOVA test). We also tested the overexpression of

MTAP in the 17 884 cell line, which had low MTAP

expression (Fig. 3A,B). In this case, we observed sig-

nificant resistance at low concentrations of 6-TG

(P = 0.03 at 0.01 lM and 0.005 at 0.1 lM), but this

was reversed at high 6-TG concentrations (Fig. 3D).

Therefore, we concluded that 6-TG overexpression

does not consistently confer resistance to 6-TG. This

result was also confirmed in Panc1 cells (Fig. 3E,

P = 0.771, two-way ANOVA test).

We therefore searched for another possible mecha-

nism underlying 6-TG resistance and focused on

TPMT. A defect or decreased level of this enzyme

results in decreased methylation of a thiopurine drug,

which increases its toxicity (Krynetski and Evans,

2003). Western blot and real-time PCR analysis

showed high TPMT expression in HPDE and Panc1

cell lines, both of which had high IC50 values toward

6-TG (Fig. 3A,B, Fig. S7, Table S2). Consistently, we

found overexpression of TPMT conferred resistance to

6-TG-induced toxicity (Fig. 3F). Moreover, a knock-

down of TPMT in both TPMT-high HPDE and Panc1

cells sensitized them to 6-TG, at 0.1–10 lM for HPDE

and 1–100 lM for Panc1 cells, respectively (Fig. 3G,

H). These results collectively suggested that the TPMT

expression level affects efficacy of 6-TG against cancer

cells.

3.6. 6-TG inhibits the BRAF-MEK-ERK pathway

and induces apoptotic cell death in a cancer cell-

specific manner

As we confirmed that 6-TG inhibits PDAC cell prolif-

eration, we next examined the molecular alterations

specifically triggered by 6-TG in cancer cells. Because

6-TG has been shown to regulate GTPase activity (de

Boer et al., 2007), we analyzed the effect of 6-TG on

the RAS-RAF-MAP Kinase pathway that is fre-

quently activated in PDAC. The results in Fig. 4A

indicate that the phosphorylated (activated) levels of

BRAF, MEK, and ERK were decreased in primary

PDAC cell line 36 473 by the 6-TG treatment (left

panels), whereas HPDE cells were not affected (right

panels). In addition, we observed a reduced level of

full-length Caspase 7 as well as increased PARP

cleavage in the 36 473 cells but not in the HPDE,

suggesting that 6-TG triggers apoptosis in a cancer

cell-specific manner. We confirmed the apoptotic effect

of 6TG by annexin V/PI staining, showing the 6TG

treatment induced increased apoptosis compared with

the control cells (Fig. 4B,C).

3.7. 6-TG has an antitumor effect in combination

with gemcitabine in a patient-derived xenograft

model

To validate the antitumor effect of 6-TG in vivo, we

introduced a patient-derived xenograft model of

Table 2. IC50 values of the three thiopurine drug candidates.

Name of drugs

IC50 value (lM)

HPDE Panc-1 17884 19224 34629 36473

Gemcitabine 0.816 > 10 0.18 0.145 0.258 0.049

Azathioprine > 10 > 10 7.757 4.359 > 10 3.335

Mercaptopurine > 10 > 10 1.345 1.119 > 10 1.232

6-Thioguanine > 10 9.943 0.622 0.562 1.131 0.387
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PDAC (Jung et al., 2016). Previously characterized

19 224 patient-derived xenograft (PDX) cells lack P53

expression and express SMAD4 weakly, but showed

high phospho (p)-ERK and p-AKT levels. We selected

this PDX because the matching PDAC cells (19 224)

showed a good response to 6-TG, and TPMT

expression was relatively low (Fig. 3A,B). In addition

to 6-TG monotherapy, a combination of 6-TG with

gemcitabine was tested, based on the in vitro data in

PDAC cells (Fig. S8). Tumor volume data presented

in Fig. 5A indicated that 6-TG treatment alone

(marked as blue rectangles) showed significantly sup-

pressed but stationary tumor growth (Fig. 5B, see Dis-

cussion). In contrast, gemcitabine, a common

chemotherapeutic agent for PDAC, manifested a

tumor cell-killing effect (Fig. 5A, marked as green tri-

angles and B for statistical value). Importantly, when

6-TG was used in combination with gemcitabine, we

observed a significantly reduced tumor growth com-

pared with 6-TG alone (red circles, P < 0.005). The

tumor volume at the final time point supported this

finding (Fig. 5C). Based on the result showing antitu-

mor effect of 6-TG in TPMT-low PDAC, we then ana-

lyzed TCGA data to estimate the expression level of

TPMT in PDAC compared with various types of can-

cer. We also questioned how large a portion of PDAC

is TPMT-low. The results are shown in Fig. 5D,E.

Among 12 cancer types analyzed, PDAC was 9th, sug-

gesting the 6-TG can be relatively effective in PDAC.

Indeed, Fig. 5E shows 71.1% of the PDAC has a

TPMT level lower than the TCGA average. If we

apply a more stringent cutoff, then we see that 12.2%

of PDAC shows a TPMT level less than 50% of the

TCGA average. We speculate that these populations

A
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Fig. 4. 6-TG inhibits the Ras-Raf-MAPK signaling cascade and induces apoptosis in PDAC cells. (A) Western blot analysis of cells for

p-BRAF, p-MEK, p-ERK, caspase 7, and PARP in PDAC (36 473) or HPDE cells after the various doses of 6-TG treatment. b-Actin served as

a loading control. (B) Apoptosis assay measured by Annexin V/PI staining. After treatment of 6-TG for 48 h, cells were analyzed by flow

cytometry. (C) The percentage of annexin V/PI-positive cells from (B) is shown as a graph.
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could represent a beneficial group using the 6-TG

treatment. Altogether, these data suggested that 6-TG

is an effective antitumor agent in combination with

gemcitabine in vivo, for the tumors with low expression

of TPMT.

4. Discussion

6-TG was initially reported in 1955 (Garattini and

Mussini, 1955) and is currently used against inflamma-

tory bowel disease (Mantzaris, 2017) as well as several

lymphoid tumors such as AML, ALL, and CML (Kar-

ran and Attard, 2008). Once 6-TG enters the cell, it is

converted to 6-thioguanine nucleotide (6-TN), which is

toxic (Ishiguro et al., 1984). Its toxicity is mainly

caused by the incorporation of 6-TN into DNA during

the S phase of the cell cycle (Lennard et al., 1989),

thereby indicating its effectiveness in cancer. Alterna-

tively, it can inactivate a GTP-binding protein such as

Rac1 (Tiede et al., 2003). Considering that PDAC is

associated with a frequent KRas activating mutation,

further research is needed to clarify whether 6-TG can

inhibit mutant KRas signaling.

Previously, a phase II clinical trial of 6-TG involv-

ing 32 PDAC patients was reported, but it showed no

significant therapeutic effect (Ajani et al., 1991). We

speculate that this is mainly due to the desmoplastic

microenvironment of PDAC, which usually interferes

with drug delivery into cancer cells (Erkan, 2013;

Lunardi et al., 2014). When we tested mouse stromal

content in PDX model using PTGER2 primer (Alcoser

et al., 2011), we found that it represented 10–15% of

mouse cells (Fig. S9). Consequently, we found 6-TG

treatment alone in the PDX model did not show

tumor regression (Fig. 5A, blue line), whereas in vitro

testing showed an efficient cytotoxic effect (Fig. 2D).

Therefore, along with the identification of a therapeu-

tic agent in PDAC, there is an urgent need for an

effective delivery method. In this regard, recent

approaches including nanoparticles, enzymatic treat-

ment, and combination with stellate cell targeting

agent deserve further attention (Wang et al., 2017). In

*P = 0.0068
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our study, we found TPMT expression to be lower in

cancer cells than in normal HPDE cells. By far, the

regulatory mechanism of TPMT expression is not

clearly understood. In 1997, Krynetski et al. isolated

the TPMT gene promoter, finding 71% GC content

without a TATA box or CCAAT elements. By con-

trast, polymorphism of the TPMT gene has been char-

acterized extensively because it determines patient

adverse effects due to toxicity caused by the loss of

functional TPMT variants (Tamm et al., 2017). The

regulation of TPMT expression by transcription fac-

tors and/or epigenetic modification will aid researchers

to apply 6-TG precisely to a subgroup of PDAC

patients.

During the screening of the natural product library,

we found that each of the candidate compounds had a

high cytotoxicity. In our primary hit list (Table 1), we

found that thymoquinone was reported previously as

an anti-PDAC agent (Relles et al., 2016). In contrast,

our subsequent experiment (Fig. S5 and 5C8) showed

that this compound kills HPDE cells better than can-

cer cells. Some studies also identified diindolylmethane

as a candidate agent for PDAC (Li et al., 2013), but it

was not effective in our study. We can speculate that

the physiological (as present in its natural source) level

of each natural compound is much lower than what

we tested, and furthermore, its effect may be stronger

in combination with multiple ingredients of other nat-

ural products.

5. Conclusions

Our results presented here strongly suggest that 6-

TG is a PDAC cell-specific antitumor agent. Further

study including modification for better efficacy and

the development of an efficient delivery method

will facilitate the application of this drug in clinical

practice.
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inhibitory effect of 6TG, gemcitabine, and their combi-

nation in pancreatic cancer primary cells.

Fig. S8. RNA levels of TPMT was analyzed by real-

time PCR.

Fig. S9. Measurement of mouse cell content in PDX,

using human/mouse PTGER2 primers.

Table S1. Clinicopathological parameters of pancreatic

cancer patients for primary cell culture.

Table S2. IC50 values of the natural product drug can-

didates.
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